
I/O-Aware Batch Scheduling for Petascale Computing Systems

Zhou Zhou ∗, Xu Yang ∗, Dongfang Zhao ∗, Paul Rich †, Wei Tang †, Jia Wang ∗, Zhiling Lan ∗
∗ Illinois Institute of Technology, Chicago, IL 60616, USA

{zzhou1, xyang56, dzhao8}@hawk.iit.edu, lan@iit.edu, jwang@ece.iit.edu
† Argonne National Laboratory, Argonne, IL 60439, USA

∗richp@alcf.anl.gov, †wtang@mcs.anl.gov

Abstract—In Big Data era, the gap between the storage
performance and application’s I/O requirement is increasingly
enlarged. I/O congestion caused by concurrent storage accesses
from multiple applications is inevitable, and therefore severely
harms the performance. Conventional approaches either focus
on optimizing an application’s access pattern individually or
handle I/O requests on low-level storage layer without any
knowledge from the upper-level applications. In this paper,
we present a novel I/O-aware batch scheduling framework
to coordinate ongoing I/O requests on petascale computing
systems. The motivation behind this innovation is that the
batch scheduler has a holistic view of both system state and
jobs’ activities and can control jobs’ status on the fly during
their execution. We treat a job’s I/O requests as periodical sub-
jobs within its lifecycle and transform the I/O congestion issue
into a classical scheduling problem. We design two scheduling
polices with different scheduling objectives either on user-
oriented metrics or system performance. We conduct extensive
trace-based simulations using real job traces and I/O traces
from a production IBM Blue Gene/Q system. Experimental
results demonstrate that our design can effectively improve job
performance by more than 30% as well as system performance.

I. INTRODUCTION

As we have already entered the age of petascale com-
puting, the insatiable demand for more computing power
continues to drive the deployment of ever-growing high-
performance computing (HPC) systems [1]. Today’s produc-
tion systems already comprise hundreds of thousands pro-
cessors [2][3], and are predicted to have millions at exascale
computing by 2018 [4]. Along with the rapid evolution of
micro-processors, the explosion of the amount of data should
never be neglected. In this so-called “Big Data” era, the
datasets generated by scientific applications are increasing
exponentially in both volume and complexity [5][6].

While the computing systems can leverage more paral-
lelism at exponential rate to gain computing performance
improvement, the storage infrastructure performance is still
improving at a significantly lower rate. For example, the
IBM Blue Gene/Q (BG/Q) system Mira at Argonne Lead-
ership Facility (ALCF) has a peak performance of 10 peta-
flops which is 20 times as fast as its predecessor Intrepid
(0.5 peta-flops), an IBM Blue Gene/P system [2][7][8][9].
But Mira’s I/O throughput increases only 3 times comparing
with Intrepid [9]. As shown in Figure 1, Mira’s computing
nodes have the capability to drive the I/O network at a full

48K

Compute

Nodes

384 I/O

Nodes

InfiniBand

Switch

128 DDN

File Server

768x

2 GB/s

1536

GB/s

1536

GB/s

512 –

1024

GB/s

~250 GB/s

Mira BG/Q Compute Resource Storage System

Figure 1. Storage system architecture of the 10-petaflop Mira at Argonne
National Laboratory

speed of 1536 GB/s while its storage system can only deliver
250 GB/s. This implies that one quarter of the computing
system can saturate the bandwidth of its storage system and
incur I/O congestion, leading to potential application perfor-
mance degradation. Consequently, the increasingly enlarged
gap between applications’ I/O requirement and the storage
performance makes big data processing one of the most
challenging problems.

In order to bridge this gap, numerous studies have been
conducted from different perspectives. A well-known ap-
proach is to boost I/O performance through I/O middleware
(e.g., PLFS [10], DataStager [11], Damaris [12], IOrchestra-
tor [13]) or I/O library (e.g., HDF5 [14], NetCDF [15]). As
SSD becomes more cost effective, memory-class storage is
proposed to cache the temporary data from compute nodes
so as to mitigate I/O bandwidth contention [16][17]. Addi-
tionally, researchers also propose new architectural changes
to push the I/O handling closer to the compute resource by
installing burst buffer on I/O nodes [18].

The aforementioned studies typically either focus on
application-level optimization or are implemented on I/O
nodes or file servers. From the application’s perspective,
some techniques are dedicated to individually optimizing
this application’s I/O access pattern. The I/O interference
among multiple applications are not taken into account. On
the other hand, from the system view, most approaches
handle lower-level I/O requests in an uncoordinated manner
without any knowledge from the upper-level applications.
For instance, when processing I/O accesses, the storage
server attempts to establish a fair share of throughput among
multiple concurrent applications, which may lead to unex-

pected application performance degradation. Moreover, due
to the lack of global view of all ongoing I/O activities from
different applications, important system-wide performance
metrics – such as average job turnaround time and system
utilization – are often overlooked.

In this work, we intend to address the I/O congestion
problem at the level of batch scheduling. To be more
specific, this work aims to answer the following question:
if a batch scheduler is aware of ongoing I/O requests from
multiple jobs, will it be able to mitigate the I/O congestion
issue by coordinating different I/O requests?

We argue that batch scheduler is a good candidate to
handle I/O congestion due to the following reasons:

1) Batch scheduler is a global controller of all user jobs.
It has a global and high-level knowledge of user jobs,
and can initiate, suspend, terminate, or restart user jobs
once they are submitted to the system.

