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a b s t r a c t 

In the Big Data era, the gap between the storage performance and an application’s I/O 

requirement is increasing. I/O congestion caused by concurrent storage accesses from mul- 

tiple applications is inevitable and severely harms the performance. Conventional ap- 

proaches either focus on optimizing an application’s access pattern individually or handle 

I/O requests on a low-level storage layer without any knowledge from the upper-level ap- 

plications. In this paper, we present a novel I/O-aware bandwidth allocation framework to 

coordinate ongoing I/O requests on petascale computing systems. The motivation behind 

this innovation is that the resource management system has a holistic view of both the 

system state and jobs’ activities and can dynamically control the jobs’ status or allocate 

resource on the fly during their execution. We treat a job’s I/O requests as periodical sub- 

jobs within its lifecycle and transform the I/O congestion issue into a classical scheduling 

problem. Based on this model, we propose a bandwidth management mechanism as an ex- 

tension to the existing scheduling system. We design several bandwidth allocation policies 

with different optimization objectives either on user-oriented metrics or system perfor- 

mance. We conduct extensive trace-based simulations using real job traces and I/O traces 

from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental 

results demonstrate that our new design can improve job performance by more than 30%, 

as well as increasing system performance. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

1. Introduction 

We have already entered the age of petascale computing, and the insatiable demand for more computing power contin-

ues to drive the deployment of ever-growing high-performance computing (HPC) systems [1] . Today’s production systems

already comprise hundreds of thousands processors [2,3] and are predicted to have millions with exascale computing by

2018 [4,5] . Along with the rapid evolution of micro-processors, the explosion of the amount of data must be considered.

In this so-called Big Data era, the data-sets generated by scientific applications are increasing exponentially in both volume

and complexity [6–9] . 
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Fig. 1. Storage system architecture of the 10-petaflops Mira at Argonne national laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the computing systems can leverage horizontal scale at an exponential rate in order to improve computing perfor-

mance, the storage infrastructure performance is improving at a significantly lower rate. For example, the IBM Blue Gene/Q

(BG/Q) system Mira at the Argonne Leadership Facility (ALCF) has a peak performance of 10 petaflops, which is 20 times

faster than that of its predecessor Intrepid (0.5 petaflops), an IBM Blue Gene/P system [2,10,11] . But Mira’s I/O throughput

increases only 3 times compared with that of Intrepid [11] . As shown in Fig. 1 , Mira’s computing nodes can drive the I/O

network at a full speed of 1536 GB/s whereas its storage system can deliver only 250 GB/s. This situation implies that

even only one-quarter of the computing system can saturate all the bandwidth of its storage system and incur I/O conges-

tion, potentially degrading application performance. Consequently, the increasingly large gap between an application’s I/O 

requirement and the storage performance makes big data processing one of the most challenging problems faced by the

computer science community. 

To bridge this gap, researchers have conducted numerous studies from different perspectives. A well-known approach is

to boost I/O performance through I/O middlewares (e.g., PLFS [12] , DataStager [13] , Damaris [14] , IOrchestrator [15] ) or I/O

libraries (e.g., HDF5 [16] , NetCDF [17] ). As SSD becomes more cost-effective, memory-class storage is utilized to cache the

temporary data from compute nodes in order to mitigate I/O bandwidth contention [18,19] . Additionally, researchers have

proposed new architectural changes to push the I/O handling closer to the compute resource by adding a burst buffer tier

on I/O nodes [20] . 

These studies typically focus on application-level optimization or are implemented on I/O nodes or file servers. From

the application’s perspective, some techniques are dedicated to individually optimizing this application’s I/O access pattern.

The I/O interference among multiple applications is not taken into account. On the other hand, from the system view, most

approaches handle lower-level I/O requests in an uncoordinated manner without any knowledge from the upper-level appli-

cations [21] . For instance, when processing I/O requests, the storage server attempts to establish a fair share of throughput

among multiple concurrent applications, which may lead to unexpected application performance degradation. Moreover, 

because of the lack of a global view of all ongoing I/O activities from different applications, im portant system-wide perfor-

mance metrics—such as average job turnaround time and system utilization—are often overlooked. 

