
J Supercomput (2017) 73:1691–1714
DOI 10.1007/s11227-016-1876-7

Topology mapping of irregular parallel applications
on torus-connected supercomputers

Jingjin Wu1 · Xuanxing Xiong2 ·
Eduardo Berrocal3 · Jia Wang4 · Zhiling Lan3

Published online: 26 October 2016
© Springer Science+Business Media New York 2016

Abstract Supercomputers with ever increasing computing power are being built for
scientific applications. As the system size scales up, so does the size of intercon-
nect network. As a result, communication in supercomputers becomes increasingly
expensive due to the long distance between nodes and network contention. Topology
mapping, which maps parallel application processes onto compute nodes by consider-
ing network topology and application communication pattern, is an essential technique
for communication optimization. In this paper, we study the topology mapping prob-
lem for torus-connected supercomputers, and present an analytical topology mapping
algorithm for parallel applications with irregular communication patterns. We con-
sider our problem as a discrete optimization problem in the geometric domain of a

B Jingjin Wu
jwu45@uestc.edu.cn

Xuanxing Xiong
xxiong@synopsys.com

Eduardo Berrocal
eberroca@hawk.iit.edu

Jia Wang
jwang@ece.iit.edu

Zhiling Lan
lan@iit.edu

1 School of Computer Science and Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China

2 Design Group, Synopsys, Inc., Mountain View, CA 94043, USA

3 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA

4 Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago,
IL 60616, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1876-7&domain=pdf
http://orcid.org/0000-0002-9615-4260

1692 J. Wu et al.

torus topology, and design an analytical mapping algorithm, which uses numerical
solvers to compute the mapping. Experimental results show that our algorithm pro-
vides high-quality mappings on 3-dimensional torus, which significantly reduce the
communication time by up to 72%.

Keywords High-performance computing · Topology mapping · Communication
optimization · Torus network · Analytical algorithm

1 Introduction

Large-scale scientific computing is vital for the advances in science and engineering,
and typical applications range from quantum physics, material science, and geo-
physics, to astrophysics, cosmology, and many others. High-performance computing
systems (i.e., supercomputers) with ever increasing computing power are being built
to fulfill the demands of large-scale and complex scientific applications. As the sys-
tem size scales up, better computing performance is achieved by using more compute
nodes with multiple processing cores. Nevertheless, it is observed that the scaling of
communication time usually degrades the overall scalability of many applications,
thus becoming the performance bottleneck.

This phenomenon is basically due to the fact that the communication becomes
increasingly expensive as the interconnection network becomes larger and more com-
plex. The network diameter (i.e., the maximum distance between two nodes) keeps
increasing, while the bisection bandwidth (i.e., the minimum total bandwidth between
two equal parts of the supercomputer) relative to the number of nodes often decreases.
As a result, the message latency is largely dependent on the distance between nodes
and the congestion in the network.

The communication bottleneck problem has beenwell studied, and it is hard to scale
dense communication patterns (e.g., all-to-all communications where each process
communicates with all the other processes) beyond petascale systems. Fortunately,
many scientific applications have sparse communication patterns with significant
locality, e.g., the cells in a 3D Cartesian grid only communicate with adjacent cells.
However, the actual traffic in the network may have no locality if an inappropriate
mapping of processes onto nodes is used, resulting in high communication cost.

Given the network topology of the machine and the communication pattern of the
application, finding a proper mapping of application processes onto physical nodes for
reducing communication time is called topology-aware task mapping [3], or simply
topology mapping [21]. Typically, the heavily communicating processes need to be
mapped onto neighboring nodes so that the traffic is localized and the congestion in
the network can be reduced.

According to the characteristics of inter-process communication, parallel applica-
tions can be divided into two categories: those with regular communication patterns,
and those with irregular communication patterns. A regular pattern typically means
that each process has the same number of communicating neighbors except for the
boundary processes, e.g., 2D/3D mesh patterns are regular. Patterns without such
property are considered to be irregular.

123

Topology mapping of irregular parallel applications on... 1693

Torus-based networks [2,35] are commonly used in high-end supercomputers
because of their linear scaling on per-node cost and their competitive communica-
tion performance [34]. For supercomputers with torus network topology, the research
has been focused on mapping applications with regular 2D/3D mesh communica-
tion patterns [9,10,18,42], while the mapping of irregular communication patterns
is less studied. In this paper, we explore the analytical placement technique [36,37]
used by VLSI (very large-scale integration) physical design for topology mapping,
and present an analytical topology mapping algorithm for parallel applications with
irregular communication patterns on torus-connected supercomputers.

Our analytical topology mapping algorithm applies a two-stage strategy, namely
global mapping and legalization, to determine an appropriate mapping of application
processes onto physical nodes with minimal network traffic. In the global mapping
stage, we approximate the topology mapping problem, which is discrete, by a contin-
uous optimization problem that can be solved via analytical methods. This continuous
optimization problem minimizes a measure of the total amount of traffic in the net-
work, while at the same time establishing an almost-legal mapping of processes onto
nodes. In the legalization stage, we derive a legal mapping from the almost-legal one
via a novel migration algorithm. This algorithm minimizes the perturbation to the
outcome of the global mapping stage in order to reduce the impact to network traffic.
Both stages heavily depend on unconstrained quadratic programming whose optimal
solution can be obtained by solving linear systems.

We evaluate our mapping algorithm on the 40-rack Blue Gene/P system at Argonne
National Laboratory by using real-world applications with irregular communication
patterns. Results show that our algorithm provides high-quality mappings on 3D torus,
which significantly improves the communication performance. In particular, it sig-
nificantly reduces the network traffic by up to 83%, achieving communication time
reduction by up to 72%.

The rest of this paper is organized as follows. Section 2 introduces the background
of topology mapping. Section 3 proposes the analytical mapping algorithm. After
experimental results are shown in Sect. 4, we present concluding remarks in Sect. 5.

2 Background

2.1 Torus network topologies

An n-dimensional mesh network connects compute nodes into amesh structure, where
each node is directly connected with two other nodes in each physical dimension. An
n-dimensional torus network is a mesh with additional links to connect the pair of
nodes at the end of each physical dimension, so that the network diameter can be
reduced by half. It is often designed to be reconfigurable to offer more scalability
[5,6,8].

In practice, n-dimensional (n ≥ 3) torus (see Fig. 1) is commonly used in super-
computers, including the IBMBlue Gene family and the Cray XT family. The network
diameter can be a few dozens of hops. As studied in [9], for small and medium-sized
messages, themessage latency is dependent on the distance in hops.More importantly,

123

1694 J. Wu et al.

Fig. 1 A 3D torus network.
Note that only three
wrap-around links are shown for
clarity of presentation. This
figure is obtained from [35]

[9] also shows that the congestion in the network can increase message latencies sig-
nificantly. For better communication performance, it is a must to explore efficient
topology-aware mapping techniques to find proper mapping of processes onto nodes.

2.2 The topology mapping problem

For topology-aware mapping, the communication pattern of the application is rep-
resented as a communication graph. The network topology of the target computing
platform is represented as a topology graph. In this work, we use an undirected com-
munication graph Gc(Vc, Ec) to model the communication pattern of the application.
Each vertex in Vc represents a process, and each edge (i, j) in Ec has a weight ci, j ,
which denotes the total amount of communication (in bytes) between processes i and
j . In the topology graph Gt (Vt , Et), a vertex in Vt often denotes a compute node, and
each edge in Et denotes a direct link.