2) Batch scheduler often contains a monitoring com-
ponent to collect abundant information of sys-
tem and user job status (e.g., node utilization,
bandwidth usage, sensor data, etc.) from various
sources [19][20][21][22].

In this paper we present a novel I/O-aware scheduling
framework to coordinate concurrent I/O requests for petas-
cale computing systems. The new batch scheduler not only
selects queued user jobs for execution, but also coordinates
job I/O activities during their execution. In case of I/O
congestion, our batch scheduler suspends certain running
jobs from conducting I/O. The decision is made based on a
holistic view of all the running jobs and their respective I/O
activities. More specifically, this paper makes the following
contributions:

1) We present an I/O-aware batch scheduling framework
for petascale computing that encompasses job abstrac-
tion, machine model, I/O congestion model, and new
I/O-aware scheduling policies. In particular, two I/O-
aware scheduling policies, namely conservative and
adaptive, are designed for the framework, each for
achieving different scheduling objectives (e.g., fair-
ness, lower job slowdown, higher system utilization,
etc.).

2) We conduct extensive trace-based simulations by using
real job traces and I/O traces from the production
10-petaflop Mira system. Experimental results demon-
strate that our design can effectively not only improve
job performance by more than 30% and also improve
system performance.

The remainder of this paper is organized as follows.
Section II introduce background knowledge of the target
platform. Section III describes our design of the I/O-aware
batch scheduling. Section IV presents experimental results
of the scheduling study. Section V discusses related work.
Section VI concludes this paper and points out future work.

II. BACKGROUND

A. Mira: The IBM Blue Gene/Q at Argonne

Mira is a 10 PFLOPS (peak) Blue Gene/Q system operat-
ed by Argonne National Laboratory for the U.S. Department
of Energy [1]. It is a 48-rack system, arranged in three
rows of sixteen racks. Each rack contains 1,024 sixteen-
core nodes, for a total of 16,384 cores per rack. Mira has
a hierarchical structure: nodes are grouped into midplanes,
each midplane contains 512 nodes, and each rack has two
such midplanes. Each node has 16 cores, giving a total of
786,432 cores. Mira was ranked 5th in the latest Top500 list
[1]. Mira is a capability system, with single jobs frequently
occupying substantial fractions of the system. The smallest
production job on Mira occupies 512 nodes; 8192-node and
16384-node jobs are common on the system; larger jobs
also occur frequently. Jobs up to the full size of Mira run
without administrator assistance. Time on Mira is awarded
primarily through the Innovative and Novel Computational
Impact on theory and Experiment (INCITE) program [23]
and the ASCR Leadership Computing Challenge (ALCC)
program [24].

B. I/O Infrastructure of Mira

As shown in Figure 1, there are three major components
in the IBM Blue Gene/Q system. The first component
is the compute resources that comprise compute and I/O
nodes. Compute nodes are only responsible for application
execution and do not directly communicate to the outside.
I/O nodes, on the other hand, are not involved in applications
and only send/receive data to/from the second component—
a large number of high-performance switches. The third and
last component, which is connected by the second compo-
nent of storage resources, comprises file servers where the
application’s data are persistently stored.

The I/O bandwidth between three components is also il-
lustrated: both compute and storage resources could transfer
more than 1 TB/S data via the high-performance InfiniBand
switches. Yet, the aggregate disk I/O throughput within the
file servers is only 250 GB/S, which is 4X slower than
the outside I/O bandwidth. Therefore, it is the file server
disk that throttles the overall performance of data-intensive
applications.

C. Cobalt: Batch Scheduler on Mira

Our work is based on Cobalt [21][25], a production batch
scheduling system used on Mira, as well as its previous
generations of HPC systems at Argonne National Labora-
tory. It use a scheduling policy called “WFP” to order the
jobs in the queue [25]. WFP favors large and old jobs,
adjusting their priorities based on the ratio of their wait
times to their requested runtimes. On Mira, Cobalt uses a
partition-based resource allocation scheme which allocates
computing resource to jobs in an exclusive manner [25].
Cobalt components correspond to pieces of functionality in

resource management systems, such as scheduling, queue
management, hardware resource management, and process
management. Its component architecture allows easy re-
placement of key software functionality.

In this work, we present an I/O-aware framework for
Cobalt extension (see Section III). While we target Mira in
this work, the idea can be easily extended to other petascale
systems and their batch schedulers.

III. METHODOLOGY

In this section, we present our methodology including
problem formulation, I/O-aware scheduling framework, and
two new I/O-aware scheduling policies.

A. Problem Formulation

I/O computation/communication

execution time

start end

Figure 2. Lifecycle of a HPC scientific application

1) Job abstraction: A typical HPC job often contains
three type of activities: computation, communication and
I/O. Figure 2 shows the lifecycle of a sample job. The job’s
runtime is splitted into phases for different activities, which
repeatedly run during the job lifecycle. The horizontal axis
represents the execution time. The height usually represents
the job’s resource requirement (e.g., nodes, memory, band-
width, etc.). This abstraction provides a high-level view of
application behavior. For example, the I/O chunk in Figure
2 may contain several consecutive I/O calls (e.g., a loop of
write accesses). In our job abstraction, this serial of I/O calls
is regarded as a single I/O request. Notice that our target
platform is the IBM BG/Q system which uses a partition-
based resource allocation scheme [25]. The computation and
network resource in a partition are dedicated to serve the job
running on it. Hence, once a job is scheduled to run, the time
consumed for computation and communication is fixed. As
such, we unify computation and communication into one
type of activity in Figure 2. The time for I/O activity is
substantially variable due to potential I/O congestion.

