
Requirements
● Overview of thetaPGU system (Hunter)

○ Specs, login sequence, filesystems, full-node vs single-node, job script vs
interactive

● How to build and submit jobs(Experiment environment)
○ Tools, toolchain, modules, packages, libraries, etc
○ Cobalt scheduler
○ qsub, qstat
○ Module (lmod)
○ Tensorflow
○ Nsight systems (nsys)
○ Nsight compute (ncu)
○ Conda
○ Top (cpu stats)
○ Nvidia-smi (gpu stats)

● Overview of the problem that we are using for benchmarking (mini app diff eq solver)
○ Problem size selections (Hunter)
○ Due to issues, we decided to stay with mini app for the whole semester (rather

than openfoam or pythonfoam or tensorflowfoam)
● Issues that we experienced

○ Bare metal vs in a container
○ Waiting for gpu allocations/maintenance
○ Modifying source code to run on ThetaGPU

● Met with Romit to get info (?)
● Overview of each of the benchmarking tools (smi (Hunter), nsys, perf, etc?)

○ What it does, what data does it collect, why it’s useful to us
● GPU power data -- NVIDIA smi

- What queries are used and what are the results(plot data & necessary
analysis)

- Include our job script and commands
● CPU-GPU data movement(running the app in both CPU & GPU) -- nsys

- Plot data & analysis
- Zhong needs CSV

● CPU cache info and time implementation(only in CPU) -- perf
- Plot data & analysis

Split the workload
● Zhong: make all the plots in python (Hunter will do more writing to compensate)

Exploring AI-Enabled Benchmarks on ThetaGPU

Overview
This semester, we worked under the supervision of Dr. Zhiling Lan on the
SEEr-Planning project. We were assisted by Melanie Cornelius and Hannah Greenblatt.
As a team of five, our goal was to explore an AI-enabled computational fluid dynamics
benchmark on heterogeneous systems at Argonne National Lab. To do so, we initially
planned to collect data using three different benchmarks: The SDL AI Workshop
Mini-App, PythonFOAM, and TensorFlowFOAM. Our heterogeneous system is
Argonne’s ThetaGPU. Throughout the semester, we primarily focused on learning how
to use ThetaGPU and collecting benchmark data for the mini-app. Specifically, we are
interested in data movement through the memory hierarchy, as well as between the
CPU and GPU. The information will give us a better understanding of the performance
of in-situ data movement, analysis, and visualization.

ThetaGPU is a collection of twenty-four NVIDIA DGX A100 nodes. Each node has eight
NVIDIA A100 GPUs and either 320GB or 640GB of GPU memory, plus two AMD Rome
64-core CPUs and 1TB of DDR4 memory. Importantly, this is different from the Theta
system, which is a Cray XC40 with Intel KNL compute nodes. We do not work with
Theta on this project. In order to use ThetaGPU, we start by SSHing into the (shared)
theta login nodes. These provide a landing point for all work done on Theta and
ThetaGPU. From there, we SSH again into one of the ThetaGPU service nodes. This is
where the bulk of work is done, including compilation and job submission.

To actually use ThetaGPU, an allocation must be received by submitting a job request
to one of the queues. Cobalt is the scheduler used on ThetaGPU. To submit a job to
Cobalt, we use a command such as the following.

qsub -I -A SEEr-planning -n 1 -q single-gpu -t 30

This requests a 30-minute interactive-style job for the SEEr-planning project with 1
single gpu. For testing purposes, the single-gpu queue is sufficient. One does not need
to wait as long for a submission and less resources are used. The downside is that the
ThetaGPU node will be shared among other single-gpu allocations. To run a full job or
to collect real benchmark data, a full node is required. In this case, submit the job to the
full-node queue. Oftentimes it is impractical to wait for an interactive allocation on a full
node. Therefore, it is better to write a job script and submit it without the “-I” option. For
each job, Cobalt will generate .cobaltlog, .output, and .error files. These are useful for
checking the termination status of the job, the stdout, and the stderr of the program.

The Mini-app1 is a ML_PythonC++ embedding benchmark written by Dr. Romit Maulik at
Argonne. The graph shown below indicates how the mini-app connects C++ and
Python.

While the details of its operation are unimportant, we know generally that it is an
example of how a fluid dynamics solver would work. It is written using a combination of
C++ and Python. The C++ generates data by performing a computation on the CPU,
and then it is transferred to the GPU to build a surrogate model using TensorFlow in
Python. This host-to-device data transfer is of particular interest to us, so we highlight it
down in our analysis section. Additionally, the mini-app has a set of hyperparameters
that must be set before running the algorithm. We focus on NX and DT, which we
manipulate to compare the data collected against various problem sizes. NX specifies
the number of points in spatial discretization, and DT specifies the time step (delta t).
These together control the actual size of the problem. By selecting a range of values for
each, we are able to understand how they affect the benchmarks.