In this work, we propose to address the I/O congestion problem through I/O-aware bandwidth allocation on I/O servers.

Fig. 2 shows the overview of our solution. This solution extends the current HPC scheduling framework by integrating the

runtime monitor of system states and I/O activities as well as runtime I/O control. The idea behind this is straightforward

that once I/O congestion is detected, all concurrent I/O requests will be scheduled or coordinated like normal jobs on HPC

systems. Based on this solution, we implement it in the I/O scheduler on the storage side as an extension to the current

scheduling framework. The new framework not only selects queued user jobs for execution but also coordinates job I/O

activities during their execution. Every time a new I/O is forwarded to the I/O server, the resource manager monitors all I/O

requests being processed and checks whether the aggregate bandwidth requirement exceeds the maximum storage band-

width capacity. If so, only part of the jobs are assigned with available bandwidth to conduct their I/O operations so as to

minimize the impact caused by I/O congestion. 

In [22] we have proposed an alternative solution implemented on the batch scheduler based on the open-source resource

management software named Cobalt [23] . In the case of I/O congestion, the batch scheduler dynamically reacts using the

runtime information to coordinate these concurrent I/O requests. The scheduling decision is made based on certain schedul-

ing objectives. The basic idea is to dynamically coordinate concurrent jobs’ I/O activities (e.g., running or suspending) to

avoid I/O congestion. 

In this paper we focus on the bandwidth allocation framework which is implemented on the I/O scheduler on storage

infrastructure. We make the I/O scheduler on the I/O servers dynamically allocate bandwidth to jobs. The I/O scheduler

monitors all the I/O requests forwarded to the I/O server and decides the bandwidth allocation plan on the fly. Similar to the

I/O-aware scheduling method, jobs allocated with available bandwidth can continue their I/O operations. Other jobs without

available bandwidth stay waiting in the I/O server. The bandwidth allocation plan is made based on certain objectives that

are described in detail in the next subsection. The basic idea is to assign bandwidth to jobs in a certain order in which jobs

are prioritized using a specific strategy. 

More specifically, this paper makes the following contributions: 

1. We present an I/O-aware bandwidth allocation framework for petascale computing that encompasses job abstrac- 

tion, machine model, I/O congestion model and bandwidth allocation policies. In particular, several bandwidth al-
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Fig. 2. Our I/O-aware scheduling framework with three new features: runtime I/O monitoring (blue arrow) dynamic control of running jobs (yellow arrow) 

and I/O-aware bandwidth allocation (red arrows). 

Fig. 3. Lifecycle of an HPC scientific application. 

 

 

 

 

 

 

 

 

 

location policies are designed for the framework, each for achieving different objectives (e.g., fairness, lower job

slowdown). 

2. We conduct extensive trace-based simulations by using real job traces and I/O traces from the production 10-petaflops

Mira system [24] . Experimental results demonstrate that our design improves job performance by more than 30% and

also improves system performance. 

The remainder of this paper is organized as follows. Section 2 describes our design of the I/O-aware bandwidth allo-

cation framework. Section 3 presents experimental results of our trace-based simulation. Section 4 discusses related work.

Section 5 concludes this paper and points out the future work. 

2. Methodology 

In this section, we present our I/O-aware bandwidth allocation framework implemented on the I/O scheduler. 

2.1. Job abstraction 

A typical HPC job often contains three types of activity: computation, communication, and I/O. Fig. 3 shows the lifecycle

of a sample job. The job’s runtime is split into phases for different activities, which repeatedly run during the job lifecycle.

The horizontal axis represents the execution time. The height usually represents the job’s resource requirement (e.g., nodes,

memory, bandwidth). This abstraction provides a high-level view of the application behavior. For example, the I/O chunk in
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Fig. 4. Runtime phases of the i th job J i requiring N i nodes. 

