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Abstract—Traditionally, on-demand, rigid, and malleable ap-
plications have been scheduled and executed on separate systems.
The ever-growing workload demands and rapidly developing
HPC infrastructure trigger the interest of converging these
applications on a single HPC system. Although allocating the
hybrid workloads within one system could potentially improve
system efficiency, it is difficult to balance the tradeoff between
the responsiveness of on-demand requests, incentive for malleable
jobs, and the performance of rigid applications. In this study,
we present several scheduling mechanisms to address the issues
involved in co-scheduling on-demand, rigid, and malleable jobs
on a single HPC system. We extensively evaluate and compare
their performance under various configurations and workloads.
Our experimental results show that our proposed mechanisms
are capable of serving on-demand workloads with minimal delay,
offering incentives for declaring malleability, and improving
system performance.

Index Terms—cluster scheduling, high-performance comput-
ing, on-demand jobs, rigid jobs, malleable jobs

I. INTRODUCTION

The tremendous compute power with high bandwidth mem-
ory and enormous storage capabilities makes high performance
computing (HPC) facilities ideal infrastructures for various
types of applications. The main tenant of HPC systems is
batch applications, which are tightly coupled parallel jobs
and are rigid in size. On-demand applications are time-critical
applications requiring quick response and thus are used to
running on their dedicated clusters. As the sizes of on-
demand applications are rapidly expanding in recent years, the
dedicated clusters cannot keep up with the rapid expansion in
on-demand applications. As a result, HPC system becomes a
more practical solution for on-demand applications. Malleable
applications are loosely coupled applications consisting of a
series of tasks and therefore they can adapt their sizes to
changes in hardware availability. Malleable applications are
typically running in datacenters. In recent years, an increas-
ing number of HPC systems are equipped with accelerators.
The superior computing power combined with the emerging
accelerators makes HPC systems an attractive alternative for
malleable applications [1], [2].

The production HPC cluster schedulers, such as Slurm,
Moab/TORQUE, PBS, and Cobalt [3]–[6], adopt the tradi-
tional batch job scheduling model, where users request a
fixed amount of resources for a specific amount of time,
while the scheduler decides when and where to run each job
based on job priority and system availability. A number of
studies attempt to address the hybrid workload scheduling on

a single HPC system. Research on co-scheduling rigid and
on-demand applications often aims at the high responsiveness
of on-demand jobs. The common strategies include predicting
on-demand jobs’ requests, reserving resources for on-demand
jobs, and preempting rigid jobs to make room for on-demand
jobs [7]–[11]. Other studies focus on co-scheduling malleable
jobs with rigid jobs on HPC systems [12]–[23]. Unfortunately,
these studies do not address the problem of co-scheduling all
three types of applications, i.e., on-demand jobs, rigid jobs,
and malleable jobs. Hence, the scheduling implications of co-
running these applications are unknown.

Cluster scheduling consists of two components: job sched-
uler and resource manager, where job scheduler determines
when and which user jobs should be allocated to system re-
sources, and resource manager monitors and manages resource
allocations. Executing hybrid workloads on a single HPC
system has several benefits, such as supporting ever-increasing
on-demand job sizes, reducing resource fragmentation, and
improving system utilization. However, this is a challenging
task at both job scheduling level and resource management
level. The job scheduler needs to maintain the delicate balance
between several conflicting objectives, i.e., quick response
to on-demand jobs, high system utilization, the incentive for
shrinking malleable jobs, and low impact on rigid jobs. The
resource manager has to execute the more complicated and
frequent operations from job scheduler, i.e., start, preemption,
shrink, and expansion of user jobs.

In this paper, we concentrate on addressing HPC hybrid
workloads problem from the job scheduling aspect. We present
six mechanisms for co-scheduling all three types of applica-
tions (i.e, batch, on-demand, and malleable applications). Our
design intends to meet the demands from different applica-
tions, while also maximizing system utilization. Our proposed
mechanisms are designed to be used in conjunction with
the existing site policy: while a site policy determines the
order of waiting jobs, our mechanisms manipulate running
jobs in order to provide timely service to on-demand jobs
with minimal negative impact on rigid and malleable jobs.
Our design is based on the fact that it is often possible for
on-demand jobs to determine their demand within a short
time (15-30 minutes) before their actual arrivals [7]. Upon
receiving on-demand job’s advance notice, we provide both
non-invasive and invasive mechanisms to reserve resources
for the on-demand job. Once an on-demand job arrives, we
provide several mechanisms to immediately vacate nodes



from running malleable and rigid jobs. By combining the
mechanisms used at on-demand job’s advance notice and its
arrival, we propose six mechanisms to handle hybrid workload
scheduling problems.

Moreover, we conduct a series of trace-based simulations
using various workloads generated based on real workload
traces collected from Theta [24] at Argonne Leadership Com-
puting Facility (ALCF) and Cori [25] at National Energy Re-
search Scientific Computing (NERSC) . These experiments not
only allow us to extensively evaluate different co-scheduling
methods, but also help us gain valuable insights regarding co-
scheduling different workloads on HPC systems. The results
show that all of the proposed mechanisms achieve quick
responsiveness for on-demand jobs. Additionally, the results
reveal the impact of different mechanisms on system perfor-
mance and the performance on malleable and rigid jobs. More
importantly, we provide valuable insights for choosing these
mechanisms under different situations.

