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Abstract—To facilitate proactive fault management in large-
scale systems such as IBM Blue Gene/P, online failure prediction
is of paramount importance. While many techniques have been
presented for online failure prediction, questions arise regarding
two commonly used approaches: period-based and event-driven.
Which one has better accuracy? What is the best observation
window (i.e., the time interval used to collect evidence before
making a prediction)? How does the lead time (i.e., the time
interval from the prediction to the failure occurrence) impact
prediction arruracy? To answer these questions, we analyze and
compare period-based and event-driven prediction approaches
via a Bayesian prediction model. We evaluate these prediction
approaches, under a variety of testing parameters, by means of
RAS logs collected from a production supercomputer at Argonne
National Laboratory. Experimental results show that the period-
based Bayesian model and the event-driven Bayesian model can
achieve up to 65.0% and 83.8% prediction accuracy, respectively.
Furthermore, our sensitivity study indicates that the event-driven
approach seems more suitable for proactive fault management
in large-scale systems like Blue Gene/P.

I. INTRODUCTION
A. Motivation

Proactive fault management has been studied to meet the
increasing demands of reliability and availability in large-
scale systems. The process of proactive fault management
usually consists of four steps: online failure prediction, further
diagnosis, action scheduling and execution of actions [15].
It is widely acknowledged that online failure prediction is
crucial for proactive fault management. The accuracy of failure
prediction can greatly impact the effectiveness of fault man-
agement. On one hand, a fault tolerant action, as a response to
a failure warning, becomes useless if the prediction itself is a
false alarm. Consequently, in case of too many false alarms, a
high management overhead may be introduced due to a large
amount of unnecessary fault management actions. On the other
hand, if too many failures are missed by the predictor, the
effectiveness of fault management is questionable. Li et al.
have shown that run-time fault management can be effective
only when the prediction can achieve an acceptable accuracy.

Generally speaking, online failure prediction methods can
be classified into two groups: the period-based approach and
the event-driven approach, differing in the trigger mechanism
[15].

1) Period-based approach: Typically, a prediction cycle of
a period-based method consists of three parts as shown in
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Figure 1: an observation window W, a lead time Wiy and
a prediction window Wyq.. Wy, is usually composed of a set
of consecutive time intervals I = {Iy, Io, ..., I, }, where each
interval has the same size as Wpqt, so Wop, is n times longer
than W,4;. In a prediction cycle, the observation window Wy
is used to collect evidence that determines whether a failure
will occur within the prediction window Wpq;. Lead time is
the time interval preceding the the time of failure occurrence.
To be practical, lead time is supposed to be long enough to
perform a desired proactive fault prevention.
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Fig. 1. Period-based approach

2) Event-driven approach: In an event-driven method, the
triggering of a failure alarm is determined by events. Strictly
speaking, the predictor needs to continuously keep track of
every event occurrence until a failure alarm. However, in
practice, there still exists an observation window W, for
event-driven approach. There are two reasons for doing so.
First, it is impractical to keep track of every event occurring
before a failure due to the potential amount of events that could
happen in a large-scale system. Second, many studies have
shown that the events occurred too far away from a failure are
less likely correlated to the failure. Hence, in an event-driven
method, the predictor keeps on moving W5 forward and the
events outside of W, are not considered. Figure 2 illustrates
the main components of a prediction cycle in the event-driven
approach: Wy, Wiy and Failure. Unlike the period-based
approach, a predictor using the event-driven approach predicts
whether a failure will occur or not right after W;.

B. Main Contributions

Both event-driven and period based approaches have great
potential for fault management in large-scale systems. In this
paper, we analyze and compare the impact of observation
window and lead time on both period-based and event-driven
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Fig. 2. Event-driven approach

prediction approaches by means of real system logs collected
from a production supercomputer. The objective is two-folded:
one is to show which prediction approach provides better
accuracy and is more suitable for practical use in reality, and
the other is to provide some guidance in terms of the design
of proactive failure management. More specifically, this paper
makes the following major contributions:

o We develop an online Bayesian-based failure prediction
method and implement it via both period-based and event-
driven approaches.

o We evaluate these prediction approaches under a variety
of testing parameters. In particular, we examine the
sensitivity of observation window and lead time on both
prediction mechanisms. To the best of our knowledge, this
paper is the first to study the time characteristics of these
two commonly used prediction approaches in large-scale
systems.

