
The Effect of System Utilization on Application Performance
Variability

Boyang Li
Illinois Institute of Technology

Chicago, IL
bli70@hawk.iit.edu

Sudheer Chunduri
Kevin Harms

Argonne National Laboratory
Lemont, IL

sudheer@anl.gov,harms@alcf.anl.gov

Yuping Fan
Zhiling Lan

Illinois Institute of Technology
Chicago, IL

yfan22@hawk.iit.edu,lan@iit.edu

ABSTRACT
Application performance variability caused by network contention
is a major issue on dragonfly based systems. This work-in-progress
study makes two contributions. First, we analyze real workload
logs and conduct application experiments on the production system
Theta at Argonne to evaluate application performance variability.
We find a strong correlation between system utilization and perfor-
mance variability where a high system utilization (e.g., above 95%)
can cause up to 21% degradation in application performance. Next,
driven by this key finding, we investigate a scheduling policy to mit-
igate workload interference by leveraging the fact that production
systems often exhibit diurnal utilization behavior and not all users
are in a hurry for job completion. Preliminary results show that
this scheduling design is capable of improving system productivity
(measured by scheduling makespan) as well as improving user-level
scheduling metrics such as user wait time and job slowdown.
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1 INTRODUCTION
Interconnection networks play a critical role in high-performance
computing systems. They serve as a “central nervous system” for
data exchange between computer nodes. As the computation be-
comes cheaper, the network is increasingly becoming a scarce re-
source. Dragonfly topology provides high bandwidth and low net-
work diameter, hence being regarded as a promising solution for
building exascale systems. Nevertheless, dragonfly-based systems
are vulnerable to performance variability due to network sharing.
A recent study shows that the run-to-run variability of application
runtime can be up to 2X [11]. Performance variability causes se-
rious issues for application benchmarking and cluster scheduling.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ROSS’19, June 25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6755-4/19/06. . . $15.00
https://doi.org/10.1145/3322789.3328743

For example, HPC users are required to provide runtime estimate
for their job upon job submission. When a job’s execution time
exceeds its runtime estimate, it gets killed by the scheduler. Due
to performance variability, cautious users tend to exaggerate their
job runtime estimate, which in turn leads to poor scheduling effi-
ciency [13, 22].

Recent studies have identified that communication interference
due to network contention is a dominant cause of performance vari-
ability [24]. Exploiting job scheduling to mitigate communication
interference is an active research topic. Existing cluster scheduling
studies mainly focus on developing an appropriate job placement
policy or routing scheme in an attempt to intelligently map applica-
tion processes onto compute nodes so as to alleviate communication
interference [9, 23, 24]. Being complementary to the existing stud-
ies, this work seeks to examine the performance variability problem
on dragonfly-based systems from a different angle.

1.1 Paper Contributions
In this study, we first investigate how system utilization influences
application runtime variability. Specifically, we analyze the real
workload logs collected from the Theta [7] system to study the
performance variability of production applications. Theta is a 11.69-
Petaflop production system equipped with 4,392 nodes, each con-
taining a 64 core Intel Xeon Phi processor. We observe that there
is a strong correlation between performance degradation and sys-
tem utilization where a high system utilization (e.g., above 95% for
the workload in this study) can cause average application runtime
increase by up to 21%. We further validate this observation by con-
ducting application experiments (over 4000 application tests) to
assess application performance variability. Our log analysis and
application experiment clearly indicate that application runtime
tends to increase by up to 20% under a high system utilization
period. In a high system utilization environment, it is more likely
for the applications to compete for network resources (e.g., link
bandwidth), hence resulting in longer application runtimes.

HPC systems are expensive, and the conventional scheduling
focuses on achieving high system utilization (i.e., close to 100%). The
hypothesis of this study is that on shared networking systems such
as dragonfly, we shall not solely target high utilization for scheduling
because of the potential application performance degradation. We
provide a simple example to illustrate our argument. Suppose we
have a 10-node system, and there are eighteen jobs waiting for
allocation: nine 9-node jobs and nine 1-node jobs, each having a
runtime estimate of 5 hours (Figure 1). The system has a shared
interconnect network where performance variability is observed.
We assume for each application, its runtime will be increased by
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Figure 1: Scheduling for utilization vs for productivity

20% (thus becoming 6 hours) due to network sharing when system
utilization is greater than a threshold (e.g., 95%). Figure 1(a) presents
the case where the scheduling goal is high system utilization (i.e.,
100%), whereas Figure 1(b) illustrates a different scenario where a
higher system productivity (measured by scheduling makespan —
the total length of the schedule to complete all the jobs) is achieved.
The example clearly shows that a system of 100% utilization may
not be as productive as a system of 90% utilization.

