
8/17/20

1

Toward Smart HPC via Intelligent Scheduling

Zhiling Lan
lan@iit.edu

Department Computer Science, Illinois Institute of Technology

Keynote at the ICPP 2020 SRMDPS Workshop

2

Outline
§ What is smart HPC?
§ What is intelligent (batch) scheduling?
§ Two research projects
• Power aware scheduling
• Multi-resource scheduling

§ Open issues

Z. Lan

mailto:lan@iit.edu

8/17/20

2

3

HPC Trends: Workload

Simulation
Applications

Big Data
Applications

Machine Learning
Applications

Large Scale System

System Software

Z. Lan

4

HPC Trends: Platform

AMD Exascale Strategy Hinges on Heterogeneity

Intel Heterogeneous Computing Pipelining

Z. Lan

8/17/20

3

5

HPC

AI/ML

Big Data

Smart HPC

5

Automatically extract essential
workload and system insights

Adaptively improve its action in
response to varying

environments

Forward control
Backward feedback

Z. Lan

6

Batch Scheduler
§ A system software sitting between workloads

and computing platforms
• To decide when and where to execute user jobs

§ Aka job scheduler, cluster scheduler, workload
management
• Cobalt, Slurm, PBS, Moab/Torque, …

Job
Scheduler

Resource
Manager

Job Queue

6Z. Lan

8/17/20

4

7

Cobalt: Batch Scheduler at ArgonneThesis Contributions
• Multi-Dimensional Batch Scheduling Framework

10

Power I/O bandwidth Network

Constraints
7

Constraint

https://trac.mcs.anl.gov/projects/cobalt/

W. Allcock, P. Rich, Y. Fan, and Z. Lan, “Experience and Practice of Batch
Scheduling on Leadership Supercomputers at Argonne”, JSSPP 2017.

Z. Lan

8

Intelligent Scheduling
Adaptively improve its action in response to varying environments

Intelligent
scheduling

Reliability
Awareness

Comm.
Awareness

I/O
Awareness

Power
Awareness

Multi
objective

8Z. Lan, W. Allcock, P. Rich, and M. Papka, “Flexible, Intelligent, and Multi-Dimensional Resource Management System”,
Position paper to DOE Extreme Heterogeneity Workshop, 2018.

https://trac.mcs.anl.gov/projects/cobalt/

8/17/20

5

9

Power Awareness
§ Actively observes, analyzes, and assesses power

behaviors of the system and user jobs
• To control system wide power consumption
• To minimize impact on system utilization
• To be applicable to general HPC applications

§ Three components:
1. Power analysis
2. Dynamic power learning
3. Power aware scheduling

9

S. Wallace, X. Yang, V. Vishwanath, W. Allcock, S. Coghlan, M. Papka, and Z. Lan,
“A Data Driven Scheduling Approach for Power Management on HPC Systems", SC’16.

Z. Lan

10

Workload Power Analysis
§ Study power data from Mira environmental database in 2014 -

-- statistics of job power profiles in kw per rack

HPC jobs have distinct
power profiles with the
difference being as high
as 4.4 times!

10Z. Lan

8/17/20

6

Workload Power Analysis

Not only do jobs have distinct power profiles,
so do the projects they belong to!

11Z. Lan

12

Power Aware Scheduling

12Z. Lan

8/17/20

7

Illustrative Example

Head of
Wait queue

Z. Lan
13

14

Dynamic Leaner
§ To take power data from power monitoring

facilities
§ At each scheduling instance, the learner has

two tasks
• Estimate peak power requirement of each job

in the queue
• Calculate the available power budget for

incoming jobs by measuring power usage of
running jobs

Z. Lan

8/17/20

8

15

Estimating Job Power Profile
§ Two possibilities
• No power information for the job
• If the group’s power profile is known, use group power

profile
• Otherwise, assume the maximum

• Previous power data available
• Use job’s previous profile as its current power profile

§ Our learner constantly updates power profiles
of jobs and groups using two-sample T-test

Z. Lan

16

Power Aware Scheduling
§ To select jobs in the queue for execution
§ Two major parts:
• In contrast to one-by-one scheduling approach,

we adopt a window-based approach
• A 0-1 knapsack problem is formulated to

describe power aware scheduling

å

å

££

££

-£×

=-£×

ki
usedii

i
ki

usedii

PPBpxts

xNNnx

1

)1

..

