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Outline

What is smart HPC?
What is intelligent (batch) scheduling?
= Two research projects

* Power aware scheduling
* Multi-resource scheduling

Open issues
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HPC Trends: Platform
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Batch Scheduler

= A system software sitting between workloads
and computing platforms

* To decide when and where to execute user jobs

= Aka job scheduler, cluster scheduler, workload

management
* Cobalt, Slurm, PBS, Moab/Torque, ...
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Cobalt: Batch Scheduler at Argonne

https://trac.mcs.anl.gov/projects/cobalt/
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W. Allcock, P. Rich, Y. Fan, and Z. Lan, “Experience and Practice of Batch
Scheduling on Leadership Supercomputers at Argonne”, JSSPP 2017.

Z.lan 7

N ILLNGTS INSTITUTE OF TECH
Intelligent Scheduling

Adaptively improve its action in response to varying environments
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Z. Lan, W. Allcock, P. Rich, and M. Papka, “Flexible, Intelligent, and Multi-Dimensional Resource Management System”,
Position paper to DOE Extreme Heterogeneity Workshop, 2018.
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Power Awareness

= Actively observes, analyzes, and assesses power
behaviors of the system and user jobs
* To control system wide power consumption
* To minimize impact on system utilization
* To be applicable to general HPC applications

* Three components:
1. Power analysis
2. Dynamic power learning
3. Power aware scheduling

S. Wallace, X. Yang, V. Vishwanath, W. Allcock, S. Coghlan, M. Papka, and Z. Lan,
“A Data Driven Scheduling Approach for Power Management on HPC Systems", SC’16.
Z.lan 9

Workload Power Analysis

= Study power data from Mira environmental database in 2014 -
-- statistics of job power profiles in kw per rack

Minimumn 36.48\,\

Mean 65.67 HPC jobs have distinct
Maximum @/ power profiles with the
il OF 56.60 difference being as high
Percentile 25 61.20 as 4.4 times!

Percentile 75 71.03

Percentile 95 74.57

Percentile 99 77.99

Standard Deviation [6.18

Z.lan 10
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Workload Power Analysis

%l g o1

~ ~
g %
—{IT+—
Rack
a o
N =y
1 1

o
@
1
-
o
1

5 T

a%'é

w
%

Input Kilowatt Per Rack (kW
w v a
§ & 3
Input Kilowatt Per Rac|
a o
LI

w
N
1

Y
G

T By T T T 1
1 2 3 4 5 6

Project User

Not only do jobs have distinct power profiles,
so do the projects they belong to!
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Power Aware Scheduling

Traditional Approach HPCSystem
Waiting Queue -

Jobs Oned . ™ m
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Illustrative Example

Job Size (Racks) Power Profile (kW/rack)

Head of j, 3 60
Wait queue

Ji 1 50

J2 5 30

J3 4 40

* Allocated onto a 6-rack system with total power cap of 230 kW.

» Conventional FCFS always selects <Jo, J1> leaving 2 racks unused.

* Our approach selects <J4, J»> as this maximizes utilization under
power cap.

Z.lan
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Dvnamic Leaner

* To take power data from power monitoring
facilities
= At each scheduling instance, the learner has
two tasks
* Estimate peak power requirement of each job
in the queue

* Calculate the available power budget for
incoming jobs by measuring power usage of
running jobs

Z. lan
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Estimating Job Power Profile

= Two possibilities
* No power information for the job
* If the group’s power profile is known, use group power
profile
* Otherwise, assume the maximum
* Previous power data available
* Use job’s previous profile as its current power profile

= Qur learner constantly updates power profiles
of jobs and groups using two-sample T-test

Z.lan 15

Power Aware Scheduling

= To select jobs in the queue for execution

= Two major parts:
* In contrast to one-by-one scheduling approach,
we adopt a window-based approach

* A 0-1 knapsack problem is formulated to
describe power aware scheduling

max( in ‘n)<SN-N, .. x=0orl

1<i<k)

S't'zxi.p[ S})B_]Dused

I<i<k
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Evaluation

®» Trace-based simulation

e A stream version of CQSim (https://github.com/SPEAR-
IIT/CQSim)

= Workload traces

* Mira 2014 traces: workload log & CMCS power data
= Metrics:

1. Learning accuracy

2. Capping success rate

3. Scheduling performance

Z.lan
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Learning Accuracy
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Date/Time

94% accurate after just 26 days of execution.