The mapping of processes onto nodes is specified by a labeling φ : Vc → Vt .
The quality of mapping can be measured by hop-bytes [9], which is the total amount
of inter-node communication (in bytes) weighted by the distance (in hops) between
nodes. Let d(φi , φ j) be the distance, which is usually measured by the length of the
shortest path (in hops) between φi and φ j in the topology graph Gt (Vt , Et). Then the
hop-bytes of a mapping φ can be computed as

hop-bytes(φ) �
∑

∀(i, j)∈Ec

ci, j d(φi , φ j). (1)

It represents the total amount of traffic in the interconnection network.
Congestion [21] is another important metric of mapping quality. The congestion

on a link is defined as the total amount of messages (in bytes) transmitted on that link
divided by the link capacity (i.e., bandwidth). The overall congestion of a mapping is
themaximumcongestion among all links, and it is a lower bound of the communication
time. As there may be multiple shortest paths between two nodes, and supercomputers
often use dynamic routing, it is often difficult to compute the congestion determinis-
tically. Hence, the congestion metric is mainly of theoretical interest.

123

Topology mapping of irregular parallel applications on... 1695

The mapping problem is often defined as finding a proper mapping that minimizes
the communication cost. As studied in [21], finding the optimal mapping has been
proven to be NP-hard.

2.3 Related works

A variety of algorithms have been proposed to map parallel application processes onto
different topologies. These algorithms typically fall under the categories of physical
optimization techniques and heuristic approaches. Specifically, physical optimization
techniques include simulated annealing [26], genetic algorithms [15], graph contrac-
tion [7], and particle swarm optimization [31]. Although these optimization algorithms
could provide good mapping quality, they take a long runtime to derive the mapping,
and hence are not suitable for online topology mapping. In contrast, many heuristic
approaches can better exploit the structure of the network topology and the commu-
nication pattern, thus being more efficient for practical use.

Graph embedding schemes were exploited to map processes onto nodes for 3D
mesh and torus topologies in [42], and have been employed for scalable support ofMPI
topology functions in an IBM Blue Gene/L MPI library. Several mapping algorithms
for regular 2D and 3D topologies were studied in [9].MPI benchmarkswere developed
to evaluate the message latency in order to quantify the effects of network congestion,
and geometric approaches were exploited to map regular 2D and 3D communication
graphs effectively.

A recursive bipartitioning algorithm was proposed in [19] to map processes onto a
hypercube topology. Each process’s node assignment is gradually determined through
partitioning the communication graph at each level. This technique was extended
to handle general topologies in [29], where both the communication graph and the
topology graph are bipartitioned recursively to derive the mapping of processes onto
nodes.

In [11], the topology mapping problem was reduced to the graph isomorphism
problem, and a heuristic algorithm based on sequences of pairwise interchanges and
probabilistic jumps was proposed to solve practical mapping problems on a specific
array processor. Another greedy heuristic for topologymappingwas proposed in [3]. It
uses estimation functions to evaluate the effects of mapping decisions. Several generic
mapping techniques were studied in [21], including a graph similarity approach using
the reverse Cuthill–McKee (RCM) ordering, a greedy heuristic, and a recursive bipar-
titioning algorithm. These have been implemented in the topology mapping library
LibTopoMap [27], which was successfully tested on supercomputers with torus, fat-
tree, and PERCS networks.

The TreeMatch algorithm [24] was proposed for topology mapping on multicore
clusters, where the hardware topology of the computing platform (including the cache
hierarchy) is modeled by a tree. For systems with a hierarchical communication archi-
tecture, e.g., clusters of SMP nodes, graph partitioning was exploited for finding an
appropriate mapping in [33]. A hierarchical approach, which performs both inter-node
mapping and intra-node mapping, was introduced in [40], and further improved and
generalized in [41].

123

1696 J. Wu et al.

A topology mapping tool Rubik was developed for generating mappings of struc-
tured communication patterns onto torus topologies in [10], and it enabled the
evaluation of different mappings, but it cannot optimize the mapping. Geometric par-
titioning was utilized for topology mapping on supercomputers with torus network
topology in [18]. Both the tasks and compute nodes are partitioned by a geometric
partitioning algorithm, so it can only be used for structured communication patterns.

In summary, themappingof regular communication patterns onto regular topologies
can be solved by graph embedding techniques and geometric approaches; the mapping
of irregular communication patterns can be tackled by generic mapping technique. For
mapping irregular communication patterns onto regular mesh/torus topologies [35],
generic mapping strategies (e.g., [21,27]) are popular choices. However, they do not
exploit the regular structure of mesh/torus, and the resulting mapping quality may
not be satisfactory as shown by the results in Sect. 4. In this work, we present a new
mapping algorithm which exploits the special feature of the mesh/torus topology for
the mapping of parallel applications with irregular communication patterns.

3 Analytical mapping

This section presents the proposed analytical topologymapping algorithm formapping
irregular communication patterns onto 3D mesh/torus network topologies.

3.1 Preliminary

The topology mapping problem in the HPC domain is very similar to the VLSI place-
ment problem in the electronic design automation (EDA) domain as illustrated in
Table 1. The latter places VLSI circuits consisting of up to millions of logic gates onto
a rectangular layout region, so as to achieve high performance with low cost. Total
wire length (similar to hop-bytes) is the typical evaluation metric, and recent studies
also consider timing-driven placement and routability-driven placement.

The research on both problems has resulted in similar solutions. In particular, the
analytical placement technique [36,37] based on quadratic programming has been

Table 1 The relations between topology mapping and VLSI placement [36,37]

Topology mapping VLSI placement

Guest object Parallel application processes
modeled by a communication graph

Rectangular circuit blocks
connected by wires

Host object Computing system with specific
topology modeled by a topology
graph, e.g., 3D torus

Rectangular placement region

Optimization objective The total amount of traffic in the
network, i.e., hop-bytes

The total wirelength, i.e.,
half-perimeter wirelength

Other metrics Average hops, dilation,
congestion

Average wirelength, timing,
routability

123

Topology mapping of irregular parallel applications on... 1697

developed. It outperforms previous approaches in both runtime and solution quality,
thus being widely used in commercial placement tools.

Inspired by the analytical placement technique [36,37] forVLSI design,we propose
an analytical mapping algorithm for solving the topology mapping problem. Different
from the VLSI placement problem, which maps circuit blocks onto a 2D placement
region, we consider mapping processes onto compute nodes in 3D mesh/torus topolo-
gies. It is to be noted that the compute nodes are located at discrete positions, and
each node is typically assigned equal number of processes. For ease of presentation,
we consider mapping one application process per compute node in the following
subsections. In order to map multiple processes onto a multicore compute node, the
proposed analytical topology mapping algorithm can be applied after processes are
properly partitioned into groups.

3.2 Algorithm overview

Since the solution space of the possible mappings is discrete and has a tremendous size
when there are large numbers of processes and nodes, it is very challenging to obtain
a proper φ to minimize hop-bytes as defined in Eq. (1). We propose to overcome such
difficulty by a two-stage analytical topology mapping algorithm.