More precisely, we depict the runtime phases of a job
in Figure 3. Each running job Ji is associated with two
basic attributes: start time as tstarti and size (in nodes) as
Ni. A job shows a periodical running pattern that com-
putation/communication interleaves with I/O. We assume
each computation/communication in followed by an I/O
request that transfers a chunk of data from or to the storage
system via the I/O network. So each job Ji consists of ni

computation/communication and ni I/O activities. The k-th
computation/communication activity of job Ji requires time

t
start

i t
end

i

the k-th

computation/

communication

T
com

ki , T
OI

ki

/

,

the k-th I/O to

transfer Voli,k data

Figure 3. Runtime phases of the i-th job Ji requiring Ni nodes

Compute nodes File servers Storage

I/O congestion

resides on disk side

BWmaxgreater than

BWmax

I/O network Disk bandwidth

Figure 4. Simplified I/O infrastructure model of petascale HPC systems

T com
i,k to finish and the k-th I/O needs to transfer V oli,k of

data (in gigabytes).
2) System model: As shown in Figure 4, we assume a

HPC system composed of N compute nodes, each installed
with the same number of identical uniform-speed processors.
Each compute node is connected to the I/O nodes and has
the capability to transfer data to the storage system across
the I/O network at maximum bandwidth b (in gigabytes per
second). It is also guaranteed that the aggregate bandwidth
of the whole system b×N is less than the maximum capacity
of the I/O network. Inside the storage system, we assume
a group of file serves connected to a centralized parallel
file system with a maximum bandwidth BWmax. In many
systems such as Intrepid and Mira, this maximum bandwidth
BWmax is always less than the compute nodes’ aggregate
bandwidth b × N and is usually subject to the upper-
bound maximum speed of hard drivers. More specifically,
the rotation speed of disk-heads dominates the actual access
speed of the storage system. Therefore, in this model we
assume the I/O congestion takes place at the storage side
if the aggregated bandwidth of all active compute nodes
b × Nactive exceeds the total bandwidth capacity BWmax

of the storage system.
3) Scheduling Model: Figure 5 shows the scheduling

model regarding I/O congestion based on the aformentioned
job abstraction and the system model. The x-axis represents
the execution time, the y-axis the aggregated bandwidth.
Suppose there are 3 jobs J1, J2 and J3 running concurrently
on separated sets of nodes and each job has its own I/O

A
g

g
re

g
a

te
 b

a
n

d
w

id
th

Time

J1

J2

J3

BWmax

I/O computation/communication

I/O congestion I/O congestion I/O congestion

Figure 5. Scheduling model

pattern along with different bandwidth usage illustrated as
the height of each rectangle. Naturally a job’s I/O operations
may overlap with those of others. At this point, multiple
jobs are accessing the storage system simultaneously and
inevitably they have to compete for I/O bandwidth with each
other. If the aggregate bandwidth of these three jobs exceed
the maximum bandwidth BWmax denoted as the red dashed
line, I/O congestion occurs and consequently impact these
jobs’ I/O performance if no congestion control is taken.

This scheduling model is simple but it reflects the motiva-
tion of this work, that is, to utilize the global job scheduler
to mitigate I/O congestion by monitoring and controlling
jobs’ I/O operations on the fly. After pulling information of
all ongoing I/O operations, the job scheduler determines the
bandwidth usage among jobs within a certain length of time-
intervals. If we treat all I/O operations as sub-jobs inside a
normal job, this I/O controlling issue can be transformed
into a classical job scheduling problem which can be well
solved using practical approaches.

4) I/O congestion model: In the system model of Figure
4, we assume the I/O network bandwidth is much larger
than that of the storage system. Thus, the I/O congestion
actually locates at the hard disk side, which is limited by
the disk rotation speed. Lower-level scheduler in the storage
server may apply a simply independent “first-in-first-out”
policy on coming I/O requests or a more elaborated strategy,
such as minimizing disk-head movements by aiming at better
data locality. From the system view, the storage system is
accessed in a fair sharing mode. We define a general I/O
congestion model on HPC systems as: if b × Nactive ≥
B, the actual bandwidth allocated to each compute node is

B
Nactive

. Although extra overhead such as the time for disk-
head movements should be considered, it is hard to precisely
calculate the overhead in an analytical model. So in this
work, we set up a fair sharing storage model with no extra
overhead.

B. I/O-Aware Batch Scheduling

With the purpose to mitigate I/O congestion and improve
system performance, we design a novel I/O-aware batch

User 1

User 2

User 3

User n

Resource manager

Job queue

Job scheduler

.

.

.
Jobs are submitted by

users

monitor computing

system state

allocate job onto idle

compute nodes

Compute Node

Storage System

monitor I/O activities

control running jobs

I/O infrastructure

Figure 6. Our I/O-aware scheduling framework includes two new features:
runtime I/O montoring (blue arrow) and dynamic control of running jobs
(yellow arrow)

scheduling framework to coordinate concurrent I/O requests.
As shown in Figure 6, the new scheduling framework ex-
tends the current HPC scheduling framework by integrating
runtime monitoring of system state and I/O activities and
runtime I/O control. The key idea of our solution works as
follows:

1) Every time a new I/O request is forwarded to the I/O
server, the batch scheduler monitors all I/O requests
being processed and checks whether the aggregate
bandwidth requirement exceeds the maximum value
BWmax.