It is time to rethink the design of HPC scheduling on shared
dragonfly systems. Rather than solely targeting at high system
utilization, other aspects like performance variability and system
productivity should be considered in the scheduling design. Ideally,
systems should provide real-time traffic monitoring mechanism.
When a user job is submitted, the scheduler interacts with the traffic
monitor to keep track of all of the traffic in the network and to
detect network contention occurring at an endpoint or inside of
the network fabric. It then invokes a learning model to model the
behavior of complex, interacting workloads on the shared resources
and to estimate potential system productivity values of when/where
to allocate the user job onto the system through cost-benefit tradeoff
analysis. Unfortunately, the existing Dragonfly systems do not
have such a traffic monitor. In the recent announcement [2], Cray
Slingshot interconnect for the next generation of supercomputers
is expected to provide a very complex set of traffic monitoring and
bookkeeping.

For now, the question iswhether it is possible for us to improve sys-
tem productivity on a dragonfly system by leveraging the observation
made in our empirical analysis. In practice, there are ample opportu-
nities for applications to avoid execution under heavy loads. First,
on a production supercomputer, resource utilization often exhibits
a fluctuating pattern where the utilization rate has a diurnal pattern
throughout a day [15]. For instance, the Theta workload log shows
that resource utilization fluctuates throughout the day and the fluc-
tuation can be as high as 3X. Such a bursty behavior presents an
opportunity to avoid utilization peaks without impacting the sys-
tem throughput. Second, production HPC facilities typically serve

users all over the world and the users of different regions have dif-
ferent sleep or work schedules. At any time, some users are active
while others are inactive (e.g., sleep or travel). Being analogous
to the electricity charge system where the electricity companies
provide a lower price to attract residents to use electricity at night
[26], similarly HPC facilities could offer users a discount charge
on core-hours if they allow their jobs to be postponed for flexible
scheduling. The delay of jobs belonging to inactive users can fur-
ther create more opportunities for the scheduler to make a flexible
job allocation for mitigating potential workload interference.

In the second part of this paper, we explore a scheduling design
named CEIL for the system whose resource utilization exhibiting a
diurnal pattern such as Theta. CEIL allows users to specify at the
job submission whether their job is postponable or not. CEIL holds
the postponable jobs temporarily and releases them during low
utilization period. Moreover, when scheduling a job from the head
of the waiting queue, if the allocation of the job causes the system
to a high system utilization situation, CEIL will choose a smaller
sized job from the waiting queue. By actively monitoring system
utilization, CEIL attempts to avoid scheduling jobs when the system
is heavily loaded. We evaluate CEIL through trace-based simulation
with real workload traces collected from Theta at Argonne. Our
preliminary results show that by leveraging the fluctuating resource
usage pattern and the existence of postponable jobs, CEIL can
effectively reduce high system utilization periods (measured by the
metric percentage of high utilization periods) without sacrificing the
system throughput (i.e., scheduling makespan). Moreover, CEIL is
capable of improving the user-level metrics, namely user wait time
and job bounded slowdown, by up to 35%.

CEIL can work with any of the job ordering policies for enforcing
job priority according to a site’s policy. It is orthogonal to existing
topology-aware job placement studies [9, 23, 24]. For a given job,
CEIL can be used to intelligently determine when it should be
executed to avoid performance degradation, whereas topology-
aware job placement scheduling can be applied for a smart job
placement once the job is allocated onto the system for execution.

1.2 Paper Outline
The remainder of this paper is organized as follows. We first discuss
related work and background of this study. The empirical anal-
ysis of system utilization on application performance variability
is presented in Section 3. Section 4 present CEIL design and its
trace-based simulation results. Finally, we summarize the paper in
Section 5.

2 BACKGROUND AND RELATEDWORK
2.1 HPC Cluster Scheduling
A cluster scheduler is responsible for allocating resources and for
determining the order in which jobs are executed on a HPC system.
When submitting a job, the user is required to provide two parame-
ters of the job: number of compute nodes required for the job (i.e.,
job size) and job runtime estimate (i.e., walltime). The scheduler
determines when and where to execute the jobs. Once a new job
is submitted, job scheduler sorts all the jobs in the waiting queue
based on a job prioritizing policy. A number of popular job prior-
itizing policies have been proposed, and one of the widely used



policy is FCFS [18], which sorts jobs in the order of job arrivals.
Another scheduling policy called WFP [8] periodically calculates a
priority increment for each job in the queue. In addition, backfilling
is a commonly used approach to enhance job scheduling by im-
proving system utilization, where subsequent jobs are moved ahead
to utilize free resources [18, 21]. A widely used strategy is EASY
backfilling [18] which allows short jobs to skip ahead under the
condition that they do not delay the job at the head of the queue.