In the first stage named global mapping, we formulate and solve a continuous
optimization problem that approximates the topology mapping problem. The decision
variables are denoted by a labeling Φ : Vc → R3 that maps processes to points in the
space R3. Clearly, the solution space of Φ is continuous. For each compute node in
the 3D mesh/torus, we map it to an integral point in the same space representing its
position in the network. Then, if we assume that a process will be mapped to a node if
the distance between them inR3 is small, we can approximate the hops between a pair
of processes i and j by a function of the distance between them.While different choices
of the function and the distance may lead to different objectives to be minimized, we
choose to use the square of theL2 norm distance, i.e., (Φi −Φ j)

T (Φi −Φ j), such that
the objective function of the continuous optimization problem is quadratic, and it can
be solved by efficient quadratic programming techniques [12]. Moreover, using the
square of the L2 norm distance as the objective function can help to better distribute
the communication traffic among all the dimensions, thus reducing congestion. For
example, we prefer to place a pair of communicating processes at nodal coordinates
(0, 0, 0) and (1, 1, 1), rather than (0, 0, 0) and (3, 0, 0), because the former has smaller
L2 norm distance than the latter, despite their identical hop distances.

In the second stage named legalization,φ is obtained fromΦ by “moving” processes
to nodes. Intuitively, the movements should only happen between nearby processes
and nodes in order to minimize the perturbation to the outcome of global mapping—
otherwise, hop-bytes as approximated by its objective function may be degraded.
However, such movements are not always possible when multiple processes are close
to a single node. To avoid such situation, we impose a constraint on the continuous
optimization problem in the global mapping stage requiring Φ to be almost-legal. In
other words, we require the processes to be distributed evenly with respect to the nodes

123

1698 J. Wu et al.

Fig. 2 The analytical topology
mapping algorithm

Analytical Topology Mapping Algorithm
Stage 1: Global Mapping
1 Repeat
2 Perform global optimization to obtain Φ
3 Terminate if Φ is almost-legal
4 Compute process shifting
5 Compute spreading forces
Stage 2: Legalization
6 Perform diffusion-like migration to obtain φ

inR3. Then, in the legalization stage, a novel migration algorithm designed by us will
be able to derive φ from the almost-legalΦ without degrading hop-bytes considerably.

The outline of our analytical topology mapping algorithm is shown in Fig. 2. The
continuous optimization problem formulated in the global mapping stage is solved
as a sequence of unconstrained quadratic optimization problems that gradually make
Φ almost-legal by adding penalty terms to the objective function that approximates
hop-bytes. In each iteration, we perform global optimization to solve for Φ, and then
terminate the stage if it is almost-legal. Otherwise, we compute process shifting as
the gradient of the uneven distribution of Φ and then compute spreading forces as the
penalty terms to the objective function that lead to more even distribution in the next
iteration. A diffusion-like migration algorithm is employed in the legalization stage
to minimize the movements of processes. More details of each step are discussed in
the following subsections.

3.3 Global mapping

As mentioned above, in the global mapping stage, we solve a continuous optimization
problem with an objective function that approximates hop-bytes as follows.1

W (Φ) �
∑

∀(i, j)∈Ec

ci, j (Φi − Φ j)
T (Φi − Φ j). (2)

We propose to heuristically determine the proper mapping of some processes to the
eight corner nodes of 3D torus topology (detailed in Sect. 3.6). These processes will
be fixed during the global mapping stage, and their coordinates will not be considered
as decision variables.

To define the constraint that requires Φ to be almost-legal, we divide the portion of
R3 that contains the nodes in the 3D mesh/torus into cubic bins, each holding a node
at its center. For an X × Y × Z topology, we first map the nodes to the integral points
(i, j, k) for i = 0, 1, . . . , X − 1, j = 0, 1, . . . ,Y − 1, and k = 0, 1, . . . , Z − 1. Then,
the cubic bin for the node (i, j, k) is chosen as

1 The physical meaning of Eq. (2) is introduced below. The communication graph of the application is
modeled as a spring system, where each edge (i, j) ∈ Ec is represented as a spring with corresponding
spring constant being c(i, j). The total energy of the springs is a quadratic function of their lengths. A
mapping solution is obtained by minimizing the total energy to find a force equilibrium state.

123

Topology mapping of irregular parallel applications on... 1699

(a) (b)

Fig. 3 An example of analytical mapping onto a 3 × 3 mesh/torus topology. c1 to c5 are the weights
associated with the communications with fixed or “fake” processes that move the process to be mapped

{
(x, y, z)|x ∈

[
i − 1

2
, i + 1

2

]
, y ∈

[
j − 1

2
, j + 1

2

]
, z ∈

[
k − 1

2
, k + 1

2

]}
,

and the boundary for Φ is chosen as

{
(x, y, z)|x ∈

[
−1

2
, X − 1

2

]
, y ∈

[
−1

2
,Y − 1

2

]
, z ∈

[
−1

2
, Z − 1

2

]}
.

We define Φ to be almost-legal iff all processes are within the aforementioned
boundary and each bin contains at most γ processes.

However, it remains difficult to minimize W (Φ) while requiring Φ to be almost-
legal.With the observation thatW (Φ) is a quadratic function of the decision variables,
it is proposed in [36,37] that such continuous optimization problem can be approx-
imated using unconstrained quadratic programming by employing penalty terms in
addition to the original objective function. These penalty terms can be modeled as
a set of “fake” processes V f on the boundary that utilize “fake” communications
E f ⊆ Vc × V f with associated weights to ensure Φ to be almost-legal. An example
demonstrating how such “fake” processes may be utilized to move another process in
order to modify Φ is shown in Fig. 3.

Nevertheless, since these penalty terms may interfere with the minimization of W ,
they should be introduced gradually. Starting with V f = ∅, we will solve a sequence
of unconstrained quadratic programming problems where in each iteration V f and E f

will be updated based on the current solution so that an almost-legal Φ can eventually
be obtained. Details follow.

123

1700 J. Wu et al.

3.3.1 Global optimization

Global optimization is the step in one global mapping iteration that utilizes uncon-
strained quadratic programming techniques to compute Φ with respect to the original
objective function and the penalty terms. It is similar to the global optimization step
of the analytical placement technique [36,37].

For ease of presentation, we extend Φ to Vc ∪ V f such that for any i ∈ Vc ∪ V f ,
Φi = (xi , yi , zi)T is the coordinate of process or “fake” process i . Then, global
optimization (i.e., Eq. 2) can be transformed into the following problem:

Minimize W f (Φ) �
∑

∀(i, j)∈Ec∪E f

ci, j (Φi − Φ j)
T (Φi − Φ j)

=
∑

∀(i, j)∈Ec∪E f

ci, j
[
(xi − x j)

2 + (yi − y j)
2 + (zi − z j)

2
]
. (3)

Let n be the number of processes in Vc whose coordinates are not fixed and
denote them by 1, 2, . . . , n without loss of generality. We may reorganize the deci-
sion variables as three vectors x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T and
z = (z1, z2, . . . , zn)T . Then, Eq. (3) can be written in matrix form as

W f (Φ) = (
xT Qx + 2dTx x

) + (
yT Qy + 2dTy y

)

+(
zT Qz + 2dTz z

) + constant, (4)

where Q is an n×n symmetric positive definitematrix;dx ,dy , anddz are n×1 vectors.
Specifically, the diagonal elements of Q represent the total amount of communication
for the corresponding processes, i.e., qii = ∑

ci, j ,∀(i, j) ∈ Ec ∪ E f ; each off-
diagonal element of Q represents the communication between the respective process
pair, i.e., qi, j = −ci, j ,∀i 	= j ; dx , dy , and dz are introduced by the communication
with fixed/fake process, e.g., dx,i = −∑

ci, f x f ,∀ fixed/fake process f .
Since the objective function is separable into three independent parts as shown in

Eq. (4), the optimal solution can be obtained by solving the following three systems
of linear equations, each represents the sub-gradient of the objective function at one
dimension.