2) In case of I/O congestion, the I/O-aware batch sched-
uler dynamically acts on the runtime information to
coordinate these concurrent I/O requests.

3) The runtime decision is made based on certain
scheduling objectives which will be specified in the
next subsection. The basic idea is to dynamically co-
ordinate concurrent jobs’ I/O acitivities (e.g., running
or suspending) for avoiding I/O congestion.

C. I/O-Aware Scheduling Policies

Suppose there are K jobs in the system that are perform-
ing I/O or are ready to perform I/O, our scheduler selects
a subset from the K jobs to perform I/O. Those jobs that
are not selected will be suspended and wait until the next
scheduling cycle. In this work, we propose two scheduling
policies, each focusing on different objectives, either user-
oriented or system-oriented. The selection of the subset of
jobs is a process of searching for the optimal solution to
maximize or minimize a certain objective.

1) Job performance quantification: First we present two
user-oriented metrics to quantify job performance regarding
I/O congestion.

• InstantSlowdown (InstSld): Suppose at time t, job
Ji is performing the k-th I/O operation. It has a total
of V oli,k data to transfer and has already transferred

Wi,k data. Let t
I/O
i,k be the start time of the k-th

I/O operation. We define InstSld(i,k)(t) , the instant
slowdown of the k-th job Ji at time t as:

InstSld(i,k)(t) =
b×Ni × (t− t

I/O
i,k)

Wi,k
(1)

where t− t
I/O
i,k is the elapsed time from the start time

of current I/O operation to now and b×Ni× (t− t
I/O
i,k)

is the theoretically maximum total size of data job Ji
could transfer by now within this I/O operation, which
stands for an ideal case without any I/O congestion.
The ratio of this maximum size of data to the already
transferred Wi,k data represents the slowdown of tran-
ferring data caused by I/O congestion. It is obvious
that InstSld(i,k)(t) ≥ 1 with InstSld(i,k)(t) = 1
indicating the data transferring is not interfered by any
I/O congestion.

• AggregateSlowdown (AggrSld): Again, we assume
job Ji is performing its k-th I/O operation. We define
AggrSldi,k(t), the aggregate slowdown of job Ji at
time t as:

AggrSld(i,k)(t) =
t− tstarti∑

j≤k T
com
i,j +

∑
j<k T

I/O
i,j

(2)

where T com
i,j is the time spent on the j-th computa-

tion/communication operation and T
I/O
i,j the time of the

j-th I/O operation without I/O congestion. t − tstarti

equals the total elapsed time between the job start and
the present time. j ≤ k is the number of computa-
tion/communication or I/O the job has executed at time
t since the start time tstarti . The AggrSld reflects the
extent of an application’s delay due to I/O congestion.

2) Scheduling policies: Now we propose two types of
scheduling policies as “conservative” and “adaptive”:

Conservative: A conservative scheduling policy always
obeys a basic principle – I/O congestion should be avoided
as much as possible. Thus the scheduler only selects a subset
of jobs whose aggregate bandwidth is no greater than the
maximum storage bandwidth BWmax.

• Cons-FCFS: The FCFS (first-come-first-serve) policy
works in the manner of what a traditional job scheduler
does. It chooses jobs in chronological order based on
the start time of concurrent I/O requests. Jobs perform-
ing I/O with earlier start time has higher priority and
is favored by the scheduler.

• Cons-MaxUtil: The MaxUtil policy aims at maximizing
the system utilzation under the storage bandwidth con-
straint. This can be formalized to a classical optimiza-
tion problem as: to select a subset of jobs such that their
aggregate bandwidth usage doesn’t exceed the maxi-
mum bandwidth capacity BWmax, with the objective of

A

B

b
a

n
d

w
id

th

Time

C

D

A

Bb
a

n
d

w
id

th

Time

C
D

Cext

Bext

Aext

Dext

now

now

BWmax

BWmax

Adaptive Policy

Conservative-FCFS Policy

Figure 7. Using the adaptive scheduling policy can more effectively
improve job performance, although I/O congestion may incur.

maximizing the number of compute nodes allocated to
these jobs. In our previous work [26][27], we transform
such problem into a standard 0-1 knapsack model
which can be solved in pseudo-polynomial time by
using dynamic programming method. The objective
is system-oriented, as it seeks to achieve maximized
utilization of compute resource.

• Cons-MinInstSld: The MinInstSld policy favors jobs
with low InstSld value. This method is close to Cons-
FCFS which orders jobs before making scheduling
decision.

• Cons-MinAggrSld: Similar to the MinInstSld, the Mi-
nAggrSld favor jobs with low AggrSld value.

These four conservative polices are designed for different
objectives. The Cons-FCFS focuses on preserving the user
fairness and Cons-MaxUtil focuses on improving system u-
tilization. Both Cons-MinInstSld and Cons-MinAggrSld aim
to minimize the slowdown cause by I/O congestion.

Adaptive: While the above conservative scheduling
makes effort to minimize I/O congestion, it may impact
job performance. Hence we propose an adaptive scheduling
policy which is not restricted to the I/O bandwidth. The
adaptive scheduling policy allows more jobs to perform I/O
operations, despite that this may break the I/O bandwidth
bound.