II. RELATED WORK AND CHALLENGES

A. HPC Application Types

Rigid job is the most common type of job in HPC envi-
ronments [26]. Rigid jobs have fixed resource requirements
throughout their life cycle. Most parallel applications, such as
extreme-scale scientific simulations and modeling, are rigid in
nature, requiring inter-process communication through mes-
sage passing, and checkpointing for fault tolerance. They are
tightly coupled applications that cannot be decomposed to a
series of small-sized tasks and are prone to failure due to their
sizes. In order to handle hardware failures, rigid applications
checkpoint regularly and restart from the latest checkpoint in
the event of an interruption.

On-demand job is a time-critical application needed to be
completed in the shortest time possible. An example of the on-
demand jobs is data analytical workloads after experiments [7].
Traditionally, to ensure high responsiveness, on-demand jobs
are running on dedicated small clusters. This leads to very low
cluster utilization. The rapid experimental expansion requires
increasingly large computing capabilities, which cannot be
fulfilled by small clusters. The use of large-scale HPC systems
becomes a viable solution for the ever-increasing on-demand
workloads.

Malleable job is another type of parallel job whose sizes
can adapt to the number of nodes assigned to them. A mal-
leable job specifies the minimum and the maximum number
of nodes. They can shrink down to the minimum sizes or
expand up to the maximum sizes based on resource avail-
ability. Typically, a malleable job consists of loosely coupled
small-sized tasks and the running tasks can be dynamically
adjusted based on the assigned nodes. In addition, preemption
of malleable jobs causes less overhead than rigid jobs, because
they can skip over the finished tasks and resume from the
interrupted tasks. The typical examples of malleable jobs are
high throughput jobs [27], multi-task workflows [14], machine
learning applications, and hyperparameter searches in deep
neural networks. While traditionally separated infrastructures

have been used for rigid jobs and malleable jobs [28], [29],
the next-generation HPC systems provide not only tremendous
compute power on a single node (CPU and GPU), but also
enormous high bandwidth memory, making them efficient
platforms for both types of workloads. As a result, malleable
applications are gaining increasing traction on HPC systems
in recent years.

B. Job Scheduling in HPC

HPC job scheduling is traditionally designed to manage
and assign rigid jobs to resources. The resource allocation
is commonly at the granularity of a node. Well-known HPC
schedulers include Slurm, Moab/TORQUE, PBS, and Cobalt
[3]–[6]. When submitting a job, a user is required to provide
job size and job runtime estimate. At each scheduling instance,
the scheduler orders the jobs in the queue according to site
policies and resource availability and executes jobs from the
head of the queue [30]. The most widely used HPC job
scheduling policy is First Come First Serve (FCFS) with
EASY backfilling [31]. FCFS sorts the jobs in the queue
according to their arrival times, while backfilling is often used
in conjunction with reservation to enhance system utilization.
Backfilling allows subsequent jobs in the queue to move
ahead under the condition that they do not delay the existing
reservations.

In the realm of executing on-demand jobs and rigid jobs
on HPC systems, several groups have proposed to statically
or dynamically reserve resources for on-demand requests.
Dynamical reservation was achieved by predicting the on-
demand request patterns [7], [8]. Another widely adopted
technique to ensure timeliness of on-demand jobs is to preempt
rigid jobs [9]–[11]. In terms of accommodating malleable jobs
and rigid jobs on HPC systems, several attempts have been
made to shrink malleable jobs in order to reduce resource
fragmentation problems [12], [15], [21], [22]. To the best of
our knowledge, this is the first attempt to co-schedule all three
types of jobs (i.e., rigid, on-demand, and malleable) on a single
HPC system.

Our work also differs from existing cloud resource man-
agers like Mesos and Kubernetes [32], [33]. Cloud resource
managers commonly allow jobs to share nodes. As a result,
solutions for addressing bursty on-demand requests often rely
on co-scheduling mixed workloads on a single node via
containers or virtual machines. This is very different from
HPC where a bare metal mode with exclusive node access
is used for running jobs.

Finally, some studies proposed cross-platform solutions. For
example, Ambati et al. optimized operating costs and reduced
wait time by pushing some workloads to cloud providers when
a HPC system was too busy to handle the bursty requests
[34]. However, these solutions are difficult to apply to HPC
workloads, especially rigid jobs, which are highly optimized
based on specific systems and configurations. Additionally, our
study focused on extracting the best performance from a fixed
amount of resources rather than seeking additional resources.



C. Technical Challenges

Managing hybrid workloads on a single large-scale HPC
system offers several benefits, such as boosting system uti-
lization, mitigating system fragmentation, and reducing job
turnaround time. However, the hybrid workloads also pose new
challenges.
• Maximize instant start ratio of on-demand jobs. One of the

primary goals is to maximize the number of on-demand jobs
that can start instantly upon their arrival. By moving the
dedicated allocation of on-demand requests to a common
resource pool, other types of jobs can utilize these resources
and improve system utilization. However, the high system
utilization also makes it extremely difficult to achieve high
on-demand instant start ratio.

• Minimize resource waste. To accommodate the hybrid
workloads, a proper mechanism must take advantage of
job shrink, expansion, and checkpointing strategies. These
strategies come with overheads. For example, to make room
for time-critical on-demand requests, we could preempt
running rigid/malleable jobs and resume them from the latest
checkpoints. These preempted jobs will lose the computa-
tion after the checkpoints. Hence, an effective solution must
take the resource waste into consideration when choosing
running jobs for preemption.