C. Organization

The organization of this paper is as follows. Section I-
I briefly describes the production Blue Gene/P system at
Argonne National Laboratory and the RAS log collected
from this machine. Section III presents the details of our
methodology. Section IV presents the experimental results,
followed by a discussion. Section V discusses related work
and Section VI draws a conclusion.

II. BACKGROUND

The RAS log used for this study was collected from the
production Blue Gene/P system called Intrepid at Argonne
National Laboratory. Intrepid is a 40-rack Blue Gene/P system,
in which the 40 racks are laid in 5 rows (i.e., RO to R4).
It consists of 40,960 compute nodes with a total of 163,840
cores, offering a peak performance of 556 TFlops. It ranks the
#9 on the latest TOP500 supercomputer list (June 2010) [21].
In Intrepid, a Core Monitoring and Control System (CMCS)
monitors the hardware components such as compute nodes,
I/O nodes and networks and reports the monitored information
as RAS event messages that are stored in back-end DB2
databases. An example of event record from Intrepid is shown
in TABLE 1. The meanings of major entries in the example
record are as below.

o RECID: the sequence number of the event record.

o MSG_ID: the source of the message.

e COMPONENT: the software component detecting and

reporting the event, including MMCS, KERNEL, CARD,
BAREMETAL, MC, DIAGS and APPLICATION.

RECID 13718190

MSG_ID CARD_0411

COMPONENT CARD

SUBCOMPONENT | PALOMINO_S

ERRCODE DetectedClockCardErrors

SEVERITY FATAL

EVENT_TIME 2008-04-14-15.08.12.285324

FLAGS DefaultControlEventListener

LOCATION R-04-MO-S

SERIANUMBER 44V4173YL11K8021017

MESSAGE An error(s) was detectedby the Clock card
: Error=Loss of reference input

TABLE I
AN EXAMPLE OF EVENT FROM BLUE GENE/P RAS LOG.

« SUBCOMPONENT: the functional area that generates

the message for each component.

« ERRCODE: the fine-gained event type information.

o SEVERITY: it can be either DEBUG, TRACE, INFO,

WARNING, ERROR, or FATAL.

e EVEVT_TIME: the start time of the event.

o LOCATION: the location where the event occurs

o« MESSAGE: a brief overview of the event condition.

The failure(s) we try to predict actually refer to the event
record(s) with FATAL severity, which is represented as FATAL
event(s) in the following of this paper. A FATAL interval refers
to a time interval in the RAS log, during which at least one
FATAL event occurs. The terms NON-FATAL event(s) and
NON-FATAL interval(s) are defined in a similar way.

The RAS log contains health related events occurred from
2008-03-11 00:03:27 to 2008-08-28 10:11:59. We first filtered
and cleaned the log using an iterative approach [5][2]. To
generate the dataset, we adopt different methods in two
approaches. In the period-based approach, the sampling begins
at the first entry in the log, each time we move the sampling
window forward by one W ;. The size of the dataset depends
on the size of W,,s and W;; used for that test. In the event-
driven approach, all FATAL events are extracted first, then
NON-FATAL events that are five times number of FATAL
events are selected from the rest of the log randomly. Based
on the occurring time of these extracted events, we generate
the dataset by searching within W,;,s. Unlike the period-based
approach, the event-driven approach has datasets with constant
size.

III. METHODOLOGY
A. Bayesian Network Classifier

A Bayesian network B is a probabilistic graphical model
that represents a set of random variables = = {x1, x2, ..., ,}
and their conditional dependencies via a directed acyclic
graph (DAG). In Bayesian networks, nodes represent random
variables and edges represent conditional dependencies; nodes
which are not connected indicate conditionally independent
variables. Each node is associated with a probability function
that takes a set of values of its parent variables as input and
gives the probability of the variable represented by the node
[7].



In this study, we build a Bayesian network to model the
causality between current observations and failures that appear
later. That is, given a set of attribute variables (observations)
o ={01,02...0,} and a class variable (failure) f, a Bayesian
network classifier maps an instance of o to a value of f. And
to make a failure prediction, the classifier simply computes
arg min, P(f|o) using the distribution P(x) represented by
B.