Qx + dx = 0, Qy + dy = 0, Qz + dz = 0. (5)

As Q is symmetric positive definite, Eq. (5) can be solved very efficiently by direct
solvers like Cholesky factorization [20], or iterative solvers like incomplete Cholesky-
conjugate gradient (ICCG) [20]. Furthermore, if all fixed processes are within the
boundary and all “fake” processes are on the boundary, the solution is guaranteed to
be within the boundary. Therefore, the only remaining concern for Φ to be almost-
legal is that some bins may contain more than γ processes, which will be addressed in
the following iterations by updating “fake” processes and communications via process
shifting and spreading forces in order to move processes out of heavily occupied bins.

123

Topology mapping of irregular parallel applications on... 1701

3.3.2 Process shifting

Process shifting is the step in one global mapping iteration that decides where the
processes in a heavily occupied bins should be moved to so that a more even process
distribution ofΦ can be obtained in the next iteration. However, since suchmovements
will definitely lead to an increase to W (Φ), it is desirable that certain properties of
the current global mapping solution Φ are preserved. Experiences in [36,37] suggest
that the relative ordering of processes in each dimension should be kept in order to
preserve the “optimality” of the current solution.

We first calculate the “workload” of each cubic bin as the number of the processes
inside it. If all workloads are at most γ , we terminate global mapping. Otherwise, we
decide the new coordinate of the processes for each dimension separately. Without
loss of generality, considering the x-dimension, we group the cubic bins into Y × Z
sets such that the bins in the same set are centered at the nodes with the same y-
and z-coordinate. For each bin set, we form a regular one-dimensional structure on the
interval

[− 1
2 , X − 1

2

]
with X segments, each having a length of 1 and representing a bin

in the set.Obviously, afterwemap the processes inside the bin set to the interval by their
x-coordinates, the number of the processes on each segment equals its workload. Then,
we resize the segments into unequal lengths according to their workloads such that the
segments with high workloads expand, and those with low workloads shrink. The new
x-coordinates of the processes are computed as if they are shifted proportionally as the
segments expand or shrink, which clearly keeps the relative ordering of the processes.
For details of the heuristic, the reader is referred to Sect. V of [37].

3.3.3 Spreading forces

While process shifting decides where the processes should be moved to, the penalty
terms that actually move the processes to achieve a more even distribution in the next
iteration are computed as spreading forces.

For each process i , we introduce a “fake” process f at (x f , y f , z f) on the boundary
and a communication link between i and f with the weight β to model the spreading
force. Let the new position of a process i after shifting be (x ′

i , y
′
i , z

′
i). If we assume all

other processes are not shifted, then bothW (Φ) andW f (Φ) can be treated as functions
of the position of i , denoted by Wi (xi , yi , zi) and Wi

f (xi , yi , zi). It is desirable that

(x ′
i , y

′
i , z

′
i) minimizes Wi

f (xi , yi , zi), and the gradient of Wi
f at (x ′

i , y
′
i , z

′
i) should be

0, i.e., (x f , y f , z f) and β should satisfy

0 = ∂Wi
f

∂xi

∣∣∣∣∣
xi=x ′

i

= ∂Wi

∂xi

∣∣∣∣
xi=x ′

i

+ β(x ′
i − x f),

0 = ∂Wi
f

∂yi

∣∣∣∣∣
yi=y′

i

= ∂Wi

∂yi

∣∣∣∣
yi=y′

i

+ β(y′
i − y f),

0 = ∂Wi
f

∂zi

∣∣∣∣∣
zi=z′i

= ∂Wi

∂zi

∣∣∣∣
zi=z′i

+ β(z′i − z f). (6)

123

1702 J. Wu et al.

If we define the resultant force of i to be the gradient of Wi at (x ′
i , y

′
i , z

′
i), i.e.,

(Fx , Fy, Fz) �
(

∂Wi

∂xi

∣∣∣∣
xi=x ′

i

,
∂Wi

∂yi

∣∣∣∣
yi=y′

i

,
∂Wi

∂zi

∣∣∣∣
zi=z′i

)
, (7)

then Eqs. (6) can be rearranged as

(Fx , Fy, Fz)
T + β

(
(x ′

i − x f), (y
′
i − y f), (z

′
i − z f)

)T = 0, (8)

which indicates that the spreading force on i due to the penalty terms should have the
same magnitude as the resultant force but opposite directions.

To actually solve Eq. (8), we first compute the resultant force from Eq. (7) and
decide the direction of the spreading force. Then, the position (x f , y f , z f) of the
“fake” process f is obtained at the intersection of the spreading force direction and
the boundary of the 3D domain. Finally, β is computed as

β =
√
F2
x + F2

y + F2
z

√
(x ′

i − x f)2 + (y′
i − y f)2 + (z′i − z f)2

. (9)

It is worth noting that the spreading forces do not accumulate over iterations. In each
iteration, new forces are added, while the previous forces are discarded. Therefore,
according to Sect. 3.3.1, the diagonal of matrix Q and the vectors dx , dy , dz need to
be updated to reflect the changes of the penalty terms for the next global optimization
iteration.

3.4 Legalization

The legalization stage derives a feasiblemappingbasedon the globalmapping solution.
Processes need to bemigrated from the overloaded compute nodes to the empty nodes.
However, a direct movement will break the relative ordering between nodes, leading to
degraded mapping quality. In order to maintain the relative distribution of processes in
the global mapping solution, we employ a diffusion-likemigration algorithm proposed
in [22] to minimize the process migration between nodes.

Let wi be the workload of compute node i , i.e., the number of processes on node i .
Let b be an n-dimensional vector, and its i th element bi � wi − 1 denotes the amount
of processes that need to be moved out of node i (since each node should be assigned
one process). If bi = −1, then one process should be migrated to node i instead. Let
L be the n × n Laplacian matrix of the topology graph defined as

L(i, j) �

⎧
⎪⎪⎨

⎪⎪⎩

degree(node i), if i = j;
−1, if i 	= j and node i is adjacent to node j;
0, otherwise.

(10)

123

Topology mapping of irregular parallel applications on... 1703

Fig. 4 The process migration
algorithm

Process Migration Algorithm
1 Repeat
2 Solve Lλ = b to obtain λ
3 Sort compute nodes such that their corre-

sponding λi is in non-increasing order
4 Foreach compute node i, greedily migrate

processes to its neighboring node(s) j if bi > 0
and λi > λj , and update bi, bj accordingly

5 Until each compute node is assigned one process

Then the optimal migration solution can be obtained by solving the linear equations

Lλ = b, (11)

where λ is an n-dimensional vector of unknown variables. The amount of workload
that needs to be moved from node i to its neighboring node j is given by λi − λ j .
However, the computed variables λ are real numbers, and the resultant migration is
not feasible for moving processes between nodes.

Toovercome this issue,wedesign an iterativemigration algorithmas shown inFig. 4
to perform process migration. Each iteration essentially contains three steps. We first
compute the variables λ, then sort the compute nodes such that their corresponding
variable λi is in non-increasing order, and finally migrate processes for each node by
using a greedy heuristic. Specifically, for each compute node i , if bi > 0 and there
exists some neighboring node(s) j such that λi > λ j , then we migrate min(bi , �λi −
λ j�) process(es) to the neighboring node(s) j , and update bi , b j accordingly to reflect
the change of workload. If bi is still positive, we sort the neighboring nodes j such
that their corresponding values (λi − λ j) − �λi − λ j� is in non-increasing order (and
of course, λi > λ j), and migrate one process to each neighboring node until bi = 0
or all the candidate neighbors have been processed. Moreover, in order to minimize
hop-bytes, we always choose to migrate the process, which results in the minimum
increase of hop-bytes. In each iteration of the process migration algorithm, at least one
process will be moved out of the compute node with the maximum workload. So this
process migration algorithm is guaranteed to terminate, and the number of iterations
is bounded by the maximum workload.