• Incentive of being malleable. For those jobs that are capable
of being adjusted to different sizes, users can either declare
them as rigid jobs or malleable jobs. The designed strategies
need to provide incentives for users to declare them as
malleable jobs by guaranteeing better job performance, e.g.,
lower average job turnaround time. This could discourage
users from lying about their job types.

• Quick decision making. To fulfill time-critical on-demand
requests, the scheduler has to rapidly choose running jobs to
make room for on-demand jobs. Malleable jobs can either be
preempted or shrunk, which leads to additional complexity
and makes the problem non-trivial. A proper design must be
scalable and be capable of making high-quality decisions in
a short time (e.g., in seconds).

III. METHODOLOGY

In this section, we first formally define our hybrid work-
load scheduling problem in §III-A. We then present the six
scheduling mechanisms to solve this problem in §III-B.

A. Problem Formulation

Suppose an HPC system has N identical nodes. Independent
jobs J1, J2, ..., Jn arrive and are scheduled in order. We
assume that jobs cannot share nodes and thus jobs must be
allocated an integral number of nodes. Jobs can be classified
into three categories:
• Rigid job: When submitting a rigid job, a user is required

to provide two pieces of information: the number of nodes
n and job runtime estimate testimate. A rigid job requires
a fixed number of nodes, which cannot be adjusted during
execution. Job’s actual runtime tactual cannot exceed the
job runtime estimate (tactual ≤ testimate); otherwise, the

job will be killed when reaching the runtime estimate [35].
At the beginning of job execution, a job needs some time
tsetup to set up communication and coordination. During
job execution, the job might take regular checkpoints at
frequency tf . In case of interruption, the resumed job will
first set up communication in tsetup time and then resume
from the latest checkpoint. As a result, the resumed job will
lose the computation between the latest checkpoint and the
preempted time.

• On-demand job: On-demand jobs are time-critical applica-
tions, which needed to start within a very short time after
submission. On-demand jobs are often possible to determine
their resource need within a short time (15-30 minutes)
before submission. Advance notice includes the following
information: the estimated job arrival time, job size, and job
runtime estimate. Based on the on-demand job’s estimated
arrival time and actual arrival time, on-demand jobs can
be categorized into four groups as shown in Figure 1, i.e.,
without advance notice, with accurate advance notice, arrive
early, and arrive late.

Fig. 1: Four types of on-demand jobs.

• Malleable job: When submitting a malleable job, a user
provides the following information: minimum job size nmin,
maximum job size nmax, job estimate runtime when running
at maximum job size testimate. Similar to rigid jobs, we
consider setup time at the beginning of the execution. A
malleable job is able to run on any integer nodes between
minimum job size and maximum job size (nmin ≤ n ≤
nmax). We assume the linear speedup in addition to the con-
stant setup overhead. Therefore, we can model job’s actual
runtime as: tactual = tsingle/n+ tsetup. Here, tsingle is the
application’s runtime on a single compute node. Note that
the size of malleable jobs can be adjusted before or during
execution according to scheduling policies, which is slightly
different from the well-adopted definition of malleable jobs
in [26]. A malleable job typically consists of small-sized
tasks and the overhead of changing job size is negligible,
and thus it is reasonable to assume no overhead involves in
job expansion or shrink. In case of preemption, We adopt
Amazon’s two minutes warning strategy on spot instance
[36]. The scheduler provides two minutes for malleable jobs
to make a checkpoint. The resumed malleable jobs will
first take tsetup to set up and then will resume from the
previous preempted time. Note that we take the different
checkpointing strategies for rigid jobs and malleable jobs.
This is because the checkpointing overhead of malleable



jobs is, in general, much lower and more predictable than
that of rigid jobs. Two minutes is sufficient for a malleable
job to store its states to disk and thus it can avoid regular
checkpointing overheads.
The scheduling problem we study is to allocate resources

to on-demand jobs as soon as possible by reserving available
nodes and preempting or shrinking running jobs. We aim
to respond to on-demand jobs in a timely manner while
minimizing the negative impact on rigid and malleable jobs.

B. Mechanisms

We design our hybrid workloads scheduling problem as a
series of decisions triggered by four types of events of on-
demand jobs: advance notice, actual arrival, estimated arrival,
and completion. We propose different strategies to handle these
events accordingly.

1) Advance notice: The advance notice allows the sched-
uler to prepare resources for on-demand jobs before their
actual arrival. We propose three mechanisms to handle on-
demand jobs’ advance notice:
• Do nothing (N). This is the baseline strategy. The scheduler

ignores advance notice and will handle on-demand jobs later
when they actually arrive.

• Collect-until-actual-arrival (CUA). When receiving an on-
demand job’s advance notice, the scheduler first collects
the currently available nodes for this on-demand job. If
more nodes are needed, the scheduler will collect nodes
released by finished jobs until the requested number of nodes
is fulfilled or the on-demand job actually arrives. In case
of competition from multiple on-demand jobs, the released
nodes will be assigned to the on-demand job with the earliest
advance notice.

• Collect-until-predicted-arrival (CUP). Like collect-until-
actual-arrival method, this method first reserves the currently
available nodes for the on-demand job. If the on-demand
job needs more nodes, this method will try to prepare
sufficient nodes at its predicted arrival time. First, it will
collect the nodes that are expected to be released before the
on-demand predicted arrival time. Second, it will preempt
running jobs before the on-demand job’s predicted arrival

time. To preempt which running jobs is determined by pre-
emption overheads. To minimize the preemption overhead,
we try to preempt rigid jobs immediately after they make
a checkpoint. If the on-demand job arrives earlier than its
predicted arrival time, we stop the preparation and use the
strategies in the following subsection to collect more nodes.