Fig. 5. Simplified I/O infrastructure model of petascale HPC systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 may contain several consecutive I/O calls (e.g., a loop of write accesses). In our job abstraction, this series of I/O calls

is regarded as a single I/O request. Notice that our target platform is the IBM BG/Q system, which uses a partition-based

resource allocation scheme [25] . The computation and network resource in a partition are dedicated to serve the job running

on it. Hence, once a job is scheduled to run, the time consumed in computation and communication is fixed. As such, we

unify computation and communication into one type of activity in Fig. 3 . The time for I/O activity is substantially variable

because of potential I/O congestion. 

In Fig. 4 we depict the runtime phases of a job. Each running job J i is associated with two basic attributes: start time

as t start 
i 

and size (in nodes) as N i . A job shows a periodical running pattern that computation/communication interleaves

with I/O. We assume that each computation/communication is followed by an I/O request that transfers a chunk of data

from or to the storage system via the I/O network. Therefore, each job J i consists of n i computation/communication and n i 
I/O activities. The k th computation/communication activity of job J i requires time T com 

i,k 
to finish, and the k th I/O needs to

transfer Vol i , k of data (in gigabytes). 

2.2. System model 

As shown in Fig. 5 , we assume an HPC system composed of N compute nodes, each installed with the same number of

identical uniform-speed processors. Each compute node is connected to the I/O nodes and can transfer data to the storage

system across the I/O network at maximum bandwidth b (in gigabytes per second). The aggregate bandwidth of the whole

system b × N is guaranteed to be less than the maximum capacity of the I/O network. Inside the storage system, we assume

a group of file servers connected to a centralized parallel file system with a maximum bandwidth BW max . In many systems

such as Intrepid and Mira, this maximum bandwidth BW max is always less than the compute nodes’ aggregate bandwidth b

× N and is usually subject to the upper-bound maximum speed of the hard drives. More specifically, the rotation speed of

the disk heads dominates the actual access speed of the storage system. Therefore, in this model we assume that the I/O

congestion takes place at the storage side if the aggregated bandwidth of all active compute nodes b × N active exceeds the

total bandwidth capacity BW max of the storage system. 

2.3. Problem model 

Fig. 6 shows the problem model regarding I/O congestion based on the aformentioned job abstraction and the system

model. The x-axis represents the execution time, the y-axis the aggregated bandwidth. Suppose three jobs J 1 , J 2 , and J 3 are

running concurrently on separated sets of nodes and each job has its own I/O pattern along with different bandwidth usage,

illustrated as the height of each rectangle. Naturally a job’s I/O operations may overlap with those of others. At this point,

multiple jobs are accessing the storage system simultaneously, and inevitably they have to compete for I/O bandwidth with
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Fig. 6. Problem model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one another. If the aggregate bandwidth of these three jobs exceeds the maximum bandwidth BW max denoted by the red

dashed line, I/O congestion occurs and impacts these jobs’ I/O performance if no congestion control is taken. 

This problem model is simple, but it reflects the motivation of this work: to utilize the resource management system to

mitigate I/O congestion by monitoring and controlling the jobs’ I/O operations on the fly. After pulling information about all

the ongoing I/O operations, the I/O scheduler decides the bandwidth usage among jobs within a certain length of time. In

other words, the I/O bandwidth is considered as a “schedulable” resource and shared by all the jobs. 

2.4. I/O congestion model 

In the system model of Fig. 5 , we assume that the I/O network bandwidth is much larger than that of the storage system.

Thus, the I/O congestion actually locates at the hard disk side, which is limited by the disk rotation speed. The lower-level

I/O scheduler in the storage server may apply a simple, independent “first-in-first-out” policy on incoming I/O requests or

a more elaborated strategy, such as minimizing disk-head movements by aiming at better data locality. From the system

view, the storage system is accessed in a fair-sharing mode. We define a general I/O congestion model on HPC systems

as follows: If b × N active ≥ B, the actual bandwidth allocated to each compute node is B 
N active 

. Although extra overhead such

as the time for disk-head movements should be considered, it is hard to precisely calculate the overhead in an analytical

model. Therefore, in this work we set up a fair-sharing storage model with no extra overhead. 