3.5 Complexity analysis

Suppose the cost of solving Eq. (5) is f1(n), and the cost of solving Eq. (11) is
f2(n). As process shifting and adding spreading forces all take O(n) time, the running
time of each iteration of global mapping is f1(n) + O(n). During each iteration of
process migration, sorting the compute nodes takes O(n log n) time, and moving
processes take O(n) time. So the running time of each iteration of process migration
is f2(n) + O(n log n) + O(n).

Let k1 and k2 be the number of iterations for global mapping and legalization,
respectively. Then the total mapping overhead of the proposed analytical mapping
algorithm is

123

1704 J. Wu et al.

k1 × (
f1(n) + O(n)

) + k2 × (
f2(n) + O(n log n) + O(n)

)
.

The overall time complexity is given by

O(f1(n)) + O(f2(n)) + O(n log n).

As matrix Q in Eq. (5) is symmetric positive definite, and matrix L in Eq. (11)
is symmetric positive semi-definite, both Eqs. (5) and (11) can be solved by efficient
linear system solver in time O(M1.31) [32], where M is the number of non-zeros
in the left-hand-side matrix. For matrix Q, M = Θ(|Ec|), so we have O(f1(n)) =
O(|Ec|1.31). For matrix L corresponding to 3D torus topology, M = 7n, and we
have O(f2(n)) = O(n1.31). Hence, the time complexity of the proposed analytical
mapping algorithm can also be represented as

O(|Ec|1.31) + O(n1.31) + O(n log n).

3.6 Implementation

We have implemented the proposed analytical mapping algorithm as a topology map-
ping tool [4], which is publicly available for community use. In order to support the
mapping of multiple processes onto each multicore node, we employ the graph parti-
tioning tool METIS [28] to partition the processes into fixed groups before applying
the proposed algorithm. As METIS does not guarantee equal partition of a graph, a
greedy heuristic is used to balance the partitions if necessary, and it always moves the
process which minimizes edgecuts. During the global mapping stage, we keep track
of the maximum “workload” of compute nodes, and terminate global mapping when
each compute node is assigned at most four processes (or four groups of processes for
multicore mapping), i.e., γ = 4. The global mapping will also be terminated if it does
not reduce the maximum “workload” of compute nodes in ten consecutive iterations.
All the linear systems are solved by the Cholesky factorization package CHOLMOD
[14].

Before applying the proposed analytical mapping algorithm, we need to determine
the fixed processes, which are mapped onto the eight corner nodes of the 3D torus
topology. Two heuristics are employed in order to support generic communication pat-
terns. The first one is breadth first traversal, which was explored for topology mapping
of general communication patterns in [9]. We start from a random node/process (typ-
ically node/process 0), traverse the topology/communication graph by using breadth
first search, and arrange the nodes/processes into a list. The processes which corre-
spond to the eight corner nodes are identified as fixed processes. The second heuristic
is RCM ordering [21]. The nodes and processes are ordered by using the RCM algo-
rithm, and the fixed processes are identified accordingly. In fact, the RCM algorithm is
a variant of breadth first traversal, it orders the nodes traversed at each level according
to their degrees.

123

Topology mapping of irregular parallel applications on... 1705

4 Performance evaluation

In this section, we evaluate the proposed analytical mapping algorithm with several
scientific applications on a production supercomputer.

4.1 Experimental setup

Experiments are carried out on the production IBM Blue Gene/P (BG/P) machine
[23] named Intrepid at Argonne National Laboratory. Intrepid comprises 40 racks,
arranged in five rows and interconnected by a highly scalable 3D torus network. Each
compute node has one 850 MHz quad-core processor and 2GB memory. The entire
system contains 164K cores, offering a peak performance of 557 tera-flops. Each job is
allocated a dedicated partition of themachine, so there is no intervention between jobs.
Table 2 lists the network topology of the BG/P supercomputer for different partition
sizes. It is to be noted that the 3D torus network reduces to a 3D mesh for small
partitions with less than 512 compute nodes.

We use parallel sparse matrix multiplication with realistic input matrices from the
University of FloridaSparseMatrixCollection [17] for performance tests. These sparse
matrices are extracted from real-world scientific applications, and they represent the
structures of realistic computing problems in different domains. Specifically, we select
three sparse matrices for experiments, including F1, audikw_1 and nlpkkt120. Their
properties are listed in Table 3, where “NNZ” denotes the number of non-zeros. The
first two matrices are symmetric stiffness matrices, which model the elasticities of
automotive crankshafts. The third one is a symmetric indefinite KKT matrix, which
represents a nonlinear programming problem for a 3D PDE-constrained optimiza-
tion. In order to perform matrix computation efficiently, scientific codes often use
a graph partitioner to decompose the matrix into sub-matrices, and then use multi-

Table 2 Topology of the Blue
Gene/P supercomputer

Nodes # Cores Topology Mesh/torus

64 256 4 × 4 × 4 Mesh

128 512 4 × 4 × 8 Mesh

256 1024 8 × 4 × 8 Mesh

512 2048 8 × 8 × 8 Torus

1024 4096 8 × 8 × 16 Torus

2048 8192 8 × 8 × 32 Torus

Table 3 Properties of sparse
matrices

Name Rows and columns NNZ NNZ per row

F1 343,791 13,590,452 39.53

audikw_1 943,695 39,297,771 41.64

nlpkkt120 3,542,400 50,194,096 14.17

123

1706 J. Wu et al.

ple processes/threads to compute in parallel. The communication between processes
depends on the decomposition and the structure of the matrix. In our experiments, we
use METIS [28] to partition the graphs represented by these sparse matrices, and ana-
lyze the edgecuts between partitions, which indicates the inter-process communication
pattern. The communication test consists of 1000 iterations of inter-process commu-
nication. Specifically, the inter-process communication is implemented by posting
non-blocking receives MPI_Irecv() and non-blocking sends MPI_Isend(), followed
by a single MPI_Waitall() for all sends and receives.

Moreover, we also use a cosmology simulation code called Adaptive Refinement
Tree (ART) [25,39,40,43] to test our mapping algorithm. ART involves the simulation
of a cubic computational domain which represents the universe, and adopts adaptive
mesh refinement (AMR) [30] to effectively model the universe with different densi-
ties. A domain decomposition scheme based on Hilbert space-filling curve (SFC) [13]
is employed to determine the computational domain of each process. The resultant
communication graph is highly sparse due to the spatial locality preserved by the SFC.
As ART simulations consume a large amount of computing resources, the commu-
nication part of a production ART simulation is extracted for efficient performance
tests. We choose this application for experiments, because its communication pattern
is representative of many scientific applications based on finite element methods.