Z. lan
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Capping Success Rate
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Capping Success Rate
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Scheduling Performance

B With naive capping [l With our capping
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Scheduling Performance

[l With naive capping [l With our capping
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When power cap is about 83% of the maximum, minor
or no degradation in scheduling performance!
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Intelligent Scheduling
dynamically improve its action in response to varying environments
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Multi-Resource Scheduling

|

Compute Nodes / Blade =2 x Burst Buffer Node (2x SSD)
LN

1/0 Node (2x InfiniBand HCA)

SSD
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niBand)

[ How to handle burst buffer in job scheduling? ]

—

§ Storage Servers

)
BB S5

A
| |

Aries High-Speed Network InfiniBand Fabric

Y. Fan, Z. Lan, P. Rich, W. Allcock, M. Papka, B. Austin, and D. Paul,
“Scheduling Beyond CPUs for HPC”, HPDC’19.
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Existing Solutions

= Naive: run jobs in sequence (Slurm)

= Constrained: maximize utilization of one

resource (SC’16)

= Weighted: maximize the combination of
utilizations of multiple resources (ICDCS’12)

= Bin Packing: select big jobs iteratively

(SIGCOMM’14)

25

lllustrative Example

 J1: <6 CPUs, 1 BBs>
+ J2: <2 CPUs, 1 BBs>
+ J3:<3 CPUs, 5 BBs>
 J4: <3 CPUs, 3 BBs>

Job Waiting Queue

HPC System

]
000
OO0

Fl J2 IT'—*[ Scheduler }—’

CPUs

Naive 89% 22%

010y
B
U0

BBs

26
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+ J1:<6 CPUs, 1 BBs>
+ J2:<2 CPUs, 1 BBs>
+ J3:<3 CPUs, 5 BBs>
* J4:<3 CPUs, 3 BBs>

Job Waiting Queue

J3 ] )2 Scheduler }—‘

HPC System

[
£ad
o0

CPUs

|-
00

+ J2:<2 CPUs, 1 BBs>
+ J3:<3 CPUs, 5 BBs>
* J4:<3 CPUs, 3 BBs>

Job Waiting Queue

.il J2 | n I—’[ Scheduler ]—’

Naive 89% 22%
2 Constrained, Weighted, Bin Packing 100% 67% D [j D
BBs
Z.lan 27
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o < >
J1: <6 CPUs, 1 BBs e

O]
L]

[ |

CPUs

Naive 89% 22%
2 Constrained, Weighted, Bin Packing 100% 67%
3 new solution 89% 100%
Z.lan
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100%
0% s3
80%
1 89% 22% s o 9
g 0% S2
2 100% 67% 2 %
Pareto igj E
3 89% 100% Set 0% s
o 0% 20% 40% 60% 80% 100%
*= S2 and S3 form Pareto set
S2: higher CPU; lower BB
S3: higher BB; lower CPU
Z. lan 29

BBSched for Multi-Resource Scheduling

= Goal:
* Being capable of identifying Pareto set
= Key components:

* Window-based scheduling to preserve job
ordering

* Formulate as multi-objective optimization (MOO)
problem

* Rapidly solve the problem via genetic algorithm

Z.lan 30
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BBSched

BBSched

rWindow-based Scheduling

| Firstw jobs are copied to the  Jobs in the window are selected for execution
LWIndOW to enforce site policies.  with the goal of optimizing resource utilizations B

Base Scheduler 10T
S Job Waiting Queue A T e -
:"9" Jobs

"a“:> B |||l a——

|
|
N HPC System
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Multi-Objective Optimization (MOO)

= Multiple objectives:
Node utilization: /", n;Xx;
BB utilization: };j~; b;XXx;

= Constraints:

Meet Real-Time Requirement

w
Zi=1 n;xXx; < Navailable

w
i=1 bixxi < Bavailable

107!

= MOO is NP-hard

Time-to-Solution (s)

23456 7 8 91011121314151617181920
Window Size

Z.lan 32
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Solving MOO

= Genetic algorithm

* Approximate true Pareto set iteratively
* Require much less time than exhaustive search

awroron [+ [0 [+ To T | (RGN (RN (o [+ o] ]

@ ,,,,,
Parents: Children:Rapdom Crossover Posifibn
10‘10‘0‘ 1‘0 0‘1‘0
& Randomly pick
rossover and perform crossover
0‘1‘0‘1‘0‘ ‘0‘11‘0‘0

[ []
IR | AU | S—
{set1:

Set1 X
M Doopoll |
| L\ Snonnn

areto o
and the rest in Set 2
Select chromosomes into

the next generation. 0 1 0 1 0

smosenter [ [+ [+ To [ o | (STeT o o [ o T - | NGRS
33
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Scheduling Decision

= Select a solution out of the Pareto set

CPU BB
Utilization Utilization
51 e S4: Maximum CPU utilization

80% 10%. 70% 40%? :

..................................................... - . .
S2 50% 40%. 90% 60%T S1 and S3: BB gain 2x> CPU loss
S370%20%l80%50%¢ . $3: Maximum BB improvement
I

) B 90% 30%

8/17/20
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Evaluation
* Trace-based simulation via CQSim
https://github.com/SPEAR-IIT/CQSim
= Workload traces (Cori@LBNL, Theta@ALCF)
Cori Theta
Location NERSC ALCF
Scheduler Slurm Cobalt
System Types Capacity computing Capability computing
C ite Nod 12,076 4,392
ompute odes (2,388 Haswell; 9,688 KNL) (4,392 KNL)
Aggregated Memory | 1,304.5TB 913.5TB
Shared Burst Buffer | 1.8PB 1.26PB (projected)
Trace Period Apr. 2018 - Jul. 2018 Jan. 2018 - May. 2018
Number of Jobs 2,607,054 70,507
BB Data Source Slurm log Darshan log
BB Range [1GB, 165TB] [1GB, 285TB]
Z.lan 35
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Workloads