Figure 2 uses an example to illustrate the differences
between CUA and CUP. To improve the system utilization,
the nodes reserved for on-demand jobs can be used to run
waiting jobs. First, we try to backfill the waiting jobs that are
expected to finish before the on-demand job’s estimated arrival
time. If some reserved nodes are still idle, malleable jobs will
be selected to run due to their low preemption overhead and
fast draining process. But once the on-demand job arrives, all
these jobs have to be preempted immediately.

2) On-demand job’s actual arrival: When an on-demand
job arrives, the scheduler first checks if there are sufficient
available nodes and reserved nodes to run this job. If that is the
case, the on-demand job can launch immediately. Otherwise,
we propose two strategies to find more nodes for the on-
demand job:

• Preempt-at-actual-arrival (PAA): This method lists all
currently running malleable and rigid jobs in ascending
order of their preemption overheads. For jobs with check-
points, preemption overhead includes re-computation cost
between the preemption and the latest checkpoint and the
setup cost. For jobs without checkpoints, preemption over-
head is the elapsed time from the job start time to the
preemption time. If the total number of the preemptable
nodes is not sufficient, we cannot start the on-demand job
instantly and have to put it to the front of the queue waiting
for additional available nodes. If the preemptable nodes are
sufficient, we preempt jobs from the front of the running
list until the on-demand request is satisfied. We update
the preempted jobs’ estimated runtime, keep their original
submit time, and automatically resubmit these jobs to the
wait queue. The priority of the preempted jobs is determined
by the scheduling policy. For example, FCFS might move
the preempted jobs to the front of the queue, because they
have early first submission times.

Fig. 2: CUA versus CUP. The solid rectangle is the time actually used by a job; the grid rectangle shows the time between
job’s actual and estimated finish time. CUA finds running jobs that actually finished before the on-demand job arrival. In this
example, the nodes released from J1 and J2 will be reserved. CUP finds running jobs that are estimated to be finished before
the on-demand job’s estimated arrival time. Hence, CUP first selects J1; since J2 is expected to finish later than the on-demand
job’s estimated arrival time, it will be preempted immediately after checkpointing (the green dashed line). J2’s unfinished
computation will be resubmitted and resumed later.



• Shrink-preempt-at-actual-arrival (SPAA): This method
first finds all currently running malleable jobs and computes
the maximum number of nodes they can supply by shrinking
to their minimum sizes. If the supply can meet the on-
demand job’s request, the running malleable jobs will shrink
their sizes as evenly as possible. Once the shrink sizes are
determined, the scheduler will linearly adjust the estimated
runtime of the shrunk jobs. If the supply cannot meet, we
use PAA method to handle the on-demand request.
3) On-demand job’s estimated arrival: An on-demand job

may arrive late or even do not show up. To preempt deadlocks,
if an on-demand job has not arrived after a certain period of
time of its estimated arrival time, the scheduler will release
the reserved nodes.

4) Completion of on-demand job: For job fairness, once
an on-demand job is completed, the on-demand job will try
to return its nodes to the lenders. If a job was preempted
by this on-demand job and is still waiting in the queue, the
leased nodes will return to this job and this job will resume
immediately if possible. If a job was shrunk and is still
running, we will expand this job to its original size.

By combining three advance notice strategies with two
job arrival strategies, we obtain six mechanisms to schedule
hybrid workloads on a single HPC system: N&PAA, N&SPAA,
CUA&PAA, CUA&SPAA, CUP&PAA, CUP&SPAA. Current
HPC systems typically require a scheduler to respond in 10-30
seconds [30]. In our experiments, all six mechanisms take less
than 10 milliseconds to make a decision and thus are feasible
for practical deployment.

IV. EXPERIMENTAL SETUP

In this section, we first describe the real workload traces
collected from Theta and Cori, and how to generate traces
from the real traces to represent various scenarios (§IV-A). We
then introduce the baseline configuration for our experiments
(§IV-B) and our simulation environment (§IV-C). Finally, we
list the system- and user-centric metrics for evaluation (§IV-D).

A. Workloads

In our study, two real workload traces are used. Table I
summarizes the traces collected from two production systems,
and Figure 3 gives an overview of job size distributions on
these supercomputers. We select these traces as they represent
different workload profiles: (1) capability computing focusing
on solving large-sized problems, (2) capacity computing solv-
ing a mix of small-sized and large-sized problems. The first
workload is a two-year job log from Theta [24], a capability
computing system located at ALCF. The smallest job allowed
on Theta is 128-node [37]. The second trace is a four-month
job log from Cori [25], a capacity computing system deployed
at NERSC. A majority of its jobs consume one or several
nodes (Figure 3).

Since the traces do not include job type information, we
generate a series of workloads based on the real traces to
cover various job distributions. Studies have been shown that
users tend to submit a bunch of on-demand jobs in a short

TABLE I: Theta and Cori workloads.

Theta Cori
Location ALCF NERSC
Scheduler Cobalt Slurm
System Types Capability computing Capacity computing
Compute Nodes 4,392 12,076
Trace Period Jan. - Dec. 2019 Apr. - Jul. 2018
Number of Jobs 37,298 2,607,054
Max Job Length 1 day 7 days
Min Job Size 128 nodes 1 node

Fig. 3: Job characterization of Theta at ALCF and Cori at
NERSC. The outer circle shows the number of jobs in each
job size category. The inner circle presents the total core hours
consumed by each job size category.