1or 0,)max(

Z. Lan

8/17/20

9

17

Evaluation
§ Trace-based simulation
• A stream version of CQSim (https://github.com/SPEAR-

IIT/CQSim)

§ Workload traces
• Mira 2014 traces: workload log & CMCS power data

§ Metrics:
1. Learning accuracy

2. Capping success rate

3. Scheduling performance

Z. Lan

Learning Accuracy

18

94% accurate after just 26 days of execution.

Z. Lan

https://github.com/SPEAR-IIT/CQSim

8/17/20

10

Capping Success Rate

99% for the entire year.

Z. Lan 19

Capping Success Rate

99.2% of all execution under power cap

Z. Lan 20

8/17/20

11

Scheduling Performance

Relative change on job wait time,
normalized to un-capped FCFS

Z. Lan 21

Scheduling Performance

Relative change on system utilization

When power cap is about 83% of the maximum, minor
or no degradation in scheduling performance!

Z. Lan 22

8/17/20

12

23

Intelligent Scheduling
dynamically improve its action in response to varying environments

Intelligent
scheduling

Reliability
Awareness

Comm.
Awareness

I/O
Awareness

Power
Awareness

Multi
objective

23Z. Lan

Multi-Resource Scheduling

How to handle burst buffer in job scheduling?

Y. Fan, Z. Lan, P. Rich, W. Allcock, M. Papka, B. Austin, and D. Paul,
“Scheduling Beyond CPUs for HPC”, HPDC’19.

Z. Lan 24

8/17/20

13

25

Existing Solutions
§ Naïve: run jobs in sequence (Slurm)
§ Constrained: maximize utilization of one

resource (SC’16)
§ Weighted: maximize the combination of

utilizations of multiple resources (ICDCS’12)
§ Bin Packing: select big jobs iteratively

(SIGCOMM’14)

Z. Lan

Illustrative Example

• J1: <6 CPUs, 1 BBs>
• J2: <2 CPUs, 1 BBs>
• J3: <3 CPUs, 5 BBs>
• J4: <3 CPUs, 3 BBs>

Solution Methods CPU
Util.

BB
Util.

1 Naive 89% 22%

Z. Lan 26

8/17/20

14

• J1: <6 CPUs, 1 BBs>
• J2: <2 CPUs, 1 BBs>
• J3: <3 CPUs, 5 BBs>
• J4: <3 CPUs, 3 BBs>

Solution Methods CPU
Util.

BB
Util.

1 Naive 89% 22%

2 Constrained, Weighted, Bin Packing 100% 67%

Z. Lan 27

• J1: <6 CPUs, 1 BBs>
• J2: <2 CPUs, 1 BBs>
• J3: <3 CPUs, 5 BBs>
• J4: <3 CPUs, 3 BBs>

Solution Methods CPU
Util.

BB
Util.

1 Naive 89% 22%

2 Constrained, Weighted, Bin Packing 100% 67%

3 new solution 89% 100%

Z. Lan 28

8/17/20

15

Pareto Set

3 89% 100%

2 100% 67%

Solution CPU Util. BB Util.

1 89% 22%

§ S2 and S3 form Pareto set
• S2: higher CPU; lower BB

• S3: higher BB; lower CPU

Pareto
Set S1

S2

S3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

BB
 U

til
iz

at
io

n

CPU Utilization

Z. Lan 29

30

BBSched for Multi-Resource Scheduling

§ Goal:
• Being capable of identifying Pareto set

§ Key components:
• Window-based scheduling to preserve job

ordering
• Formulate as multi-objective optimization (MOO)

problem
• Rapidly solve the problem via genetic algorithm

Z. Lan

8/17/20

16

BBSched

Z. Lan 31

32

Multi-Objective Optimization (MOO)
§ Multiple objectives:

Node utilization: ∑"#$% &"×("
BB utilization: ∑"#$%)"×("

§ Constraints:
∑"#$% &"×(" ≤ +,-,".,)./
∑"#$%)"×(" ≤ 0,-,".,)./

§ MOO is NP-hard

Z. Lan

8/17/20

17

33

Solving MOO
§ Genetic algorithm
• Approximate true Pareto set iteratively
• Require much less time than exhaustive search

Selection

Set 1: Set 2:

Separate the chromosomes
into two sets:
Pareto solutions in Set 1
and the rest in Set 2.
Select chromosomes into
the next generation.