Figure 7 illustrates the difference between adaptive policy
and conservative policy. In this example, we assume that I/O
requests A and B are already scheduled and requests C and
D have just arrived. Both requests C and D require more
bandwidth than what is currently available in the system.
According to the Cons-FCFS policy, requests C and D will
have to wait until enough bandwidth becomes available. This
leads to wasted bandwidth and unnecessary performance

degradation. Instead, the adaptive scheduling will calculate
the overhead of immediately scheduling request C which
shares the bandwidth with requests A and B. The overhead is
expressed as the extension of time to finish the I/O request
(i.e., square of dashed line labeled with “Xext” in Figure
7). If the overhead is lower than suspending I/O request C,
request C is allowed to start. Although this allows the job to
performance I/O in contention with other jobs and may slow
down their performance, it improves the job turnaround time
and better utilize available bandwidth.

Algorithm 1 Adaptive Schedule
Input: S as the set of jobs performing or ready to perform

I/O
Output: Sopt as the subset of jobs from set S to be allowed

to continue or start their I/O
1: function ADAPTIVESCHEDULE(S)
2: Prioritize jobs in S based their I/O start time in

FCFS fashion
3: BWavail ← BWmax

4: Sopt ← ∅
5: for Ji ∈ S do
6: BW Req ← b×Ni

7: if BW Req ≤ BWavail then
8: add Ji to Sopt

9: BWavail ← BWavail −BW Req
10: else
11: Find the earliest time Ti can start I/O if not

schedule Ji now
12: Calculate TFCFS as the average time need

to finish I/O for jobs in Sopt plus Ji
13: Calculate TAdaptive as the average time on

I/O if Ji is allowed to compete for bandwidth with jobs
in Sopt

14: if TAdaptive < TFCFS then
15: add Ji to Sopt

16: BWavail ← 0
17: end if
18: end if
19: end for
20: return Sopt

21: end function

The pseudocode of the adaptive policy is shown in Algo-
rithm 1. In case of I/O congestion, the procedure takes the
set of jobs performing or ready to start I/O as input. It first
sorts jobs based on their start time of current I/O requests.
The earlier it starts, the higher priority it has (Line 2). Then
the batch scheduler selects jobs in descending order of their
priorities as long as the remaining available bandwidth can
satisfy its requirement (Line 5-9). This step works exactly
the same as the FCFS policy does. If the remaining avail-
able bandwidth is insufficient, the batch scheduler decides
whether to still schedule this job. It calculates the average

time needed to finish current I/O requests based on the
choice of scheduling this job or not (Line 11-13). If this job
is not scheduled, the earliest possible start time is calculated.
Otherwise, this job will share the bandwidth with jobs
already chosen into the subset Sopt. Obviously, other jobs’
I/O will be impacted and thus need more time to finish. If the
cost is acceptable (Line 14, this job is marked to for schedule
(Line 15). This adaptive policy is a runtime optimization
version resembling the Conservative backfilling.

IV. EVALUATION

A. Qsim Simulator

Qsim is an event-driven scheduling simulator for
Cobalt [21][25]. Taking the historical job trace as input,
Qsim quickly replays the job scheduling and resource allo-
cation behavior and generates a new sequence of scheduling
events as an output log. Qsim uses the same scheduling and
resource allocation code that is used by Cobalt and thus has
been proved to provide accurate resource management and
scheduling simulation [25][28][29]. Qsim is open source and
available along with the Cobalt code releases [21].

B. Job Trace and I/O Trace

We evaluate our design by means of actual workload
traces from the production Mira machine. We have collected
a three-month job trace in 2014. The job trace provides rich
information for our simulation including submission time,
job size, duration and walltime.

To obtain information of I/O activities, we use the Darshan
log collected from Mira [30]. Darshan is a user-level system
tool to allow users to characterize the I/O behavior in an ef-
ficient and transparent manner at extreme scales. In essence,
for each every application running on the systems, Darshan
collects the I/O footprint and summarizes it in a compact
and statistically reproducible manner. Because it only stores
the statistical summary of many I/O operations, the space
and I/O overhead when enabling Darshan logs is minimum.
By default, Darshan is turned on for all applications on the
Blue Gene systems at, and is completely transparent to the
users; no application change is in need. The effectiveness of
Darshan logs have been demonstrated at extreme scales—up
to 64K nodes.

By combining the job trace and I/O trace via pairing,
we have build a comprehensive workload which contains
job information (e.g., submission, runtime, size, etc.) as
well as their I/O characteristics (e.g., number of I/O calls,
I/O time, read and write transfer size, etc.). We divide the
3-month workload trace into three single-month workload
traces, and evaluate our design on each of them. This enables
us to evaluate our design under workloads with different
characteristics.

C. Evaluation Metrics

Three widely used metrics are taken for evaluation:
• Average job wait time. This metric denotes the average

time elapsed between the moment a job is submitted
and the moment it is allocated to run. It is commonly
used to reflect the “efficiency” of a scheduling policy.

• Average response time. This metric denotes the average
time elapsed between the moment a job is submitted
and the moment it is completed. Similar to the above
metric, it is often used to measure scheduling perfor-
mance from the user’s perspective.

• System utilization. System utilization rate is measured
by the ratio of busy node-hours to the total node-hours
during a given period of time [31] [32]. The utilization
rate at the stabilized system status (excluding warm-up
and cool-down phases of a workload) is an important
metric of how well a system is utilized.