Fig. 4: Job type statistics of the traces used in the experiments.

Fig. 5: The number of on-demand jobs submitted per week
of three randomly generated traces (denoted by blue, orange,
and green lines respectively) on Theta and Cori.

period of time [7]. In order to mimic the bursty on-demand
job submission pattern, we group jobs by their project names
and assume that all jobs belonging to one project have the
same job type. We randomly assign that 10% of projects
submit on-demand jobs, 60% of projects submit rigid jobs
and the rest of projects submit malleable jobs. We made
this assumption because rigid jobs are the main tenant and
malleable jobs are emerging in HPC systems. HPC systems
can support limited amounts of on-demand requests to ensure
their quick response. Figure 4 presents the job type statistics
of the randomly generated traces used in our experiments.



We observe that the job distributions differ significantly on
different traces because different projects have significant
differences in the number of jobs. Cori log contains 76% of
single-node jobs, which cannot change their job sizes. For
those single-node jobs be originally assigned as malleable
jobs, we randomly re-assign them as either rigid or on-demand
jobs. As a result, Cori has a higher percentage of rigid jobs
and a lower percentage of malleable jobs compared to Theta.
Additionally, Cori’s malleable jobs are, on average, larger in
size than rigid and malleable jobs. Figure 5 shows the number
of on-demand jobs submitted per week of three randomly
generated traces. The submission patterns of the different
traces vary significantly and all traces show the bursty on-
demand job submission pattern. This enables us to extensively
evaluate our mechanisms under various scenarios.

B. Configuration

In this section, we present the default configurations for
different types of jobs. By default, jobs are scheduled by FCFS
with EASY backfilling without hardware or software failures.
In terms of rigid jobs, their setup overhead is assigned to be
5%-10% of their runtimes. We assume rigid jobs make regular
checkpoints at the optimum frequency defined by Daly [38].
Based on our experience and the current literature [39]–[41],
we set each checkpointing overhead to 600 seconds if job size
is less than 1K nodes; otherwise, we set it to 1200 seconds.
If the optimum checkpointing interval is longer than the job
runtime, we assume that the job does not make checkpoints.

In terms of on-demand jobs, we equally distribute them into
the following categories: without advance notice, with accurate
advance notice, arrive early, and arrive late. If an on-demand
job arrives early, its arrival time is a random number between
its advance notice and estimated arrival time. If an on-demand
job arrives late, its arrival time is a random number within 30
minutes after its estimated arrival time. We set the threshold to
release the reserved nodes to 10 minutes after the on-demand
job’s estimated arrival time.

In terms of malleable jobs, we set their maximum job size
to be their original requested job size and their minimum job
size to be 20% of their maximum size. The setup overhead is
a random number between 0%-5% of their runtimes. Note
that these configurations are based on our discussion with
experienced system managers and administrators at ALCF.

C. Trace-based Simulation

We compare different scheduling mechanisms through
trace-based simulation. Specifically, a trace-based, event-
driven scheduling simulator called CQSim is used in our
experiments [42]. CQSim contains a queue manager and a
scheduler that can plug in different scheduling policies. It
emulates the actual scheduling environment. A real system
takes jobs from user submission, while CQSim takes jobs by
reading the job arrival information in the trace. Rather than
executing jobs on system, CQSim simulates the execution by
advancing the simulation clock according to the job runtime
information in the trace.

D. Evaluation Metrics

We evaluate the performance of different mechanisms using
several user-level and system-level metrics.
1) Job turnaround time is a user-level metric. It measures

the interval between job submission and completion time.
2) On-demand jobs’ instant start ratio is a user-level metric,

which is calculated as the ratio between the number of
on-demand jobs started instantly and the total number of
on-demand jobs. Note that we do not consider the time to
preempt/shrink nodes upon the arrival of on-demand jobs.

3) Preemption ratio is a user-level metric to measure the
percentage of rigid or malleable jobs being preempted.

4) System utilization is a system-level metric that measures
the ratio of node-hours used for useful job execution to
the total elapsed node-hours. Note that system utilization
excludes wasted computation due to preemption.

V. EVALUATION

To comprehensively evaluate the six proposed mechanisms,
we conduct a series of experiments to compare their per-
formance under various situations/configurations, including
different advance notice settings (§V-B), different checkpoint
settings (§V-C), different malleable job size range settings
(§V-D), and different setup overhead settings (§V-E).

A. Overall Performance

We compare the performance of the five workloads shown
in Table II under different on-demand request accuracies in
Figure 6 (Theta) and Figure 7 (Cori). In this subsection, we
make several interesting observations on overall performance.
In the next subsection, we will analyze the impact of advance
notice accuracies using these figures.

TABLE II: Distribution of on-demand jobs of different work-
loads. Take W1 as an example: 70% of on-demand jobs arrive
without advance notice; 10% of on-demand jobs arrive with
accurate advance notice; 10% of on-demand jobs arrive early;
the rest 10% of on-demand jobs arrive late.

No Notice Accurate Notice Arrive Early Arrive Late
W1 70% 10% 10% 10%
W2 10% 70% 10% 10%
W3 10% 10% 70% 10%
W4 10% 10% 10% 70%
W5 25% 25% 25% 25%

Observation 1. Compared with FCFS/EASY, the proposed
methods boost system utilization and on-demand jobs’ instant
start ratio, while slightly increasing average job turnaround
time.