Figure 5 shows the communication pattern of the chosen test cases with 1024
processes inmatrix form.Each blue dot at (i, j) represents the communication between
processes i and j , and the total number of blue dots is given by “nz”. As shown by
the distribution of blue dots, the sparse matrix tests have different communication
pattern, but all being sparse and highly irregular. The communication of ART is even
more sparse and irregular, and most blue dots are near the diagonal. This is due to
the fact that the ART communication is mainly nearest neighbor exchanges in the
adaptively refined 3D computational domain. For all the test cases, the irregularity
of communication is also shown in its message sizes, which may vary significantly
between different process pairs.

For performance comparison, we also experiment with the topology mapping
library—LibTopoMap [21,27], which supports three generic mapping strategies,
including a graph similarity approach using the RCM ordering, a greedy heuristic,
and a recursive bipartitioning algorithm.

Five different mapping mechanisms are evaluated. They are: (1) the system default
“TXYZ”mapping on BG/Pwhich is used as the baseline for performance comparison;
(2) the proposed analytical mapping algorithm; (3) the graph similarity approach of
LibTopoMap; (4) the greedy heuristic of LibTopoMap; (5) the recursive bipartitioning
algorithm of LibTopoMap.

The programs are compiled by IBM XL compiler on Blue Gene/P, and all the
experiments are run in virtual node mode, i.e., one process on each core. As the
Cholesky factorization package CHOLMOD [14] used by our analytical mapper is
not available on BG/P, we run the analytical mapper on a Linux server with Intel Xeon
X5650 processor. The derived mapping is then employed for experiments on BG/P. In
order for a fair comparison of different mapping mechanisms, we run the tests with
different mappings in a single batch script.

123

Topology mapping of irregular parallel applications on... 1707

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 14254

(a)

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 13174

(b)

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 14214

(c)

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 8908

(d)

Fig. 5 The communication pattern of sparse matrix tests and the cosmology application named ART (1024
processes)

4.2 Fixed processes for global mapping

Before running the performance tests, we first run a set of experiments to evaluate the
two heuristics (i.e., breadth first traversal and RCMordering) for determining the fixed
processes for global mapping (see Sects. 3.3, 3.6). A proper set of fixed processes can
lead to a good mapping and vice versa. As the proposed analytical mapping algorithm
aims to minimize hop-bytes, we compare the hop-bytes of the resulting mapping with
respect to the system default mapping. As shown in Table 4, breadth first traversal and
RCM ordering lead to similar hop-bytes reduction in most cases. On average, RCM
ordering often has slightly larger hop-bytes reduction. Hence, we use RCM ordering
to determine the fixed processes in production runs.

4.3 Results

We use three metrics to evaluate different mapping algorithms:

123

1708 J. Wu et al.

Table 4 Hop-bytes reduction of the proposed analytical mapping algorithm (relative to the system default
mapping) by using breadth first traversal (BFT) and RCM ordering to determine the fixed processes

Proc. F1 audikw_1 nlpkkt120 ART

BFT (%) RCM (%) BFT (%) RCM (%) BFT (%) RCM (%) BFT (%) RCM (%)

256 70.66 71.11 67.80 65.94 53.76 53.45 42.96 42.63

512 75.29 74.59 71.26 70.95 63.38 64.76 39.18 43.04

1024 76.80 78.61 73.79 74.30 69.39 70.48 49.07 48.49

2048 72.60 73.69 67.71 65.27 66.67 69.39 28.17 26.37

4096 75.68 77.02 71.16 71.07 75.15 74.58 27.10 31.53

8192 77.35 82.72 68.14 70.95 77.73 79.49 22.84 25.76

– Hop-bytes: the total amount of inter-node communication (in bytes) weighted by
the distance (in hops) between nodes.

– Congestion: the maximum amount of messages (in bytes) transmitted on a single
link (assume that all links have identical bandwidth).

– Communication time: the actual communication time measure by MPI_Wtime().

Figures 6, 7 and 8 present the relative hop-bytes, congestion, and communication
time reductions of different mapping mechanisms compared to the system default
mapping, respectively. Table 5 shows the corresponding communication time statis-
tics for the system default mapping and the proposed analytical mapping algorithm.
“Analytical” represents our analytical mapping algorithm, while “RCM”, “Greedy”
and “Recursive” represent the three mapping strategies of LibTopoMap. Note that
LibTopoMap aims to minimize the congestion in the network. It estimates the conges-
tion of a mapping by routing each message on a shortest path (discovered by a shortest
path algorithm). LibTopoMap returns an improved mapping with reduced congestion
if such a mapping is found, otherwise, it returns the original mapping, i.e., the system
default mapping in our setting. For example, LibTopoMap’s recursive mapper returns
the system default mapping for “audikw_1”, so there is no hop-bytes and commu-
nication time reduction. Besides, for all the test cases, LibTopoMap failed to derive
optimized mappings when the number of processes is more than 2K.

For sparse matrix tests, our analytical mapper significantly reduces hop-bytes and
congestion by up to 83 and 81%, respectively, and achieves communication time reduc-
tion by up to 72%. LibTopoMap increases hop-bytes despite significant congestion
reduction, and the resulting communication time is often increased. For ART, the ana-
lytical mapper improves hop-bytes and congestion by up to 48 and 66%, respectively,
and reduces communication time by up to 59%. LibTopoMap significantly reduces
the congestion of ART, but it largely increases the hop-bytes, leading to additional
communication cost.

The analytical mapper is capable of reducing both hop-bytes and congestion for 3D
torus, since the heavily communicating processes are properly mapped onto neigh-
boring nodes during the global mapping stage, and the communication traffics are
distributed among all the dimensions to reduce congestion. This is achieved by using
the square of the L2 norm distance in the objective for global optimization (discussed

123

Topology mapping of irregular parallel applications on... 1709

Analytical
RCM
Greedy
Recursive

(a)

256 512 1024 2048 4096 8192
−20%

0%

20%

40%

60%

80%

Number of Processes

H
op

−
B

yt
es

 R
ed

uc
tio

n

(b)

256 512 1024 2048 4096 8192
−20%

0%

20%

40%

60%

80%

Number of Processes

H
op

−
B

yt
es

 R
ed

uc
tio

n
(c)

256 512 1024 2048 4096 8192

−20%

0%

20%

40%

60%

80%

Number of Processes

H
op

−
B

yt
es

 R
ed

uc
tio

n

(d)

256 512 1024 2048 4096 8192
−140%
−120%
−100%
−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

Number of Processes

H
op

−
B

yt
es

 R
ed

uc
tio

n

(e)

Fig. 6 Hop-bytes reductions of different topology mapping algorithms, relative to the system default
mapping on BG/P. a Legend. b F1. c audikw_1. d nlpkkt120. e ART

in Sect. 3.2), and the global mapping solution is well preserved during the legalization
stage. Generally, the hop-bytes reduction and the communication time reduction have
a weak correlation for 3D torus. The hop-bytes represent the total amount of traffic in
the network, while the communication time is dependent on the maximum message
passing time among communicating process pairs. It is expected that communication
performance can be improved by using a mapping with reduced hop-bytes, since the
network is likely to be less congested.

Our study also shows that the maximum congestion on a single link may not be a
proper measurement of the mapping quality, because it overlooks the overall traffic
in the network. As a result, minimizing congestion alone may lead to increased hop-
bytes and higher communication cost. After all, the congestion on a single link is
just a lower bound of the communication time. From the optimization perspective,
minimizing a lower bound of the objective does not necessarily reduce the objective.
Another concern about congestion is that it can be very difficult to evaluate due to
dynamical routing. Instead, hop-bytes is easy to compute, and it correlates better with
the communication performance on 3D torus.