While learning the ThetaGPU system and setting up the mini-app, we interacted with
several critical tools and libraries in the ThetaGPU environment. First and foremost is
the Lmod module system. It is a system that handles environment modules by
strategically manipulating the PATH variable. We found this useful on a large machine

like this because it allows us to select specific packages and versions that are made
available on the system when it is not feasible to install our own. We made much use of
the “conda/tensorflow” module because the mini-app is built using TensorFlow. Besides
using the Conda package manager to provide Tensorflow, we also set up a Python
virtual environment to install cmake, matplotlib, and sklearn. These are all the other
libraries needed to build and run the mini app.

We ran into a few issues this semester but were able to learn and overcome each of
them. Firstly, the SDL AI Workshop presented instructions for running the mini-app in a
Singularity container. However, the mini-app needs to be run on bare metal to collect
accurate data. Therefore, we just had to make a few modifications to the cmake file to
get it to work. This was just a matter of changing some environment variables and
changing some include directories. Secondly, one of the main reasons why we chose to
evaluate the mini-app is because we consistently faced major roadblocks to getting
OpenFOAM working on ThetaGPU. After talking to support about compilation and
talking to Romit about the merits of the mini-app, we decided we can get useful data
without the struggle of OpenFOAM. This decision allowed us to make much more
progress with data collection and analysis.

CPU Data Result
We used a number of profiling tools to collect the performance data of the mini-app.
Melanie’s presentation “A Simple Overview of HPC Profiling” introduced us to several
tools, which was helpful. We ran the mini-app and collected CPU performance metrics
CPU-GPU mode using perf.
In our experiment, by executing
perf stat -x , -a -e instructions,l2_latency.l2_cycles_waiting_on_fills,xi_sys_fill_latency -I
1000 -o ${FILENAME}.perf
We collected three metrics in six different problem sizes of the mini-app. The
corresponding NX sizes are 256, 512, 1280, 2560, 3840, 5120.
The descriptions of the three metrics showed as following

- Instructions: instructions executed per second in cycles
- l2_latency.l2_cycles_waiting_on_fills: total cycles spent waiting for L2 fills to

complete from L3 or memory per second
- xi_sys_fill_latency: L3 Cache Miss Latency. Total cycles for all transactions

divided by 16 per second

The results are shown below by plotting.
Perf plots

https://drive.google.com/file/d/1jAdFhnK5fEbG8eIQTLuh1VoDKjgNBpU8/view?usp=sharing

As we observed, increasing the NX value from 256 to 512 speeds up the running time of
the mini-app. However, when we continue to increase the NX value, the total running
time grows up with no surprises.
Speedup calculation in terms of the NX value:
Running time of size 256: 34 seconds
Running time of size 412: 18 seconds
So, the speedup is 1.89 which is a sublinear speedup regarding changing NX value
from 256 to 512.
Also, we observed that for both three metrics, their “cycles per second” is very high in
the beginning of the running time, and they tend to decrease dramatically. That is
because the C++ part was running on the CPU side at the beginning, then the host
transferred calculated data to the device where python code was running.

GPU Power Data Result
The NVIDIA System Management Interface (nvidia-smi) is a command line utility, based
on top of the NVIDIA Management Library (NVML), intended to aid in the management
and monitoring of NVIDIA GPU devices. We use the nvidia-smi to monitor the power
consumption of the mini-app for six different problem sizes as discussed above on the
GPU side when the app is running on thetaGPU. The nvidia-smi power monitor records
the power data of the app every second. The script is as follows.

nvidia-smi --query-gpu=timestamp,index,power.draw
--loop-ms=1000 --format=csv > smi-out.csv &

We are interested in how the GPU power consumption behaves along with the changing
of problem size of the benchmark. Therefore, we used nvidia-smi to monitor the GPU
power changes when we ran the mini-app with 6 different problem sizes with respect to
the NX: 256, 512, 1280, 2560. 3840, 5120. The x-axis of the graph represents
checkpoints in seconds, and nvidia-smi recorded the power consumption usage in every
checkpoint. The y-axis represents the amount of GPU power consumed in Watt. The
graphs below reflect the GPU power changes along with the time. There is a period of
time where the power consumption is around 54.46W in each graph. That is because in
that period of time, the C++ code part is running on the CPU side, so the GPU power
consumption doesn’t have significant change. When the Python part starts to run on the

GPU side, the GPU power consumption increases dramatically. Below is the average
GPU power consumption for each problem size:

- Size 256: 58.88 W
- Size 512: 59.05 W
- Size 1280: 59.35 W
- Size 2560: 60.04 W
- Size 3840: 60.18 W
- Size 5120: 59.71 W

It is expected that the power consumption increases with increasing problem size,
because it requires more data calculation and movements. However, there is an
expectation in our experiment that the power consumption of size 5120 is slightly less
than the size of 2560 and 3840. By calculating the data movement rate(memset, HtoD,
DtoH, DtoD) which is represented as
total gpu-mem-data / total gpu-mem-time
we found that the data movement rate of size 2560 and 3840 is 3.4E-07 MB/ns, while
the data movement rate of size 3840 is 2.9E-07 MB/ns. The data movement rate of the
size 5120 is slightly smaller. So, we suspect that this can be one of the reasons why the
power consumption of size 5120 is slightly less than size 2560 and 3840.
Another interesting point is that in the size of 2560, 3840 and 5120, the peak GPU
power consumption is much higher than the size of 256, 512 and 1280. We suspect that
is because instant data movement at some points is extremely higher than other points.
The memory data in the table below proves our idea. In the Max (MB) column, the max
data movement at some points are much higher in the problem size 1280, 3840 and
5120, especially the size 5120.