D. Results

In this work, we compare our design with a default
scheduling policy as the baseline. This BASE LINE policy
allocates the I/O bandwidth among multiple applications
in a fair sharing manner. In case of no I/O congestion,
each application will have the maximal I/O bandwidth it
needs; in case of I/O congestion, the BASE LINE policy will
evenly distribute the I/O bandwidth among the concurrent
applications. This is similar to the current I/O scheduler
using round-robin method in HPC systems [13][33].

Figure 8 presents the average wait time of three work-
loads separately. We first observe that both our designated
conservative and adaptive scheduling policies can reduce the
wait time compared with the baseline result. The only ex-
ception occurs on workload 2 using MIN INST SLD which
increases the wait time by less than 10%. This proves our
motivation that a scheduling policy aware of I/O-congestion
is much more efficient than the BASE LINE policy which
never controls I/O-congestion. Second, on all three work-
loads our ADAPTIVE policy have better results on reducing
wait time than other scheduling polices. On both workload
1 and 2, the ADAPTIVE policy cuts back the wait time by
at least 30%. These four conservative policies using strict
I/O-congestion control lessens the flexibility of bandwidth
utilization and thus are less efficient than the ADAPTIVE
policy. Allowing a certain degree of I/O contention under
the ADAPTIVE policy can sometimes provides shorter wait
time as long as the overall job runtime extension is smaller
than the cost to wait in the queue. Third, these three
scheduling polices (MIN INST SLD, MIN AGGR SLD and
ADAPTIVE) perform better than the other two policies
(FCFS and MAX UTIL). The latter two polices are either
user fairness or system utilization oriented while the form
three take account of the turnaround time when doing
scheduling. Moreover, the MIN AGGR SLD outperforms

the MIN INST SLD because the latter only focuses on the
local optimum which is unable to guarantee a global optimal
on wait time reduction.

Figure 9 presents the results on average response time.
Similar to Figure 8 on wait time, first it is observed that
both MIN AGGR SLD and ADAPTIVE have lower response
times than the other four. The largest reduction on response
time is achieved on workload 3 by more than 30% with
the ADAPTIVE. And the MIN AGGR SLD can reduce the
response time by more than 20%. On workload 2, we
can see the MIN AGGR SLD works even better than the
ADAPTIVE, both of which have improvement up to 15%.
We also observe that using the FCFS, MAX UTIL and
MIN INST SLD can not always improve the response time
or even bring negative impact on it. For example, on
workload 2 we could notice that the MAX UTIL increases
the response time by nearly 10%. Especially, the FCFS and
MAX UTIL are ineffective on lowering the response time as
they show nearly the same value as the baseline result. The
same phenomena is noticed in Figure 8 as well. According
to the definition, the job response time consists of wait time
and job runtime. While the decrement of wait time benefit
from our I/O-aware scheduling policies, a job may not be
assigned with sufficient bandwidth. This causes expansion
to its running time, which is likely to diminish the benefit
on wait time.

Figure 10 shows the system utilization on three workloads.
For convenience, we normalize the absolute utilization value
based on the results of BASE LINE. The MAX UTIL is
system utilization oriented so we can clearly see it improves
the utilization on workload 1 and 3 up to 10%. This indicates
that the MAX UTIL is more efficient in optimizing the sys-
tem performance than other scheduling polices. The largest
utilization drop is seen using the FCFS and MIN INST SLD
on workoad 2 where it decreases by nearly 10%. Other
scheduling policies have negligible loss on utilization which
is treated as acceptable cost. Taking all the results into
consideration with Figure 8 and 9, the ADAPTIVE policy is
the best trade-off and achieves good balance between user
satisfaction and system utilization.

E. Sensitivity Study

The workloads used for the above simulations are from
the real job trace and Darshan log collected from Mira. In
order to assess the scheduling performance under different
I/O intensiveness, we also conduct a sensitivity study by
tuning job I/O time in the workload. For each simulation,
we define an expansion factor (EF) as the change of I/O
time. For example, EF=30% means each job’s I/O time
is compressed to 30%. Similarly, EF=150% increases each
job’s I/O time by 1.5 times, which implies it needs to transfer
50% more data. In this way, we have built various workloads
that can have “heavy” or “light” I/O activities.

 0

 100

 200

 300

 400

 500

 600

 700

 800

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Wait Time

(a) Workload 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Wait Time

(b) Workload 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Wait Time

(c) Workload 3

Figure 8. Average wait time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Response Time

(a) Workload 1

 0

 100

 200

 300

 400

 500

 600

 700

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Response Time

(b) Workload 2

 0

 100

 200

 300

 400

 500

 600

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

T
im

e
(m

in
ut

es
)

Average Response Time

(c) Workload 3

Figure 9. Average response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(a) Workload 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(b) Workload 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BASE_LINE

FCFS
M

AX_UTIL

M
IN_INST_SLD

M
IN_AGGR_SLD

ADAPTIVE

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(c) Workload 3

Figure 10. Normalized system utilization

Due to the space limitation, we only presents the results
on average wait time in Figure 11. We set up six expansion
factors to compress or enlarge the I/O time. It’s apparent
that the wait time goes up as the job spends more time
on I/O. With low expansion factors (30% and 50%), there
is no obvious improvement on wait time while FCFS even
increases it. As the expansion factor becomes larger, we ob-
serve the ADAPTIVE and MIN AGGR SLD greatly surpass
other policies in reducing the wait time. When the I/O time
is expanded by 150%, the largest reduction on wait time is
near 50%. Overall, the ADAPTIVE and MIN AGGR SLD
policies should be favored to handle I/O-intensive workload
due to their substantial performance improvement.