2.5. I/O-Aware Bandwidth Allocation Framework 

To mitigate I/O congestion and improve system performance, we designed a novel I/O-aware bandwidth allocation frame-

work to coordinate concurrent I/O requests. As shown in Fig. 2 , the new scheduling framework extends the current HPC

scheduling framework by integrating the runtime monitoring of system state and I/O activities and runtime I/O control. For

the purpose of system efficiency, we implement the bandwidth allocation as an extension to the I/O scheduler on the I/O

server. The key idea of our solution works as follows: 

1. Every time a new I/O request is forwarded to the I/O server, the I/O scheduler monitors all I/O requests being pro-

cessed and checks whether the aggregate bandwidth requirement exceeds the maximum value BW max . 

2. If the storage bandwidth is overloaded, I/O congestion is likely to happen. The I/O scheduler pulls information of

running jobs from the scheduling system and decides how to allocate I/O bandwidth to jobs. 

3. The decision is applied on the fly during system running. Similar to batch job scheduling, the I/O scheduler dynam-

ically allocate bandwidth among multiple jobs. Jobs assigned available bandwidth can perform their I/O operations.

Jobs without bandwidth can be seen as temporarily “suspended” and should wait until next decision making iteration.

2.6. Job performance quantification 

First we present two user-oriented metrics to quantify job performance regarding I/O congestion. 

• InstantSlowdown (InstSld) : Suppose at time t , job J i is performing the k th I/O operation. It has a total of Vol i , k data to

transfer and has already transferred W i , k data. Let t I/O 
i,k 

be the start time of the k th I/O operation. We define InstSld ( i , k ) ( t )

, the instant slowdown of the k th job J i at time t as 

InstSld (i,k ) (t) = 

b × N i × (t − t I/O 

i,k 
) 

W i,k , 
(1)
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where t − t I/O 
i,k 

is the elapsed time from the start time of current I/O operation to now and b × N i × (t − t I/O 
i,k 

) is the

theoretically maximum total size of data job J i could transfer by now within this I/O operation, in other words, an ideal

case without any I/O congestion. The ratio of this maximum size of data to the already transferred W i , k data represents

the slowdown of transferring data caused by I/O congestion. Obviously, InstSld ( i , k ) ( t ) ≥ 1 with InstSld (i,k ) (t) = 1 indicating

the data transferring is not interfered with by any I/O congestion. 

• AggregatedSlowdown (AggrSld) : Again, we assume job J i is performing its k th I/O operation. We define AggrSld i , k ( t ), the

aggregate slowdown of job J i at time t as 

AggrSld (i,k ) (t ) = 

t − t start 
i 

∑ 

j≤k T 
com 

i, j 
+ 

∑ 

j<k T 
I/O 

i, j 
, 

(2) 

where T com 

i, j 
is the time spent on the j th computation/communication operation and T I/O 

i, j 
the time of the j th I/O operation

without I/O congestion. Here t − t start 
i 

equals the total elapsed time between the job start and the present time; and j

≤ k is the number of computation/communication or I/O the job has executed at time t since the start time t start 
i 

. The

AggrSld reflects the extent of an application’s delay due to I/O congestion. 

2.7. Bandwidth allocation policies 

Suppose K jobs in the system are performing I/O or are ready to perform I/O. Our scheduler selects a subset from the

K jobs to perform I/O. Jobs that are not selected are suspended and wait until the next scheduling cycle. We propose three

bandwidth allocation policies on the I/O scheduler. Every time the I/O scheduler chooses a job and allocates bandwidth as

much as possible to satisfy its I/O requests. The maximal bandwidth a job can have equal to b × N which is the theoretical

bandwidth it could drive over the I/O network. The detailed policies are as follows: 

1. FCFS : The FCFS (first-come-first-serve) policy works the way a traditional job scheduler does. It allocates bandwidth

to jobs in chronological order based on the start time of concurrent I/O requests. Jobs performing I/O with earlier

start time have higher priority and are favored by the I/O scheduler. 

2. MinInstSld : The MinInstSld policy favors jobs with low InstSld value. This method is close to FCFS , which orders jobs

before making decision. 