P(x)

P(flo) = B

x P(z) ey

P(z) = [[ P(clpa(c)) )

Note that in Equation (1) , P(x) = P(o U f), given an

instance of observation, f(o) is known, so the classification
can be made using only Equation (2).

B. Random Variables

All random variables used in our Bayesian network are
binary, and are classified into three categories: (1) correlation
attribute: a total number of 68 attribute variables represent-
ing the occurrence of 68 NON-FATAL events within W;
(2) statistic attribute: 4 attribute variables used to capture
statistical features during the W, window and; (3) Failure
State: a single class variable named Fatlure with either
TRUE or FALSE state, representing whether the FATAL events
(intervals) appear or not. We give the detailed description of
the first two categories as below.

1) Correlation attribute: The idea of using the occurrence
of NON-FATAL events as attribute variables derives from
a common method used for failure prediction: association
rule based techniques [6][18][17]. Intuitively, the direction of
causality in our Byesian network model should be: [events
with lower severity] — [events with higher severity]. In
other words, we assume that events with lower severity
usually occur in advance and indicate a trend that events
with higher severity will appear later. In the RAS log used
for our experiment, there are a total number of 243 kinds
of NON-FATAL events with distinct ERRCODEs, each of
which is a candidate as a random variable. However, not all
of them have causal relationships with future FATAL events.
According to the association rules extracted by [8], we select
68 out of these 243 kinds of NONFATAL events to be random
variables. Each variable is named after its ERRCODE of the
corresponding NON-FATAL event and has two states: YES
and NO. Within W, if an event belonging to one of the 68
kinds occurs, the state of the corresponding variable will be
set to YES. Table II summarizes these 68 correlation variables.

2) Statistic attribute: Four variables are used in our
Bayesian network to capture statistical characteristics in
Wobs. The statistical characteristics such as the frequency of
failure occurrence and time between failures have proven to be
very useful for failure prediction [16][20][3]. Each attribute

SEVERITY

COMPONENT INFO | WARN [ ERROR
KERNEL 1 19 1
CARD 4 2 3
BAREMETAL 10 0 0
DIAGS 2 6 4
MMCS 4 1 7
MC 4 0 0

TABLE II
COMPONENTS AND SEVERITY LEVELS OF THE 68 CORRELATION
VARIABLES

variable in this category has two states: NORMAL and
ABNORMAL. The state of the variable depends on whether
the statistical feature it represents exceeds a predefined
threshold. If yes, the state will be ABNORMAL, otherwise, it
will be NORMAL. These four statistic attributes are:

o Event Deviation: it describes the deviation of the number
of events in W,,s from the average number, defined as
N“m-EzemS*A”g-E”e"ts, where Num_FEwvents is the

vg_Fvents . X L
number of events (all severity levels) occurring within

Wops and Avg_FEwvents is the average number.

e Fatal Rate in W, the percentage of FATAL events in
Wobs'

e Fatal Rate in I,,: the percentage of FATAL events in [,,.

e Time from Last Failure: the time span from the last
failure to the beginning of W4;.

Note that the variable Fatal Rate I, is only applicable
for the period-based approach because, in the event-driven
approach, W, is not divided into time intervals. Similarly, the
beginning of W4, refers to the definition in the period-based
approach, for event-driven, it should be the time of Fatlure.
(see Figure 2). The variable Event Deviation describes how far
the number of events in W, differs from the average number.
The variables Fatal Rate in W5 and Fatal Rate in I,, compute
the ratio of FATAL events to all events occurring in the time
window, indicating a commonly used assumption that the ratio
of FATAL events will be higher than usual if another failure is
approaching. In other words, if multiple failures occur within
a short period of time, it is highly possible another failure will
come soon. The variable Time from Last_Failure captures the
distribution of time between failures and typically the longer
the time is from the last failure, the higher possibility it is to
see another failure.

IV. EXPERIMENT

We conduct two sets of experiments. In the first set, we
analyze the impact of W5 on both period-based and event-
driven approaches and focus on the best performance they can
achieve respectively without considering Wj;. In the second
set, we apply different W5 and Wi, in both approaches and
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Fig. 4. Evaluation on both approaches using different Wy

evaluate the effects of lead time on their accuracy. All the
experimental results given in this section are based on 10-fold
cross validation.

A. Evaluation Metrics

Three metrics are used to evaluate prediction accuracy.
Using the symbols shown in TABLE III, the definitions of
these metrics are as below.