V. RELATED WORK

One traditional approach to address the I/O bottleneck on
extreme-scale systems is to employ high-level I/O libraries,
such as HDF5 [14] and NetCDF [15]. These libraries stipu-
late the data format of the applications as well as their I/O
interfaces. In other words, the applications need not assume
the POSIX interface, but manipulate the data according to
the customized programming API. One limitation of this
approach is portability: Once the application assumes a
particular API, it takes considerable amount of effort to
migrate it to other platforms.

To improve the portability of the customized API dis-
cussed above, researchers proposed several loosely-coupled
middleware solutions, such as PLFS [10], DataStager [11],

0

200

400

600

800

1,000

1,200

1,400

30% 50% 70% 90% 120% 150%

W
a

it
 T

im
e

 (
m

in
u

te
)

Expansion Factor (%)

BASE_LINE FCFS MAX_UTIL

 MIN_INST_SLD MIN_AGGR_SLD ADAPTIVE

Figure 11. Impact of the I/O intensiveness over average wait time of all
policies

Damaris [12]. These systems work independently of both the
underlying storage systems and the upper-level applications,
thus greatly generalize the applicability. Nevertheless, an
obvious drawback of this approach is the potential overhead
introduced by the middleware.

More recently, the trend of solving the I/O imbalance
in extreme-scale systems is to move the data closer to the
compute resource. Ning et al. [18] proposed to move many
file handling to the I/O nodes to ameliorate the I/O pressure
from the massive number of compute nodes.

I/O contention in HPC systems draws a lot of attension
in the community because it is the root cause of parallel
applications’ performance variability [34][35][36]. Zhang
et al. schedule each application’s I/O request individually
without a global view from system’s perspective [36] [35].
Their solutions require supports from specific I/O manage-
ment in the system level for better results. The solutions
for the I/O contention between parallel applications have
been studied in recent works [37][38][39]. Hashimoto et al.
evaluate the performance variability of each job when they
run concurrently on the same physical computing server[37].
They identify that network I/O sharing introduces most
of the performance degradation. Xie et al. analyze the
behavior and performance variability of Lustre, a parallel
file system on supercomputer Jaguar [6]. They found that
the shared filesystem between concurrently running parallel
applications cause most of system performance degradation.
Lebre et al. propose a new scheduling design for multi
applications with the objective of better aggregating and
reordering I/O requests without hurting the fairness across
applications [40]. Dorier et al. analyze the I/O interference
between two applications [41]. They make quantified study
about performance improvement obtained by interrupting or
delaying either one in order to avoid I/O contention. Gainaru
et al. analyze the effects of interference on application I/O
bandwidth and propose several scheduling techniques that
apply to system I/O level to mitigate congestion [33].

VI. CONCLUSION

In this paper, we have presented an I/O-aware batch
scheduling framework to alleviate the I/O congestion on
petascale HPC systems. In our design, the I/O congestion
scenario is formalized into a classical batch scheduling prob-
lem by treating I/O accesses as schedulable sub-jobs and the
batch scheduler dynamically schedules these I/O accesses.
Along with this, we have designed two types of I/O-aware
scheduling policies, namely conservative and adaptive, each
focusing on either user-oriented objectives or system per-
formance. Our trace-based simulations clearly demonstrate
the performance benefit obtained by these new scheduling
polices. In particular the ADAPTIVE and MIN AGGR SLD
policies have substantial advantage over other polices re-
garding user-oriented metrics. The ADAPTIVE has better
scheduling performance than MIN AGGR SLD, whereas
MIN AGGR SLD has lower time complexity. Furthermore,
the MAX UTIL policy should be favored if the optimization
for system performance (i.e., system utilization) is given
to priority. While this study targets Mira, our design is
generally applicable to other HPC systems.

To the best of our knowledge, this is the first work on
addressing I/O congestion in the batch scheduling. Several
avenues remain open for our future work. One is to build
a model to predict an application’s I/O behavior based on
its past I/O trace. In addition, we plan to expand this work
with the aim of developing a smart resource management
framework for better managing non-traditional resources
including I/O and power consumption.

ACKNOWLEDGMENTS

The work at Illinois Institute of Technology is supported
in part by US National Science Foundation grants CNS-
1320125 and CCF-1422009.

REFERENCES
[1] “Top500 supercomputing web site.” [Online]. Available:

http://www.top500.org
[2] Mira at ANL, “http://www.alcf.anl.gov/mira,” Accessed September 5,

2014.
[3] Titan at ORNL, “https://www.olcf.ornl.gov/titan/,” Accessed Septem-

ber 5, 2014.
[4] Exascale computing predicted by 2018,

“http://www.computerworld.com/article/2550451/computer-
hardware/scientists–it-community-await-exascale-computers.html,”
Accessed September 5, 2014.

[5] P. A. Freeman, D. L. Crawford, S. Kim, and J. L. Munoz, “Cyber-
infrastructure for science and engineering: Promises and challenges,”
Proceedings of the IEEE, vol. 93, no. 3, pp. 682–691, 2005.

[6] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Pod-
horszki, “Characterizing output bottlenecks in a supercomputer,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 8:1–
8:11.