= |nsufficient BB requests, as BB is new

= No records on some requests

= S1 ->S4, weak to strong confliction

S1

S2

S3

s4

50% 5TB+
75% 5TB+
50% 20TB+
75% 20TB+

Z. lan
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Comparison

= Methods:
* Baseline: Naive method, no optimization
* Weighted: 50% node, 50% BB
* Weighted_CPU: 80% node, 20% BB
* Weighted_BB: 20% node, 80% BB
* Constrained_CPU: maximize node utilization
* Constrained_BB: maximize BB utilization
* Bin_Packing
* BBSched: w =20, G =500, P =20

= Evaluation Metrics
* Resource Utilization: node, BB

* Average Job Wait Time .

Node Usage

V LLINOIS INSTITUTE OF TECHNOLOG

Node Utilization

[ Baseline B Weighted_CPU Constrained_CPU [l Bin_Packing
[l Weighted [l Weighted BB [ Constrained 88 [l BBSched

100% | m—

Cori

16%1
>

Node Usage

AU, OSSOSO
AR AN INNNNNSY
ANANE NN NNy

%
é
é
Vi

OSSOSO
INNANANNNANANNNANNN
NANANANNNANRNRNNY

0%
Theta-Original Theta-S1 Theta-S2 Theta-S3 Theta-S4

0% -
°Cori-original Cori-S1 Cori-S2 Cori-S3 Cori-S4

BBSched improves node utilization by up to 20%

Constrained_CPU has good performance on Original, S1 and S2

S1—-84, node utilization | due to intensive BB requests

Z.lan 38
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BB Utilization

[ Baseline [l Weighted CPU [ Constrained CPU [ Bin_Packing
B weighted [l Weighted BB @& Constrained_BB [ BBSched

100% - ~
g o
© 80% g
0 1d
= 2
= 60% -
[} ]
: :
@ 0% @
- -
£ 20% £
5 3
o @
o 1
Cori-Original Cori-S1 Cori-S3 Cori-S4 Theta-S3  Theta-s4

BBSched has the highest BB utilization (up to 15% increase)

BBSched > Weighted > Constrained > Bin Packing

S$1—-S83, BB utilization increases

S3 = S4, because BBs are saturated
Z. Lan 39
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Avg Job Wait Time

[ Baseline [l Weighted CPU [Z Constrained CPU [l Bin_Packing
Bl weighted [l Weighted BB [Za] Constrained 88 [l BBSched

Theta

Average W.

< o0
Theta-Original Theta-S1  Theta-S2 Theta-S3  Theta-S4

i-53 | Cori-S4

Optimization methods reduce average job wait time
BBSched achieves the greatest reduction, esp with S4 (41%)

S$1—-84, average wait time increases because resources are saturated

Z.lan 40
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Overall Comparison

Cori-Original Cori-S2 Cori-S4
Busell lode Util. Node Util.
TN T A

larger area

1/Avg. Slowdown 1/Avg. Slowdown 1/Avg. Slowdown
Theta-Original Theta-S2 Theta-S4 means

Node Util.

Better performance

P SN\
1/Avg. Slowdown 1/Avg. Slowdown 1/Avg. Slowdown

Z.lan 41
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Adding More Resources

= Three resources: CPUs, BBs, and local SSDs
* Half of nodes having 128GB SSDs
* Half of nodes having 256GB SSDs

= Add two more objectives:

* Maximize local SSD utilization:
Dit1 SiXmXx;
* Minimize wasted local SSD:
gv=1(2}1=i1 (Lij — 50)) xx;

Z.lan 42
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Evaluation

=== Baseline Constrained_CPU Constrained_SSD === BBSched
= Weighted Constrained_BB === Bin_Packing

Cori-S6 Theta-S6

Node Util. Node Util.

1/Avg

R 1/Avg
Slowdown'

Slowdown

1/Wasted SSD 1/Wasted SSD

Z.lan 43

Key Takeaway

Considering all resources in an explicit
optimization is essential for multi-resource
scheduling!

Z. lan 44
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Open Issues

= Emerging latency-sensitive, short-running, malleable,
ensemble-based jobs

* Borrow techniques from cloud scheduling
* E.g., hierarchical approach (Mesos)
» Hybrid nodes (CPUs & accelerators)
* Fine-grained job scheduling
= Existing approaches are heuristics or optimization
base
* Exploit advanced RL to improve scheduling efficiency

= Finally, data collection and real-time processing for
driving intelligent scheduling

Z.lan 45
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SPEAR Research Group

to the SPEAR (S for Performance, Energy, And Resiliency) team's web page!
The team conducts research spanning various areas of parallel and distributed systems including cluster management,
interconnection networking, performance modeling and simulation, power and energy efficiency, and fault tolerance. Our
mission is to design scalable methods and software for large-scale HPC, Al, and data analysis. The team has a strong
collaboration with the ALCF and MCS divisions at Argonne National Lab.

46
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Collaborators at Argonne
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Contact: Zhiling Lan

Email: [an@iit.edu
Website: http://www.cs.iit.edu/~lan
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