The proposed methods improve system utilization by more
than 5% on both systems. The on-demand jobs’ instant start
ratio dramatically increases from 22% to 98% on Theta and
from 19% to 99% on Cori. The average jobs turnaround time
slightly increases from 15 to 22 hours on Theta and from 2
to 2.5 hours on Cori, due to job preemption and shrink.

Observation 2. N&PAA has the worst overall performance.
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Fig. 6: Scheduling performance on Theta under different advance notice accuracies (shown in Table II). To show the performance
under various situations, we repeat the experiment on ten randomly generated traces and the results in this section are averaged.
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Fig. 7: Scheduling performance on Cori under different advance notice accuracies (shown in Table II).

TABLE III: Baseline performance. Baseline algorithm is
FCFS/EASY backfilling without special treatments on on-
demand, rigid, and malleable jobs.

Avg. Turnaround System Utilization On-demand Jobs’ Instant Start Ratio
Theta 15.6 hours 83.93% 22.69%
Cori 1.97 hours 80.27% 18.94%

N&PAA obtains the worst results on average job turnaround
time and system utilization. Additionally, its malleable jobs’
preemption ratio is noticeably higher than other mechanisms.
The long average job turnaround time is caused by job star-
vation. Here, starvation means that jobs were preempted, but
could not resume for a long period of time after preemption.
Although on-demand jobs return their leased nodes to the
lenders, the lenders might not resume immediately, because
those on-demand jobs might need a portion of the preempted
nodes and the rest are moved to the common resource pool.
When the on-demand job is finished, the preempted job can
only reclaim the nodes from the on-demand job and it has to
wait until more nodes are available.

Observation 3. To achieve higher system utilization and lower
malleable jobs’ preemption ratio, SPAA is preferred over PAA.

All three SPAA methods largely reduce malleable jobs’

preemption ratio, while slightly increasing the rigid jobs’
preemption ratio. This is because SPAA attempts to find
shrink options, which reduces malleable jobs’ preemption
ratio. Shrink, in general, has lower overhead and leads to
fewer wasted computation cycles and therefore higher system
utilization.

Observation 4. To obtain lower average job turnaround time
and lower rigid jobs’ preemption ratio, PAA methods are
recommended than SPAA methods, except N&PAA method.

SPAA methods tend to prolong average job turnaround
time, especially malleable jobs, because it reduces all running
malleable jobs’ sizes and prolongs their execution time. On the
other hand, PAA affects fewer running jobs and the preempted
jobs might resume when the on-demand job finishes. However,
N&PAA is an exception. This is because CUA and CUP
prepare some nodes for on-demand jobs before their arrival
and PAA only needs to preempt small-sized running jobs upon
on-demand job arrival. On the other hand, N&PAA is more
likely to preempt large-sized running jobs, which are more
difficult to reclaim their preempted nodes.

It is interesting to notice that PAA methods lead to slightly
lower rigid jobs’ preemption ratio than SPAA methods. Since



SPAA methods first try to shrink malleable jobs, the job
sizes of running jobs are, on average, smaller than that of
PAA methods. When the shrink option is not possible, SPAA
methods need to preempt more running jobs, which causes
slight increases in the rigid jobs’ preemption ratio.

Observation 5. CUA methods, in most cases, perform better
than CUP methods.

CUA methods achieve slightly lower average job turnaround
time and slightly higher system utilization in most cases. CUA
methods passively collect released nodes, while CUP methods
proactively preempt some running jobs before on-demand job
arrival. Therefore, CUA methods trigger fewer preemptions,
leading to less resource waste and higher system utilization.

Observation 6. CUA&PAA, CUA&SPAA, CUP&PAA, and
CUP&SPAA encourage users to honestly declare their mal-
leable jobs.

Compared to rigid jobs, malleable jobs’ turnaround time of
these four methods is noticeably lower on Theta and slightly
lower on Cori. For SPAA methods, although malleable jobs
might need to shrink their sizes upon arrival of on-demand
jobs, they are guaranteed to expand to their original sizes
by reclaiming their released nodes when the on-demand job
finishes. The malleability feature increases the chances of
malleable jobs being chosen to execute, leading to lower
average turnaround time compared to rigid jobs. The better
job performance on malleable jobs discourages users from
declaring malleable jobs as rigid jobs.

Observation 7. N&SPAA method is a good option when rigid
jobs need to achieve low average turnaround time.

N&SPAA achieves the lowest rigid jobs’ average turnaround
time among the six methods. More importantly, rigid jobs yield
similar or even lower average turnaround time compared to
malleable jobs. When an on-demand job arrives, N&SPAA
method first attempts to find shrink options. If there are viable
shrink options, the selected malleable jobs will be shrunk
and prolonged, while running rigid jobs are not impacted.
Upon on-demand job arrival, N&SPAA requests more nodes
than CUA&SPAA and CUP&SPAA. Therefore, N&SPAA has
more noticeable adverse effects on malleable jobs than the
other SPAA methods. Although N&SPAA does not provide
strong incentives for malleable jobs, it is a good option for
system administrators when rigid jobs have higher priority than
malleable jobs.

Observation 8. Malleable jobs’ preemption ratio is noticeably
higher than rigid jobs’ preemption ratio.

This is due to the fact that the preemption overheads of
malleable jobs are lower than rigid jobs. In order to minimize
wasted computation cycles caused by preemption, the running
jobs are preempted in ascending order of their preemption
overheads. Malleable jobs only waste their setup times. On
the other hand, rigid jobs not only waste their setup times
but also lose the computation after the latest checkpoints.