On Theta, Cobalt is deployed for cluster scheduling [8]. In order
to achieve a number of specific site goals, a scheduling policy called
WFP with EASY-backfilling is adopted for batch scheduling on
Theta. It uses a utility “function” to prioritize jobs for scheduling.

2.2 Related work
The impact of communication interference on application perfor-
mance variability on HPC systems has been studied for a long
time. Skinner and Kramer [20] identified significant performance
variability due to network resource contention. They claim that
performance variability is inevitable on either fat-tree or torus net-
works as long as network sharing is permitted among concurrently
running applications. Bhatele et al. [10] used a specific application,
p3FD, to study the performance variability on different HPC pro-
duction systems with torus interconnect topologies and found that
performance variability on Cray XE6 system was due to the com-
munication of competing jobs. Yang et al. [25] studied the commu-
nication behavior of three parallel applications on a torus network
and analyzed interference by simulating three applications running
both independently and concurrently. They found resource alloca-
tion with respect to communication pattern awareness contributes
to alleviating inter-job interference.

Since the dragonfly topology was proposed, many studies have
been conducted to explore the efficiency of routing, task mapping,
and job placement on such networks. Jain et al. analyzed the behav-
ior of a dragonfly network with various job placement and routing
policies [16]. They demonstrated the cost and benefit for each pol-
icy with synthetic applications and traffic models. Yang et al. [24]
found the performance improvement of communication intensive
applications come at the expense of performance degradation of
less intensive applications.

Job scheduling has a long history, and is one of the major soft-
ware components in the HPC area. The well-known commercial and
open source job schedulers include PBS [6], SLURM [27], Cobalt [8],
etc. All the existing research on mitigating job interference with
the help of job scheduling is to focus on developing an appropriate
job placement policy or routing scheme which attempts to intel-
ligently allocate job processes onto computer nodes to alleviate
communication interference.

This study differs from the above studies in two aspects. First,
this work provides extensive log analysis and application exper-
iments on a production system. Our analysis shows that a high
system utilization leads to longer applicatin runtimes. Second, being
orthogonal to the existing topology-aware job placement studies,
this work proposes the use of proactive scheduling strategy to avoid
the allocation of user jobs under high system utilization. We be-
lieve that in order to reduce job interference on dragonfly systems,

Table 1: Logs of Theta at ALCF

Log name Number of record items Time period

Aprun log 307303 Jan/2018-March/2018
Cobalt log 44870 Jan/2018-March/2018

it is critical for job scheduling to include both a proactive sched-
uling strategy like CEIL and a topology-aware placement policy
[9, 23, 24].

3 EMPIRICAL ANALYSIS
In this section, we examine how application runtimes vary under
different system utilization rates. We first analyze a Theta work-
load which consists of production jobs submitted by various users
over 3-month period. The observations from this analysis are then
validated using real application experiments on Theta. For each
application experiment, we conduct hundreds of application runs
on various times and days. In total, we perform 4000+ application
runs.

3.1 Log analysis
For the log analysis, we use both the Cobalt and aprun logs [8,
17]. Cobalt log records job specific information such as start time,
end time, project name and number of nodes requested. A Cobalt
job can contain multiple aprun commands. Aprun log records the
meta data related to application execution such as executable name,
command line input arguments and exit code. We use the aprun log
to identify the records belonging to the same application, and use
the corresponding Cobalt log entries to calculate the average system
utilization during an application’s execuation. Table 1 summarizes
the details of the logs used in this study.

In particular, we examine both logs to identify the repeated
executions of the applications and then analyze how their runtimes
vary under the potentially different system utilization rates during
these executions. We consider two log entries belong to the same
application only when all of the following information is matched:
user name, project name, number of nodes (job size), name of
the executable, aprun command, current working directory, and
the exit code. In our analysis, we only consider the executions
that exit system normally. While binning the log records based on
the application executable names, we ensure the applications that
have seen major source code changes are not considered. Also, we
ignore the records for applications whose performance variability
is larger than 3X as they potentially belong to microbenchmarks or
development codes. Log records for the jobs using 16 or fewer nodes
are also discarded since the size of debug queue on Theta is 16 nodes.
Essentially, we make sure that the log records corresponding to real
production scale applications are considered for further analysis.

From the 3-month logs, we identified 15 applications that have
multiple executions. These applications are from different science
domains such as Material Science, Engineering and Physics. Table
2 summarizes top five applications with high repetition frequency
for various job sizes. We refer these applications as AppA, AppB,
AppC, AppD, AppE to comply with the system privacy policies.

For these five applications, the log records corresponding to their
multiple runs are binned into two categories: one group of runswere
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Figure 2: Application runtimes under different systemutilization rates. Here application runtimes and systemutilization rates
are extracted from the Theta log (Jan-March of 2018).