[7] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L.
Satterfield, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A.
Blumrich, R. W. Wisniewski et al., “The IBM Blue Gene/Q compute
chip,” Micro, IEEE, vol. 32, no. 2, pp. 48–60, 2012.

[8] “Overview of the IBM Blue Gene/P project,” IBM J. Res. Dev.,
vol. 52, no. 1/2, pp. 199–220, Jan. 2008.

[9] Parallel I/O on Mira, “http://www.alcf.anl.gov/files/parallell io.pdf,”
Accessed September 5, 2014.

[10] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: A checkpoint filesystem
for parallel applications,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009.

[11] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng, “Datastager: Scalable data staging services for petascale
applications,” in Proceedings of the 18th ACM International Sympo-
sium on High Performance Distributed Computing, 2009.

[12] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris:
How to efficiently leverage multicore parallelism to achieve scalable,
jitter-free I/O,” in Cluster Computing (CLUSTER), 2012 IEEE Inter-
national Conference on, Sept 2012, pp. 155–163.

[13] X. Zhang, K. Davis, and S. Jiang, “Iorchestrator: Improving the
performance of multi-node I/O systems via inter-server coordination,”
in High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, Nov 2010, pp. 1–11.

[14] HDF5, “http://www.hdfgroup.org/hdf5/doc/index.html,” Accessed
September 5, 2014.

[15] NetCDF, “http://www.unidata.ucar.edu/software/netcdf,” Accessed
September 5, 2014.

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best
use of solid state drives in high performance storage systems,” in
Proceedings of the International Conference on Supercomputing, ser.
ICS ’11. New York, NY, USA: ACM, 2011, pp. 22–32.

[17] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to
improve disk scheduling for high-performance I/O,” in Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Inter-
national. IEEE, 2012, pp. 715–726.

[18] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class
storage systems,” in Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on, April 2012, pp. 1–11.

[19] M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 2002, pp. 44–60.

[20] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing. ACM, 2006, p. 8.

[21] Cobalt Resource Manager, “https://trac.mcs.anl.gov/projects/cobalt,”
Accessed September 5, 2014.

[22] Portable Batch System, “http://www.pbsworks.com/,” Accessed
September 5, 2014.

[23] “Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) program.” [Online]. Available:
https://www.alcf.anl.gov/incite-program

[24] “ASCR Lleadership Computing Challenge (ALCC).” [Online].
Available: http://science.energy.gov/ascr/facilities/alcc/

[25] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-
based job scheduling on Blue Gene/P systems,” in IEEE International
Conference on Cluster Computing and Workshops, 2009, CLUSTER
’09., 2009, pp. 1–10.

[26] Z. Zhou, Z. Lan, W. Tang, and N. Desai, “Reducing energy costs for
IBM Blue Gene/P via power-aware job scheduling,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, 2014, pp. 96–115.

[27] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. E.

Papka, “Integrating dynamic pricing of electricity into energy aware
scheduling for HPC systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp.
60:1–60:11.

[28] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting
user runtime estimates to improve job scheduling on the Blue Gene/P,”

in 2010 IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS), April 2010, pp. 1–11.

[29] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu, “Reducing
fragmentation on torus-connected supercomputers,” in Parallel Dis-
tributed Processing Symposium (IPDPS), 2011 IEEE International,
2011, pp. 828–839.

[30] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science stor-
age access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, pp. 8:1–8:26, Oct. 2011.

[31] J. Jones and B. Nitzberg, “Scheduling for parallel supercomputing:
A historical perspective of achievable utilization,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, 1999, vol. 1659, pp. 1–16.

[32] Y. Xu, Z. Zhou, W. Tang, X. Zheng, J. Wang, and Z. Lan, “Balancing
job performance with system performance via locality-aware schedul-
ing on torus-connected systems,” in Cluster Computing (CLUSTER),
2014 IEEE International Conference on, Sept 2014, pp. 140–148.

[33] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC applications under congestion,” LIP,
Research Report RR-8519, Oct 2014.

[34] J. Lofstead and R. Ross, “Insights for exascale IO apis from building
a petascale IO api,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 87:1–87:12.

[35] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the IO performance
of petascale storage systems,” in High Performance Computing, Net-
working, Storage and Analysis (SC), 2010 International Conference
for, Nov 2010, pp. 1–12.

[36] X. Zhang, K. Davis, and S. Jiang, “Opportunistic data-driven exe-
cution of parallel programs for efficient I/O services,” in Parallel
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Inter-
national, May 2012, pp. 330–341.

[37] Y. Hashimoto and K. Aida, “Evaluation of performance degradation
in HPC applications with VM consolidation,” in Proceedings of the
2012 Third International Conference on Networking and Computing,
ser. ICNC ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 273–277.

[38] D. Skinner and W. Kramer, “Understanding the causes of performance
variability in HPC workloads,” in Workload Characterization Sympo-
sium, 2005. Proceedings of the IEEE International, Oct 2005, pp.
137–149.

[39] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf,
K. Karavanic, and L. Oliker, “Parallel I/O performance: From events
to ensembles,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, April 2010, pp. 1–11.

[40] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa, “I/o scheduling
service for multi-application clusters,” in Cluster Computing, 2006
IEEE International Conference on, Sept 2006, pp. 1–10.

[41] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CAL-
CioM: Mitigating I/O Interference in HPC Systems through Cross-
Application Coordination,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, May 2014, pp. 155–164.