123

1710 J. Wu et al.

Analytical
RCM
Greedy
Recursive

256 512 1024 2048 4096 8192
0%

20%

40%

60%

80%

Number of Processes

C
on

ge
st

io
n

R
ed

uc
tio

n

256 512 1024 2048 4096 8192
0%

20%

40%

60%

80%

Number of Processes
C

on
ge

st
io

n
R

ed
uc

tio
n

256 512 1024 2048 4096 8192
0%

10%

20%

30%

40%

50%

Number of Processes

C
on

ge
st

io
n

R
ed

uc
tio

n

256 512 1024 2048 4096 8192
0%

20%

40%

60%

Number of Processes

C
on

ge
st

io
n

R
ed

uc
tio

n

(a)

(b) (c)

(d) (e)

Fig. 7 Congestion reductions of different topology mapping algorithms, relative to the system default
mapping on BG/P. a Legend. b F1. c audikw_1. d nlpkkt120. e ART

In practice, the effect of topologymappingon application execution timedepends on
the portion of communication to the total execution time. The amount of execution time
saving typically comes directly from the amount of communication time reduction.
For the ART application with our test input data, the total execution time by using
1024 processes is about 15 min, and the communication time for data transmission is
about 20% of the total execution runtime. By using our analytical mapping algorithm,
its communication time is reduced by 59%, which indicates about 12% improvement
of the overall execution time.

4.4 Mapping overhead

Table 6 gives the overhead of the proposed analytical mapping algorithm. As this
algorithm has two stages—global mapping and legalization, each of which involves
solving linear systems iteratively until convergence, the runtime is dependent on the
number of iterations required. The global mapping stage typically requires several
dozens of iterations to finish as shown in Table 6, while the legalization stage always

123

Topology mapping of irregular parallel applications on... 1711

Analytical
RCM
Greedy
Recursive

256 512 1024 2048 4096 8192

−20%

0%

20%

40%

60%

80%

Number of Processes

C
om

m
un

ic
at

io
n

T
im

e
R

ed
uc

tio
n

256 512 1024 2048 4096 8192

−20%

0%

20%

40%

60%

80%

Number of Processes
C

om
m

un
ic

at
io

n
T

im
e

R
ed

uc
tio

n

256 512 1024 2048 4096 8192

−20%

0%

20%

40%

60%

80%

Number of Processes

C
om

m
un

ic
at

io
n

T
im

e
R

ed
uc

tio
n

256 512 1024 2048 4096 8192
−100%

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%

Number of Processes

C
om

m
un

ic
at

io
n

T
im

e
R

ed
uc

tio
n

(a)

(b) (c)

(d) (e)

Fig. 8 Communication time reductions of different topology mapping algorithms, relative to the system
default mapping on BG/P. a Legend. b F1. c audikw_1. d nlpkkt120. e ART

Table 5 Communication time statistics for the systemdefaultmapping and the proposed analyticalmapping
algorithm

Proc. F1 audikw_1 nlpkkt120 ART

Def. Ana. Imp. (%) Def. Ana. Imp. (%) Def. Ana. Imp. (%) Def. Ana. Imp. (%)

256 3.09 1.18 62 8.30 3.31 60 4.63 3.06 34 180.65 118.72 34

512 3.41 1.13 67 7.38 2.31 69 5.25 1.90 64 151.60 80.03 47

1024 2.86 0.81 72 5.99 1.83 69 4.18 1.18 72 174.54 71.99 59

2048 0.86 0.57 33 1.96 1.24 37 1.29 0.75 42 95.82 57.87 40

4096 1.30 0.66 49 2.18 1.15 47 2.10 0.93 56 93.81 65.01 31

8192 1.74 0.70 60 2.87 1.98 31 2.97 1.54 48 137.86 89.58 35

Proc. processes, Def. default mapping, Ana. analytical mapping, Imp. the improvement of communication
time by using our analytical mapping over the default mapping; time (s)

123

1712 J. Wu et al.

Table 6 Overhead of our analytical mapping algorithm

Proc. F1 audikw_1 nlpkkt120 ART

Iter. Time Iter. Time Iter. Time Iter. Time

256 14 0.010 22 0.007 33 0.005 27 0.011

512 32 0.015 34 0.010 32 0.013 33 0.014

1024 29 0.035 38 0.026 34 0.040 51 0.040

2048 33 0.093 41 0.075 41 0.115 44 0.088

4096 42 0.347 56 0.328 44 0.345 55 0.236

8192 49 1.086 49 0.783 56 1.265 49 0.579

Proc. processes, Iter. the number of iterations in the global mapping stage, Time the total runtime (s)

terminate within four iterations for all the test cases. The running time is mainly due
to solving the linear systems (5) for global mapping, and it is often within 1 s. Con-
sider that production runs of HPC applications typically take hours, the overhead of
the proposed analytical mapping algorithm is negligible. As the number of processes
increases, the mapping overhead increases superlinearly due to the superlinear com-
plexity of solving sparse linear systems. To handle even more processes efficiently,
the analytical mapping algorithm can be extended to perform hierarchical mapping
[16].

5 Conclusion

In this paper, we have presented an analytical algorithm for mapping irregular parallel
applications onto torus-connected supercomputers with 3D torus network topologies.
The mapping is derived in two stages, namely global mapping and legalization. The
globalmapping stage obtains a roughmapping byminimizing the communication traf-
fic through quadratic programming; the legalization stage derives a proper mapping by
performing the minimummovements of processes between nodes. We have compared
our design with several mapping algorithms by means of a number of representative
scientific applications and benchmarks on production supercomputers. Experimen-
tal results with up to thousands of nodes show that the proposed analytical mapping
method finds high-quality mappings for 3D torus, which significantly improves the
communication performance. The experiments also demonstrate that the analytical
mapping algorithm has small mapping overhead, thus being suitable for finding opti-
mized mappings at runtime.

Future work is to study the optimization of congestion for topology mapping by
considering the routing algorithm of the network [1]. Moreover, it is also of great
interest to evaluate the power/energy savings [38] of the optimized mappings.

Acknowledgements This work is supported in part by US National Science Foundation Grants OCI-
0904670 and CNS-1320125. This work is also supported in part by the National Natural Science Foundation
of China Grant 61402083. The authors thank the Argonne Leadership Computing Facility for the use of
their supercomputers.

123

Topology mapping of irregular parallel applications on... 1713

References

1. Abdel-Gawad AH, Thottethodi M, Bhatele A (2014) RAHTM: routing algorithm aware hierarchi-
cal task mapping. In: Proc. ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), p 325–335

2. Abts D (2011) The CrayXT4 and Seastar 3-DTorus interconnect. Encyclopedia of Parallel Computing,
p 470–477

3. Agarwal T, Sharma A, Laxmikant A, Kale LV (2006) Topology-aware task mapping for reducing
communication contention on large parallel machines. In: Proc. IEEE International Symposium on
Parallel and Distributed Processing (IPDPS)

4. Analytical Mapping Tool (2014) http://bluesky.cs.iit.edu/topomap/. Accessed 30 July 2014
5. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network.