3. MinAggrSld : Similar to the MinInstSld , the MinAggrSld favor jobs with low AggrSld value. 

3. Evaluation 

3.1. Qsim Simulator 

Qsim is an event-driven scheduling simulator for Cobalt [23,25] . Taking the historical job trace as input, Qsim quickly

replays the job scheduling and resource allocation behavior and generates a new sequence of scheduling events as an output

log. Qsim uses the same scheduling and resource allocation code that is used by Cobalt and thus has been proven to provide

accurate resource management and scheduling simulation [25–27] . Qsim is open-source and available along with the Cobalt

code releases [23] . 

3.2. Job Trace and I/O Trace 

We evaluate our design by means of actual workload traces from the production BG/Q machine Mira at ALCF. We have

collected a three-month job trace from 2014. The job trace provides rich information for our simulation, including submis-

sion time, job size, duration, and walltime. 

To obtain information of I/O activities, we use the Darshan log collected from Mira [28] . Darshan is a user-level system

tool to allow users to characterize the I/O behavior in an efficient and transparent manner at extreme scales. In essence, for

each application running on the systems, Darshan collects the I/O footprint and summarizes it in a compact and statistically

reproducible manner. Because it stores only the statistical summary of many I/O operations, the space and I/O overhead

when enabling Darshan logs are minimum. By default, Darshan is turned on for all applications on the Blue Gene systems

and is completely transparent to the users; no application change is in need. The effectiveness of Darshan logs has been

demonstrated at extreme scales—up to 64K nodes. 

By combining the job trace and I/O trace via pairing, we have built a comprehensive workload that contains job infor-

mation (e.g., submission, runtime, size) as well as their I/O characteristics (e.g., number of I/O calls, I/O time, read and write

transfer size). We divide the 3-month workload trace into three single-month workload traces and evaluate our design on

each of them. This approach enables us to evaluate our design under workloads with different characteristics. 

3.3. Evaluation metrics 

Three widely used metrics are evaluated: 
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Fig. 7. Average wait time with bandwidth allocation. 

Fig. 8. Average response time with bandwidth allocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Average job wait time . This metric denotes the average time elapsed between the moment a job is submitted and the

moment it is allocated to run. It is commonly used to reflect the “efficiency” of a scheduling policy. 

• Average response time . This metric denotes the average time elapsed between the moment a job is submitted and the

moment it is completed. Similar to the above metric, it is often used to measure scheduling performance from the user’s

perspective. 

• System utilization . System utilization rate is measured by the ratio of busy node-hours to the total node-hours during a

given period of time [29] [30] . The utilization rate at the stabilized system status (excluding warm-up and cool-down

phases of a workload) is an important metric of how well a system is utilized. 

3.4. Results 

3.4.1. Bandwidth Allocation Policies 

Fig. 7 shows the average wait times of different bandwidth allocation policies used by the I/O scheduler. First it is clear

that a bandwidth allocation policy aware of I/O-congestion is much more efficient than the BASE_LINE policy, which allocates

bandwidth in a fair-share manner. Second, on all three workloads, the MIN_AGGR_SLD policy performs the best in reducing

wait time than to the other policies. On both workload 2 and wordload 3, the MIN_AGGR_SLD policy reduce the wait time

by more than 20%, while the MIN_INST_SLD policy even increases the wait time of workload 2. The MIN_AGGR_SLD focuses

on the overall application performance rather than focusing on the local optimum of current I/O request like MIN_INST_SLD

does. That is the reason that MIN_AGGR_SLD can achieve better reduction of wait time. Another observation is the FCFS

policy has no stable advantage over the BASE_LINE . Only on workload 1, FCFS has improved the wait time by nearly 20%. 

Fig. 8 shows results of average response time similar to Fig. 7 . Both MIN_INST_SLD and MIN_AGGR_SLD have lower re-

sponse times than do the other two policies. The largest reduction on reponse time is achieved on workload 3 by more

than 30% with MIN_AGGR_SLD ; and MIN_INST_SLD can reduce the response time by more than 20% on workload 1 and 3.

We also observe that using FCFS cannot always improve the response time and may even have a negative impact on it.