TP

pT‘ecision = W
recall = L
CTTPIFN
2T P

F =
_measure TP+ FP + FN

Since predictors with higher precision usually have lower
recall, F_measure provides a balanced measure of the good-
ness of prediction methods.

Predicted Class FATAL | NON-FATAL
True Class FATAL TP EN
u NON-FATAL TP TN
TABLE III
THE CONFUSION TABLE
B. Results

In the first set of experiments, we examine the impact of
Wops on both period-based and event-driven approaches, with
lead time being set to zero. We vary W ;s from 10 minutes to
48 hours. Figure 3 shows the trends of F_measure results for
both approaches, where we only list the results of W, setting
between 4 hours and 32 hours. It is a little bit surprising that
the event-driven approach outperforms the period-based one
till Wops gets close to 16 hours.

As we can see from Figure 3, the accuracy achieved by the
period-based approach is increasing with the growth of W,
whereas it is decreasing in case of applying the event-driven
approach. To better illustrate the detailed difference between
these two approaches, Figure 4 presents the precision, recall
and F_measure results for these approaches in separate plots.
In our experiment, the period-based approach achieves its best
performance (i.e., 64.8% precision and 65.2% recall) when
Wops 18 set to 48 hours, while the event-driven one reaches
its peak (i.e., 82.3% precision and 85.4% recall) when Wy
is set to 10 minutes. Without considering the difference of
Wops, the event-driven approach outperforms the period-based
approach significantly.

Further, as shown in Figure 4, the evaluation results of
these two approaches show different characteristics. First,
the optimal W,s(s) to achieve the highest accuracy are
significantly different (i.e., 48 hours vs 10 minutes). As a
result, the event-driven approach seems suitable for minute-
level prediction, which facilities fast and low-overhead fault
management actions, whereas the period-based approach is
more fit for long-term prediction (e.g., in the scope of dozens
of hours). Second, the event-driven approach is more sensitive
to Wy than the period-based one. The period-based approach
gets about 30% accuracy enhancement from the 2-hour W
to the 48-hour W5, while the event-driven approach lose its
accuracy up to 35% within about 200 minutes. Therefore it
is more critical to identify the optimal W, for event-driven
approach.
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In the second set of experiments, we investigate the impact
of Wj, on both period-based and event-driven approaches. In
previous studies [19][11], W}, varies according to W;s, and
the increasing of W;; leads to lower accuracy. Since most fault
management operations in the Blue Gene/P system require at
least 5 minutes and can be completed within 2 hours [9][12],
we use Wi € {15min, 30min, 1hour, 2hour} for the period-
based approach and W;; € {5min, 10min, 15min,30min}
for the event-driven approach in the experiment.

The results are shown in Figure 5. Obviously, the period-
based approach is less sensitive to W, than the event-driven
one. On one hand, as shown in Figure 5(a), the 2-hour W,
only leads to about 10% loss of accuracy for the 2-hour
Wops, and the impact of W;, decreases as W5 grows. When
Wops 1s set to 48 hours, the impact of W, is negligible. The
introduction of the 2-hour W can lead to an even higher
accuracy due to less noisy information. On the other hand, as
shown in Figure 5(b), there is a dramatic drop of accuracy
(i.e., about 40%) for the 10-minute W,;, when a 5-minute
W is added.

There are several explanations on the observations from
Figure 5. First, although W;.(s) used in the event-driven
approach is much smaller than that used in the period-based
approach, their ratios to Wops(s) are larger. In other words, a
higher ratio of W, /W, substantially introduces more side
effects. Second, the event-driven approach is very sensitive
to NON-FATAL events occurring right preceding the failure.
That is the reason why the event-driven predictor can achieve
its best performance with W, around 10 minutes, and long
lead time tends to reduce prediction accuracy significantly. On
the contrary, the period-based approach takes more benefits
from statistic attributes, which is more robust to the impact
of lead time. Third, since the period-based approach is made
for the time interval W,q; rather than a single event, there is
a time interval between the beginning point of W4, and the
failure occurrence time. As a result, a natural lead time exists
in the period-based approach, and the side effects introduced
by W, are trivial.