It is interesting to notice that despite the higher preemption
ratio, malleable jobs achieve lower average turnaround times
because they are more likely to run by shrinking their sizes.

Observation 9. All methods achieve extremely high on-
demand jobs’ instant start ratio.

On-demand jobs represent 3%-15% of total capacity. On
average, more than 98% of on-demand jobs start instantly.
There is no significant difference in on-demand jobs’ instant
start ratio between the different methods. On-demand jobs
fail to start immediately because the nodes used by running
on-demand jobs plus this on-demand job exceed the system
capacity. This metric is related to the on-demand jobs’ submis-
sion pattern. Bursty on-demand job submission pattern could
negatively affect their instant start ratio.

Observation 10. Preemption has greater impact on workloads
with large-sized jobs (e.g., Theta).

Compared with FCFS/EASY, our proposed methods in-
crease the average turnaround time by 30% on Theta work-
loads and 17% on Cori workloads. The main difference
between Theta and Cori workloads is that the majority of Cori
jobs are single-node jobs, while the most of Theta jobs are
large-sized jobs. Small-sized jobs, especially single-node jobs,
are more likely to resume after preemption and therefore have
less impact on their turnaround times. On the other hand, large
jobs tend to starve after preemption causing long turnaround
times. On Theta, N&PAA tends to preempt large-sized jobs
upon on-demand job arrival, which leads to extremely longer
average turnaround time than other methods.

B. Impact of Accuracy of Advance Notice
Observation 11. The performance of CUP methods highly
relies on accuracy of advance notice. The more accurate
advance notice, the better performance.

CUP&PAA and CUP&SPAA methods achieve their best
performance on W2, i.e., the workloads with the highest
percentage of on-demand jobs with accurate advance notice.
The accurate advance notice reduces the preemption ratio on
both rigid and malleable jobs and therefore reduces wasted
cycles and improves system utilization. The accurate advance
notice also reduces average job turnaround time due to fewer
interruptions during execution.

Observation 12. The earlier the advance notice, the better
the performance of CUA methods.

CUA methods obtain the lowest average job turnaround time
on W4, i.e., the workloads with the majority of on-demand
jobs arrived late. W4 provides a longer period of time between
advance notice and job actual arrival. As a result, CUA
methods are more likely to collect nodes before the actual
arrival of on-demand jobs, and thus decrease the chances of
preempting or shrinking running jobs upon arrival of the on-
demand jobs. In addition, by preparing more nodes for on-
demand jobs before their arrival, it also slightly improves on-
demand jobs’ instant start ratio.
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Fig. 8: Impact of rigid jobs’ checkpointing frequency and failures on scheduling performance on Theta. For each metric, the left
subfigure presents the results on the failure rate of MTBF = 5h and the right subfigure presents the results on MTBF = 50h.
For each subfigure, the x-axis presents the checkpoint interval relative to the optimum checkpoint interval. For example, 50%
means rigid jobs make checkpoints twice as frequent as the optimum checkpoint frequency.

C. Impact of Checkpointing Frequency

Checkpointing is a technique providing fault tolerance for
HPC systems. Different checkpointing frequencies not only
impact the performance of hybrid workload scheduling, but
also affect system’s fault tolerance capability. In order to
comprehensively evaluate the impact of checkpoints, we inject
failures and conduct sensitive study on failures in this subsec-
tion. Mean time between failures (MTBF) and mean time to
repair (MTTR) are two widely used metrics to describe HPC
failures. MTBF measures the average time between failures,
while MTTR is the average time to repair a failure on a
HPC system. Based on the literature [43]–[45], production
HPC systems’ MTBF is typically between 5 and 50 hours
and MTTR is approximately 6 hours. We conduct two sets
of experiments with two levels of MTBF, i.e., 5 hours and
50 hours. Take MTBF = 5h for example: node failures are
randomly injected to simulated systems at the average rate of
5 hours per failure. After a failure, a node will be down for a
period of time Td to simulate the repair time. Td is a randomly
generated number with the mean time of 6 hours. The job
running on failed node needs to either resume from the latest
checkpoint or restart from the beginning if no checkpoint had
been made. Figure 8 presents the scheduling results on Theta
under different checkpointing frequencies and MTBF. Cori
results lead to similar observations. Due to space limitation,
we only present Theta results in the rest of this section.

Observation 13. To achieve better rigid job performance
and system performance, we suggest that rigid jobs take
more frequent checkpoints than the optimum checkpointing
frequency.

All methods benefit from the more frequent checkpoint-
ing frequency. More frequent checkpoints can reduce rigid
jobs’ turnaround time and also improve system utilization.

Daly’s optimum checkpointing frequency is designed for fault
tolerance [38]. However, the interruptions caused by failures
are obviously much less frequent than the preemption caused
by draining nodes for on-demand jobs. Therefore, increasing
checkpointing frequency reduces rigid jobs’ lost computation
and thus reduces their turnaround time. This also helps im-
prove system utilization by reducing preemption overheads.

Observation 14. Failures have negative impact on system
utilization, on-demand jobs instant start ratio, jobs preemption
ratio and rigid jobs average turnaround time. More frequent
checkpoints can mitigate negative effects on rigid jobs.

When reducing MTBF from 50 to 5 hours, we observe
increases in rigid jobs’ average turnaround time and jobs
preemption ratio. We also observe decreases in on-demand
jobs’ instant start ratio and system utilization. Failures on
running rigid or malleable jobs cause higher preemption ratio,
while failures on running on-demand jobs lead to lower
instant start ratio. More job preemptions also lead to higher
preemption overheads and thus lower system utilization. When
nodes running rigid or on-demand jobs fail, these jobs cannot
reduce their sizes by using the remaining functional nodes
leading to prolonged turnaround times. More frequent check-
points can mitigate the negative effects on rigid jobs’ average
turnaround time, because the failed rigid jobs need to do less
re-computation.