1 11 0 0

1 0 0 0 1

1 0 0 1 0

0 0 1 1 0

1 0 1 0 0

0 1 0 1 0

0 0 1 1 0Generation k 0 1 0 1 01 0 0 0 11 0 1 0 0

Crossover

Parents: Children:

Randomly pick chromosomes
and perform crossover

Random Crossover Position

1 0 1 0 0

0 1 0 1 0

1 0 0 1 0

0 1 1 0 0

0 1

1

Mutation Mutate some genes with
probability Pm

1 0 0 1 0

1 0 0

Generation k+1 1 11 0 0 1 0 0 0 1 1 0 0 1 00 1 0 1 0

34

Scheduling Decision
§ Select a solution out of the Pareto set

Solution CPU
Utilization

BB
Utilization

S1 80% 70%
S2 50% 90%
S3 70% 80%
S4 90% 30%

10%↓ 40%↑
40%↓ 60%↑

50%↑20%↓

• S4: Maximum CPU utilization

• S1 and S3: BB gain 2x> CPU loss

• S3: Maximum BB improvement

Z. Lan

8/17/20

18

35

Evaluation
§ Trace-based simulation via CQSim

https://github.com/SPEAR-IIT/CQSim
§ Workload traces (Cori@LBNL, Theta@ALCF)

Z. Lan

36

Workloads
§ Insufficient BB requests, as BB is new
§ No records on some requests
§ S1 -> S4, weak to strong confliction

Workload % of jobs
requesting BB

BB Range

S1 50% 5TB+

S2 75% 5TB+

S3 50% 20TB+

S4 75% 20TB+

Z. Lan

https://github.com/SPEAR-IIT/CQSim

8/17/20

19

37

Comparison
§ Methods:
• Baseline: Naïve method, no optimization
• Weighted: 50% node, 50% BB
• Weighted_CPU: 80% node, 20% BB
• Weighted_BB: 20% node, 80% BB
• Constrained_CPU: maximize node utilization
• Constrained_BB: maximize BB utilization
• Bin_Packing
• BBSched: w = 20, G = 500, P = 20

§ Evaluation Metrics
• Resource Utilization: node, BB
• Average Job Wait Time

Node Utilization

16%↑ 20%↑

BBSched improves node utilization by up to 20%

Constrained_CPU has good performance on Original, S1 and S2

S1→S4, node utilization ↓ due to intensive BB requests

Z. Lan 38

8/17/20

20

BB Utilization

BBSched has the highest BB utilization (up to 15% increase)

BBSched > Weighted > Constrained > Bin Packing

S1→S3, BB utilization increases
S3 ≈ S4, because BBs are saturated

Z. Lan 39

Avg Job Wait Time

Optimization methods reduce average job wait time

BBSched achieves the greatest reduction, esp with S4 (41%)

S1→S4, average wait time increases because resources are saturated

Z. Lan 40

8/17/20

21

Overall Comparison

larger area

means

Better performance

Z. Lan 41

42

Adding More Resources
§ Three resources: CPUs, BBs, and local SSDs
• Half of nodes having 128GB SSDs
• Half of nodes having 256GB SSDs

§ Add two more objectives:
• Maximize local SSD utilization:
∑"#$% &"×("×)"

• Minimize wasted local SSD:
∑"#$% (∑+#$(" (,"+ − &"))×)"

Z. Lan

8/17/20

22

Evaluation

Z. Lan 43

44

Key Takeaway

Considering all resources in an explicit
optimization is essential for multi-resource
scheduling!

Z. Lan

8/17/20

23

45

Open Issues
§ Emerging latency-sensitive, short-running, malleable,

ensemble-based jobs
• Borrow techniques from cloud scheduling
• E.g., hierarchical approach (Mesos)

§ Hybrid nodes (CPUs & accelerators)
• Fine-grained job scheduling

§ Existing approaches are heuristics or optimization
base
• Exploit advanced RL to improve scheduling efficiency

§ Finally, data collection and real-time processing for
driving intelligent scheduling

Z. Lan

SPEAR Research Group

Z. Lan 46

http://cs.iit.edu/~lan/SPEAR-Team.html

http://cs.iit.edu/~lan/SPEAR-Team.html

8/17/20

24

Collaborators at Argonne

Z. Lan 47

Contact: Zhiling Lan
Email: lan@iit.edu

Website: http://www.cs.iit.edu/~lan

mailto:lan@iit.edu
http://www.cs.iit.edu/~lan