GPU Memory Data Analysis
Nvidia Nsight Systems is a system-wide performance analysis tool that collects detailed
GPU runtime information. Here is the command used to run this on ThetaGPU. Note
that when requesting a ThetaGPU allocation to run this, the --attrs="perf=true"
must be specified so the perf paranoia level is appropriately set to 0 when running.

nsys profile --gpu-metrics-device=all -o ~/nsys-out ./app

Since we are mostly interested in data movement for this project, we highlight the
relevant statistics in the series of tables below. Notice that for each data movement type
(Host-to-Device, Device-to-Device, and Device-to-Host), the quantity of data moved
increases proportionally with the number of steps taken by the algorithm. This is
specified by the DT parameter, which indicates the step size. It is also worth noting that
the percentage of the overall runtime that each movement operation takes is fairly
consistent across problem sizes. Therefore, we have a solid basis for what to expect in
terms of runtime for each of them, given the problem size. Interestingly, we don’t
immediately see a correlation between the NX parameter of the problem size and the
size or runtime of the movement of data. Of course, NX and DT are correlated by nature
of the problem, but their impact on performance differs slightly.

Host-to-Device Data Movement

NX DT HtoD size (MB) HtoD time % HtoD time (ns)

256 0.001 6.676 29.3 22018785

512 0.001 6.676 28.9 21226008

1280 0.001 6.676 31.3 22045571

2560 0.0001 61.083 36 134771625

3840 0.0001 61.083 35.8 133406523

5120 0.00001 605.151 37.4 1279557724

Device-to-Device Data Movement

NX DT DtoD size (MB) DtoD time % DtoD time (ns)

256 0.001 5.755 61.4 46093649

512 0.001 5.755 61.8 45364044

1280 0.001 5.755 58.7 41311701

2560 0.0001 34.555 56.2 210063510

3840 0.0001 34.555 56.4 210037421

5120 0.00001 322.555 55.3 1890632657

Device-to-Host Data Movement

NX DT DtoH size (MB) DtoH time % DtoH time (ns)

256 0.001 4.262 6 4507004

512 0.001 4.262 5.9 4345658

1280 0.001 4.262 6.4 4512697

2560 0.0001 8.269 7.1 26627536

3840 0.0001 8.269 7.2 26653719

5120 0.00001 48.337 7.2 245934684

Nsight Systems also provides a lot of details about CUDA API calls. We decided to
highlight some of that data below, since we found some interesting trends related to the
problem sizes. For example, for extremely small problem sizes (NX=256 and NX=512),
a majority of the runtime is spent just calling CudaFree. Therefore, it overshadowed the
quick runtime of CudaLaunchKernel by a considerable amount. On the other hand, the
largest problem size passes a critical point where calls to CudaFree are not dominating
the runtime. Instead, most of the time is spent executing CudaLaunchKernel, which
makes sense because that is where the main work for solving the problem is done.

Relationship Between Calls to CudaFree and CudaLaunchKernel

NX DT cudeFree (ns) cudaFree % cudaLaunchKernel (ns) cudaLaunchKernel %

256 0.001 6979390756 65.5 914930021 8.6

512 0.001 6049313274 62.4 919640655 9.5

1280 0.001 8462017197 60 1081153868 7.7

2560 0.0001 6530913080 39.8 5221552457 31.8

3840 0.0001 5085010691 35.7 5530759653 38.8

5120 0.00001 4981846961 6.8 46960114363 64.1

Conclusion
The research we did this semester was both interesting and educational. It provided us
with a great opportunity to learn how to use ThetaGPU. Thank you to Dr. Lan, Melanie,
and Hannah for helping us with this work. We look forward to the opportunity for
summer research.

References
1. MiniApp:

https://github.com/argonne-lcf/sdl_ai_workshop/tree/master/05_Simulation_ML/M
L_PythonC%2B%2B_Embedding/ThetaGPU

2. Getting Started on ThetaGPU: https://alcf.anl.gov/events/getting-started-thetagpu
3. NVIDIA Performance Tools For A100 GPU Systems:

https://www.alcf.anl.gov/events/nvidia-performance-tools-a100-gpu-systems
4. Theta and ThetaGPU ALCF Reference:

https://www.alcf.anl.gov/support-center/theta-and-thetagpu

https://github.com/argonne-lcf/sdl_ai_workshop/tree/master/05_Simulation_ML/ML_PythonC%2B%2B_Embedding/ThetaGPU
https://github.com/argonne-lcf/sdl_ai_workshop/tree/master/05_Simulation_ML/ML_PythonC%2B%2B_Embedding/ThetaGPU
https://alcf.anl.gov/events/getting-started-thetagpu
https://www.alcf.anl.gov/events/nvidia-performance-tools-a100-gpu-systems
https://www.alcf.anl.gov/support-center/theta-and-thetagpu