Based on the observations above, we further study the
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The effects of lead time on both approaches

advantages and disadvantages of both approaches. First, al-
though the event-driven approach is sensitive to Wyps, we
can not simply declaim that it is only suitable for minute-
level prediction. This is because it outperforms period-based
till W5 gets close to 16 hours, which can not be considered
as short-term. Second, although the period-based approach can
achieve even higher accuracy if we keep on increasing W, in
the experiment, it is not practical for real applications. There
are three reasons: (1) few fault management operations need
that long-term prediction (e.g., 48-hour W, or longer); (2)
since one or more failures can occur at any time points within
Whpat, a large Wpg; indicates less certainty about failures’
occurring time; and (3) the more failures may occur within
Whpat, the more difficulties to give an accurate diagnosis for
their locations, which is crucial to action scheduling in fault
management. Third, although the event-driven approach is
more sensitive to W, its accuracy with W, added is still
comparable to that of period-based approach (see Figure 5).
Finally, Table IV summarizes our findings from this study,
where the two approaches are separated by the 16-hour W .

V. RELATED WORK

Recognizing the importance of proactive fault management,
considerable research has been conducted on failure predic-
tion. Salfner et al. give a comprehensive survey of existing
online failure prediction technologies in [15]. Based on the
monitoring and trigger mechanism, existing methods can be
broadly classified as event-driven approach or period-based
approach [15]. In large-scale systems, a majority of online
failure predictors are based on the event-driven approach.
For example, Sahoo et. al. uses association rules for failure
prediction in a 350-node IBM cluster [14]. In [10], several
statistical based techniques are studied to capture the event
causal correlations for failure forecasting in a Blue Gene/L
system. In our previous study [8], we investigate a dynam-
ic meta-learning prediction engine by adaptively combining
the merits of various data mining techniques. While event-
driven approach has been studied extensively, research on
period-based approach for large-scale systems is limited. As a



Event-driven Period-based
Wobs 10 min 10 min ~ 60 min 1 hour ~ 16 hour 16 hour ~ 48 hour 48 hour
F measure Best accuracy Drops to 55.3% Drops to 41.0% Increase from 40.9% smoothly Best accuracy
- 83.8% dramatically smoothly in a roundabout manner 65.0%
Sensitivity to W;, High Medium Low Low Low
Best fit Shor\t};?ta;z)nuf;e‘gzctlon Medlumv;i:;mmgrtedlctlon Not recommend Not recommend Long-term prediction

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS

complement to existing work, this study compares these two
approaches in terms of prediction accuracy and practical use
in reality. To the best of our knowledge, we are not aware
of any such comparison for failure prediction in large-scale
systems like Blue Gene series.

Our study in the period-based approach is inspired by
the Liang’s work in [20], which periodically explores three
different classifiers and evaluates them with Blue Gene/L. RAS
logs. Our work differs from [20] in two key aspects. First,
while their study only uses the statistical characteristics as the
feature for prediction, we collect both correlation attributes
and statistic attributes to capture system-wide symptoms and
improve the prediction accuracy. Second, the lead time is
explicitly considered in our predictor, and we study the impact
of lead time on prediction accuracy in our experiments.

Bayesian methods have been widely used for anomaly
prediction. For example, Hamerly and Elkan present both
supervised and unsupervised methods based on naive Bayes
classifier to predict disk failures [4]. Pizza et. al. propose a
Bayesian method to distinguish transient faults from perma-
nent faults [13]. In this paper, we design a general Bayesian
classifier for the prediction, which is adopted for both period-
based and event-driven approaches.

VI. CONCLUSION

In this paper, we have presented a comparison of event-
driven and period-based failure predication approaches for
high performance computing systems. The proposed Bayesian-
based predictor has proven to be effective for both period-
based and event-driven approaches, achieving up to 65.0% and
83.8% prediction accuracy respectively. Experimental results
show that the event-driven approach outperforms the period-
based one significantly without considering W;,. Although the
period-based approach has the advantage of less sensitivity to
both W5 and Wi, and is suitable for long-term prediction
(i.e., 48-hour W, or longer), considering the practical time
consumed by commonly adopted fault management strategies,
the event-driven approach is preferred in most cases.

We are planning to study more cases with a variety of HPC
systems, such as the Cray XTS5 at ORNL. This research will
be integrated with the FENCE [1] project and deployed on
real systems for improving the overall fault management.
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