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ABSTRACT

In this paper, we present a scalable and practical prob-
lem diagnosis framework for Hadoop environments. Our de-
sign features a decentralized approach based on hierarchi-
cal grouping and a novel non-parametric diagnostic mech-
anism. We evaluate our framework under various Hadoop
workloads. The experimental results show that our design
outperforms traditional methods significantly in the context
of complex anomaly patterns and high anomaly probability.
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1. INTRODUCTION

Cloud computing becomes a popular computing paradigm
and starts to make significant impact on various domains.
The MapReduce framework along with its open source im-
plementation on Hadoop has been widely used by many
businesses such as Amazon and Yahoo for large-scale com-
puting [1]. Despite the flexibility and convenience offered
by such an environment, performance anomalies such as re-
source contentions, application bugs, and hardware/software
failures are commonly observed by Hadoop users. These
performance problems cause some nodes taking longer time
to finish their assigned tasks, thereby resulting in financial
penalty to both companies and users. Hence, an effective
problem diagnosis mechanism is essential for Hadoop envi-
ronments.

Currently anomaly detection in large-scale systems faces
two major challenges. First, existing anomaly detection
methods typically rely on a centralized design that uses a
central manager for data collecting data and decision mak-
ing. Although these schemes provide good diagnosis accu-
racy, they fail to meet the scalability requirement. Sec-
ond, existing schemes tend to use parametric methods for
anomaly detection. Parametric methods assume the number
of behavior patterns is known in priori [4]. Unfortunately,

this requirement is hardly met in practice. In fact, prob-
lematic nodes may behave differently due to distinct root
causes.

In this paper, we present a proof-of-concept study of a
novel framework for anomaly detection. It explores non-
parametric clustering and majority based voting to address
the aforementioned challenges.

2. METHODOLOGY

Our design consists of three main components, namely
hierarchical grouping, non-parametric clustering and two-
phase majority voting. Hierarchical grouping is built on
the well-known divide-and-conquer philosophy, and it en-
ables our framework to minimize global communication for
decision making. Non-parametric clustering and two-phase
majority voting do not require any predefined number of
clusters.

The first step of our method is hierarchical grouping, which
is built on the well-known divide-and-conquer philosophy,
and it enables our framework to minimize global commu-
nication for decision making. At the top level, computing
nodes are grouped according to their geographical locations
if tasks are allocated remotely. Next at the lower level, com-
puting nodes within the same location are divided based on
their network connections. The grouping rules at this level
vary according to different network topologies. If a group at
this level still contains a large number of nodes, a random
selection strategy is used to further partition the group. For
each node, we use it as a central point and form a group by
randomly assigning n neighbors to it. Using this strategy,
a node may belong to one or more groups, but its status is
only determined by the group where it is the central node.

After the hierarchical grouping, our design will perform
group analysis (i.e., non-parametric clustering and two-phase
majority voting) concurrently. For each group, we first col-
lect system data characterizing node behaviors and transfer
them into a uniform format for further analysis. Next we
project the high-dimensional data to a lower feature space
using kernel principal component analysis (KPCA) [5].

Then for the nodes in each group, clustering is used to as-
sign them into “clusters” so that the nodes within the same
cluster are more similar to each other than to those in other
clusters. Rather than using the well-known parametric clus-
tering methods such as k-means or hierarchical clustering
[2], we explore a non-parametric clustering method called
Adaptive Mean Shift Clustering, which does not require pre-
defined number of clusters in advance [3].

Based on the clustering, we propose a two-phase major-



G(a1) ={azazas}
C(a1) = { az,aa}

Phase One

G(ai1) ={azazas}
C(a1) = { az,aa}

Phase Two
M(al) = { az,aa}
F(a1) = { a3}

Figure 1: In this example, there are two clusters
{ai1,a2,a4} and {as} in the group, and a; is the central
node. In phase one, a; is labeled with M. In phase
two, we assume a; and a4 are labeled with M and a3
is labeled with F during the first phase, then a; is
finally labeled with N.

ity voting mechansim, aiming to identify abnormal nodes in
each group. In phase one, a node is labeled with M (“Ma-
jority”) if it belongs to the majority of all group members;
otherwise it is labeled with F (“Fewness”). In phase two,
a node is finally labeled with N (“Normal”) if it belongs to
the majority of group members labeled with M in the first
phase; otherwise, it is labeled with A (“Abnormal”). Only
the nodes labeled with M in the first phase have the right
to vote in the second phase. Figure 1 gives an example of
the two-phase majority voting process for a group, in which
ai is the central node.

3. EXPERIMENTS

The experiments were conducted on a 65-node cluster
located at Illinois Institute of Technology. It consists of
64 computing nodes and one head node. Each comput-
ing node has two Quad-Core AMD Opteron(tm) processors,
8GB memory and a 250GB 7200RPM SATA-II disk. All
nodes are equipped with Gigabit Ethernet interconnection.

We used three Hadoop (version 0.20.2) workloads, namely
WordCount and TeraSort and Pig in our experiments and
injected four anomaly patterns: three caused by resource
consumption at the system level and one caused by bugs
from the application level. The individual anomaly patterns
(single-anomaly) and their combinations (multiple-anomaly,
from 2 to 4) are injected randomly into the testbed with ten
anomaly probabilities (5%, 10%, 15%, ..., 50%). The injected
anomalies include CPU Hog, Net Hog, Disk Hog and Task
Hang.

Figure 2 presents diagnosis accuracy achieved by different
clustering methods, including our non-parametric method,

k-means method, and hierarchical method. Our non-parametric

clustering method outperforms parametric clustering meth-
ods significantly in terms of of diagnosis accuracy given mul-
tiple anomaly patterns. The average diagnosis accuracy im-
provement is 34%.

Figure 3 gives the comparison of our method as against
other non-clustering based methods. Compared to deviation-
based methods, our method has an average of more than
15% improvement in terms of diagnosis accuracy, given mul-
tiple anomaly patterns (i.e., other than single-anomaly) and
high anomaly probability (i.e., p > 20%).
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Figure 2: Comparison of clustering methods in
terms of diagnosis accuracy (F_measure).
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Figure 3: Comparison of our method and non-

clustering based methods in terms of diagnosis ac-
curacy (F_measure).
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