D. Impact of Malleable Job Sizes

Figure 9 presents the scheduling results on Theta under
different malleable job size ranges.

Observation 15. Reducing the job size range of malleable
jobs has adverse effects on both system-level and user-level
scheduling performance, especially on SPAA methods.
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Fig. 9: Impact of malleable job sizes on scheduling performance on Theta. 20% means malleable job’s minimum size is twenty
percent of its maximum size. The larger the minimum size is, the less flexible the malleable job is.
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Fig. 10: Impact of rigid jobs’ setup overheads on scheduling performance on Theta. 0%-5% means rigid job’s overhead is
randomly chosen between 0% to 5% of its runtime.

The increases in the minimum malleable job sizes reduce
the malleable jobs’ size range, causing decreased chances of
shrinking malleable jobs. Therefore, it increases the preemp-
tion ratio of both malleable and rigid jobs, which leads to
slight decreases in system utilization. The changes in minimum
malleable job sizes have a greater impact on SPAA methods,
because SPAA cannot shrink malleable jobs to smaller sizes
for on-demand jobs.

E. Impact of Setup Overheads

Figure 10 presents the scheduling results on Theta under
different rigid jobs’ setup overheads.

Observation 16. The lower the setup overhead is, the better
the scheduling performance is.

When a preempted job resumes, it takes some time to set
up. Therefore, the higher setup overhead means the higher pre-

emption overhead and thus the higher average job turnaround
time. Additionally, higher setup overhead decreases system
utilization by wasting more computation cycles for setup.

Observation 17. If rigid jobs’ setup overheads reduce to the
amount which is similar to malleable jobs’ setup overhead,
the rigid jobs’ preemption ratio will largely increase.

In our experiments, malleable jobs’ setup overhead is set to
0%-5%. If rigid jobs’ setup overhead is reduced to 0%-5%,
we notice the obvious increases in rigid jobs’ preemption ratio
and decreases in malleable jobs’ preemption ratio, especially
on PAA methods. This is because we order running jobs
based on their preemption overheads. If we preempt rigid jobs
immediately after their checkpoints, their preemption overhead
is similar to the overhead of preempting malleable jobs. As a
result, rigid jobs’ preemption ratio is increased.



VI. CONCLUSION

In this paper, we have defined and modeled HPC hybrid
workload scheduling problem on a single HPC system. We
have proposed six mechanisms to reconcile the demands
from on-demand, rigid, and malleable applications. We have
thoroughly evaluated our mechanisms based on two production
HPC system traces. By exploring how different mechanisms
behave under various configurations and workloads, we have
found that it is feasible to accommodate rigid, malleable, and
on-demand jobs on a single HPC system via co-scheduling
mechanisms. Additionally, we have provided several key in-
sights on the mechanisms. In particular, these mechanisms sig-
nificantly improve system utilization. In terms of on-demand
jobs, the mechanisms boost their instant start ratio. Users wait
less time by declaring their jobs as malleable jobs. Although
preemptions slightly increase rigid jobs’ turnaround time, more
frequent checkpoints can mitigate the negative impact due to
lower preemption overhead. To the best of our knowledge, this
co-scheduling study is the first of its kind. We believe that our
findings will be useful in understanding the trade-offs of co-
scheduling these three types of jobs under various situations.

ACKNOWLEDGMENT

This work is supported in part by US National Science
Foundation grants CCF-2109316, CNS-1717763, and CCF-
2119294 and U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357. Job logs from the Cori
system were provided by the National Energy Research Sci-
entific Computing Center operated under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] Aurora. https://www.alcf.anl.gov/aurora/.
[2] Summit. https://www.olcf.ornl.gov/summit/.
[3] M. Jette, A. Yoo, and M. Grondona. SLURM: Simple Linux Utility for

Resource Management. In JSSPP, 2003.
[4] Moab. http://www.adaptivecomputing.com/ products/hpc-

products/moab-hpc-basic-edition/.
[5] PBS Professional. http://www.pbsworks.com/.
[6] Cobalt. https://www.alcf.anl.gov/cobalt-scheduler.
[7] F. Liu, K. Keahey, P. Riteau, and J. Weissman. Dynamically Negotiating

Capacity between On-Demand and Batch Clusters. SC, 2018.
[8] A. Maurya, B. Nicolae, I. Guliani, and M. Rafique. CoSim: A Simulator

for Co-Scheduling of Batch and On-Demand Jobs in HPC Datacenters.
In DS-RT, 2020.

[9] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh. Spruce: A
system for supporting urgent high-performance computing. International
Federation for Information Processing, 2007.

[10] M. Agung, Y. Watanabe, H. Weber, R. Egawa, and H. Takizawa.
Preemptive parallel job scheduling for heterogeneous systems supporting
urgent computing. IEEE Access, 2021.

[11] S. H. Leong and D. Kranzlmuller. A case study - cost of preemption
for urgent computing on supermuc. In HiPC, 2015.

[12] P. Lemarinier, K. Hasanov, S. Venugopal, and K. Katrinis. Architecting
malleable mpi applications for priority-driven adaptive scheduling. Proc.
of the European MPI Users’ Group Meeting, 2016.

[13] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
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