For example, on workload 2 and 3 we not that FCFS slightly increases the response time. In particular, FCFS are ineffective

on lowering the response time, showing nearly the same value as the baseline result. According to the definition, the job

response time consists of wait time and job runtime. While the decrement of wait time benefits from our I/O-aware band-

width allocation policies, a job may not be assigned with sufficient bandwidth. This situation increases the running time,

which is likely to diminish the benefit on wait time. 
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Fig. 9. Normalized system utilization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 shows the system utilization on three workloads. For convenience, we normalize the absolute utilization value

based on the results of BASE_LINE . The largest utilization drop is seen with FCFS and MIN_INST_SLD on workoad 2, where

the utilization decreases by nearly 10%. Other bandwidth allocation policies have negligible loss on utilization, which is

treated as acceptable cost. Taking all the results into consideration with Figs. 7 and 8 , the MIN_AGGR_SLD policy is the best

trade-off and achieves a good balance between user satisfaction and system utilization. 

4. Related work 

One traditional approach to addressing the I/O bottleneck on extreme-scale systems is to employ high-level I/O libraries,

such as HDF5 [16] and NetCDF [17] . These libraries stipulate the data format of the applications as well as their I/O in-

terfaces. Other researchers proposed several loosely coupled middleware solutions, such as PLFS [12] , DataStager [13] , and

Damaris [14] . These systems work independently of both the underlying storage systems and the upper-level applications

and thus greatly generalize the applicability. Nevertheless, an obvious drawback of this approach is the potential overhead

introduced by the middleware. More recently, the trend of solving the I/O imbalance in extreme-scale systems is to move the

data closer to the compute resource. Ning et al. [20] propose moving file handling to the I/O nodes in order to ameliorate

the I/O pressure from the massive number of compute nodes. 

Performance variability of parallel applications in HPC systems has been existing for a long time and attracted a lot

of research. Such variability is due to the fact that concurrently running parallel applications interfere with each other

by sharing a great mount of system resources such as network and I/O channels. Bhatele et al. show that job runtime is

influenced by network sharing, and the performance variability introduced by network contention could be as high as 70%

[31] . 

I/O contention in HPC systems draws considerable attention in the community because it is the root cause of parallel

applications’ performance variability [32–34] . Zhang et al. and Lofstead et al. schedule each application’s I/O request individ-

ually without a global view from system’s perspective [33,34] . Their solutions require support from specific I/O management

in the system level for better results. Solutions to the I/O contention between parallel applications have been studied in var-

ious works [35–37] . Dorier et al. analyze the I/O interference between two applications [21] . They make a quantified study

of performance improvement obtained by interrupting or delaying either one in order to avoid I/O contention. Gainaru et al.

analyze the effects of interference on application I/O bandwidth and propose several scheduling techniques that apply to

system I/O level to mitigate congestion [38] . 

5. Conclusion 

In this paper, we have presented an I/O-aware bandwidth allocation framework to alleviate the I/O congestion on petas-

cale HPC systems. In our design, the I/O congestion scenario is formalized into a classical scheduling problem by treating I/O

bandwidth as schedulable resource and having the system dynamically schedules these I/O accesses. The bandwidth alloca-

tion method moves the task to the I/O scheduler on the I/O server and releases the batch scheduler from controlling jobs

on the fly. This is more effective because processing I/O requests on I/O servers causes much less overhead than suspend-

ing/restarting jobs via the resource management system. Our trace-based simulations clearly demonstrate the performance

benefit obtained with these new policies. 

While this study targets Mira, our design is generally applicable to other HPC systems. To the best of our knowledge, this

is the first work on addressing I/O congestion from the perspective of resource management. Several avenues remain open

for future work. One is to build a model to predict an application’s I/O behavior based on its past I/O trace. Given the I/O

pattern in advance, the job scheduler can take this into consideration and make decisions to achieve better performance.

We also plan to investigate more complicated algorithm to obtain more optimal solutions. In addition, we plan to expand
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this work by developing a smart resource management framework for better managing nontraditional resources including

I/O and power consumption. 
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