J Supercomput 10(3):243–269
6. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and

its implementation using a multi-stage switching box. In: Proc. the 7th Annual International High
Performance Computing Conference. The 1993 High Performance Computing: New Horizons Super-
computing Symposium, p 349–357

7. Berman F, Snyder L (1987)Onmapping parallel algorithms into parallel architectures. J Parallel Distrib
Comput 4(5):439–458

8. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J
Parallel Distrib Comput 24(1):107–114

9. Bhatele A (2010) Automating topology aware mapping for supercomputers. Ph.D. thesis, University
of Illinois at Urbana-Champaign, Urbana

10. Bhatele A, Gamblin T, Langer SH, Bremer PT, Draeger EW, Hamann B, Isaacs KE, Landge AG,
Levine JA, Pascucci V, Schulz M, Still CH (2012) Mapping applications with collectives over
sub-communicators on torus networks. In: Proc. ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), p 97:1–97:11

11. Bokhari SH (1981) On the mapping problem. IEEE Trans Comput 30(3):207–214
12. Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge University Press, Cambridge
13. Butz AR (1971) Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans Comput C–

20(4):424–426
14. Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: CHOLMOD, supernodal

sparse cholesky factorization and update/downdate. ACM Trans Math Softw 35(3):22:1–22:14
15. Chockalingam T, Arunkumar S (1992) A randomized heuristics for the mapping problem: the genetic

approach. Parallel Comput 18(10):1157–1165
16. Chung IH, Lee CR, Zhou J, Chung YC (2011) Hierarchical mapping for HPC applications. In: Proc.

IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), p 1815–1823

17. Davis TA, Hu Y (2011) The university of Florida sparse matrix collection. ACM Trans Math Softw
38(1):1–25

18. Deveci M, Rajamanickam S, Leung VJ, Pedretti K, Olivier SL, Bunde DP, Çatalyürek UV, Devine
K (2014) Exploiting geometric partitioning in task mapping for parallel computers. In: Proc. IEEE
International Symposium on Parallel and Distributed Processing (IPDPS), p 27–36

19. Ercal F, Ramanujam J, Sadayappan P (1988) Task allocation onto a hypercube by recursive mincut
bipartitioning. In: Proc. the Third Conference on Hypercube Concurrent Computers and Applications:
Architecture, Software, Computer Systems, and General Issues, vol 1, C3P, p 210–221

20. Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press,
Baltimore, London

21. Hoefler T, Snir M (2011) Generic topology mapping strategies for large-scale parallel architectures.
In: Proc. the International Conference on Supercomputing (ICS), p 75–84

22. Hu YF, Blake RJ, Emerson DR (1998) An optimal migration algorithm for dynamic load balancing.
Concurr Pract Exp 10(6):467–483

23. IBM References for BG/P (2013) https://www.alcf.anl.gov/user-guides/bgp-references. Accessed 1
May 2013

24. Jeannot E, Mercier G, Tessier F (2014) Process placement in multicore clusters: algorithmic issues
and practical techniques. IEEE Trans Parallel Distrib Syst 25(4):993–1002

123

http://bluesky.cs.iit.edu/topomap/
https://www.alcf.anl.gov/user-guides/bgp-references

1714 J. Wu et al.

25. Kravtsov AV, Klypin AA, Khokhlov AM (1997) Adaptive refinement tree: a new high-resolution
N-body code for cosmological simulations. Astrophys J Suppl Ser 111:73–94

26. LeeC,BicL (1989)On themapping problemusing simulated annealing. In: Proc. International Phoenix
Conference on Computers and Communications, p 40–44. doi:10.1109/PCCC.1989.37357

27. LibTopoMap (2010) A generic topology mapping library. http://www.unixer.de/research/mpitopo/
libtopomap/. Accessed 8 May 2013

28. METIS (2013) Graph partitioning tool. http://glaros.dtc.umn.edu/gkhome/views/metis. Accessed 6
May 2013

29. Pellegrini F (1994) Static mapping by dual recursive bipartitioning of process architecture graphs. In:
Proc. the Scalable High-Performance Computing Conference, p 486–493

30. PlewaT, Linde T,WeirsVG (2005)Adaptivemesh refinement-theory and applications. Springer, Berlin
31. Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem.

Microprocess Microsyst 26(8):363–371
32. Spielman D, Teng SH (2003) Solving sparse, symmetric, diagonally-dominant linear systems in time

o(m1.31). In: Proc. IEEE Symposium on Foundations of Computer Science, p 416–427
33. Träff JL (2002) Implementing theMPI process topology mechanism. In: Proc. ACM/IEEE Conference

on Supercomputing, p 28:1–28:14
34. Top 500 Supercomputer Sites (2015) http://www.top500.org/. Accessed 30 Nov 2015
35. The Gemini Network (2010) http://wiki.ci.uchicago.edu/pub/Beagle/SystemSpecs/Gemini_

whitepaper.pdf. Accessed 1 May 2013
36. Viswanathan N, Chu CCN (2004) FastPlace: Efficient analytical placement using cell shifting, iterative

local refinement and a hybrid net model. In: Proc. International Symposium on Physical Design, p 26–
33

37. Viswanathan N, Chu CCN (2005) FastPlace: efficient analytical placement using cell shifting, iterative
local refinement, and a hybrid net model. IEEE Trans Comput Aided Design 24(5):722–733

38. Wallace S, Vishwanath V, Coghlan S, Tramm J, Lan Z, Papkay M (2013) Application power profiling
on IBM Blue Gene/Q. In: Proc. IEEE International Conference on Cluster Computing (CLUSTER), p
1–8

39. Wu J, Gonzalez RE, Lan Z, Gnedin NY, Kravtsov AV, Rudd DH, Yu Y (2011) Performance emula-
tion of cell-based AMR cosmology simulations. In: Proc. IEEE International Conference on Cluster
Computing (CLUSTER), p 8–16

40. Wu J, Lan Z, Xiong X, Gnedin NY, Kravtsov AV (2012) Hierarchical task mapping of cell-based
AMR cosmology simulations. In: Proc. ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), SC ’12, p 75:1–75:10

41. Wu J, Xiong X, Lan Z (2015) Hierarchical task mapping for parallel applications on supercomputers.
J Supercomput 71(5):1776–1802

42. Yu H, Chung IH, Moreira J (2006) Topology mapping for Blue Gene/L supercomputer. In: Proc.
ACM/IEEE Conference on Supercomputing, p 52. doi:10.1109/SC.2006.63

43. Yu Y, Rudd DH, Lan Z, Gnedin NY, Kravtsov AV, Wu J (2012) Improving parallel IO performance
of cell-based AMR cosmology applications. In: Proc. IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), p 933–944

123

http://dx.doi.org/10.1109/PCCC.1989.37357
http://www.unixer.de/research/mpitopo/libtopomap/
http://www.unixer.de/research/mpitopo/libtopomap/
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.top500.org/
http://wiki.ci.uchicago.edu/pub/Beagle/SystemSpecs/Gemini _whitepaper.pdf
http://wiki.ci.uchicago.edu/pub/Beagle/SystemSpecs/Gemini _whitepaper.pdf
http://dx.doi.org/10.1109/SC.2006.63

	Topology mapping of irregular parallel applications on torus-connected supercomputers
	Abstract
	1 Introduction
	2 Background
	2.1 Torus network topologies
	2.2 The topology mapping problem
	2.3 Related works

	3 Analytical mapping
	3.1 Preliminary
	3.2 Algorithm overview
	3.3 Global mapping
	3.3.1 Global optimization
	3.3.2 Process shifting
	3.3.3 Spreading forces

	3.4 Legalization
	3.5 Complexity analysis
	3.6 Implementation

	4 Performance evaluation
	4.1 Experimental setup
	4.2 Fixed processes for global mapping
	4.3 Results
	4.4 Mapping overhead

	5 Conclusion
	Acknowledgements
	References