Table 2: Summary of application experiments

Name Nodes Runs Sciece Domain Avg. runtime(s)

AppA 32 79 High Energy Physics 473.2
AppB 128 74 Engineering 310.2
AppC 256 194 Material Science 146.1
AppD 512 112 Plasma Physics 213.4
AppE 1024 73 Material Science 234.6

executed under >95% utilization (referred as High) and the other
group of runs were executed under <=95% utilization (referred as
Normal). In order to ensure better statistical significance of the
following analysis, the two groups should be balanced in terms
of their sample sizes. Having the 95% utilization is an appropriate
boundary for ensuring this balance for this workload set.

Figure 2 presents the distribution of application runtimes under
different system utilization rates. For each application, the system
utilization rate is calculated as the average of system utilization
rates observed during its execution.

We notice that there is a strong correlation between high system
utilization and application performance degradation. For each ap-
plication, the summary statistics (mean, median and IQR) of the
runtimes under the High utilization are higher than the same un-
der the Normal utilization. Across the applications, compared to
the runs under Normal utilization, the runs under High utilization
show an increase ranging from 6.7% to 21.1% in their mean runtime.
Two-sample Z-test [12] is applied to evaluate the statistical signifi-
cance of the difference between the means under Normal and High
utilization. The hypothesis that the mean of the runtimes under
the High utilization is larger than that under Normal utilization is
accepted by two-sample Z-test with 90% confidence. Furthermore,
for each application, its maximum runtime always occurred when
the system utilization was higher than 95%.

Among the 15 applications, 12 applications exhibited the same
statistical behavior as shown in Figure 2. However, three applica-
tions do not exhibit any clear pattern, and the possible reasons are:
the application is not communication intensive, or the input files
with the same name have different contents.

While the log analysis is about analyzing the jobs submitted by
various users, the controlled experiments are about running the
experiments ourselves. In order to validate the observations made
from the log analysis study, we conduct real application experiments
spanning over several months, more details are described in the
following subsection.

3.2 Application Experiments
We use four production applications, MILC [3], Reordered MILC,
Nek5000[4] and Nekbone [5] as part of the controlled experimental
study.

MILC: This code represents Lattice Computation to study Quan-
tum Chromo Dynamics. It implements SU3 lattice gauge theory
and the primary kernel performs a communication intensive stencil
operation on a 4D grid.

Reordered MILC: Reordered MILC is the same MILC applica-
tion run with rank reordering. The rank reordering is done so as to
ensure that intra-node communication is maximized compared to
inter-node communication. Thus compared to MILC, it has more
intra-node communication and less inter-node communication.

Nek5000: Nek5000 is an open-source software that can be used
to simulate laminar, transitional, and turbulent incompressible or
low Machnumber flows with heat transfer and species transport.

Nekbone: Nekbone is a mini-app derived from the Nek5000
CFD code which is a high order, incompressible NavierStokes CFD
solver based on the spectral element method.

We run each application multiple times as listed in Table 3 on dif-
ferent days and times. For each application, three different job sizes
(128 nodes, 256 nodes, 512 nodes) are used. Altogether, we perform
over 4000 application tests for this study. We collected correspond-
ing Cobalt logs for calculating the average system utilization during
these application runs.

Figure 3 shows distributions of the runtimes under Normal and
High system utilization scenarios. The median of the runtimes for
runs under High utilization is larger compared to the same for runs
under Normal utilization. The mean of the runtimes for runs under
High utilization is also higher, ranging from 5.2% to 12.7%, than
the mean for runs under Normal utilization. The hypothesis that
the mean of the runtimes under High utilization is larger than that
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Figure 3: Application runtimes under different system utilization rates. These results are obtained from actual application
experiments performed on Theta. For each application, three different job sizes (128, 256, 512 nodes) are used.

Table 3: Description of Application Experiments

Application name Number of nodes Number of runs

MILC 128 502
256 520
512 440

Reordered MILC 128 241
256 509
512 560

Nek5000 128 156
256 205
512 120

NEKBONE 128 365
256 319
512 259

under Normal utilization is accepted by the two-sample Z-test with
90% confidence, thus confirming the statistical significance of the
analysis. In addition, the maximum runtime occurs only during
High utilization.

Furthermore, the difference between maximum runtimes under
High utilization and Normal utilization is larger for MILC than for
Reordered MILC. Compared to MILC (Figure 3(a)), Reordered MILC
(Figure 3(b)) uses less inter-node communication thus potentially
has lower chances of performance degradation. This confirms that
performance degradation under High system utilization environ-
ment is primarily attributable to the communication interference.

These application experiments based analysis validates the key
findings obtained from our log analysis, that is, a high system utiliza-
tion can lead to a longer application runtime and the worst application
performance always occurs when the system utilization is greater than
95%.

The aforementioned log analysis and application experiments
clearly demonstrate that applications likely suffer significant per-
formance degradation when system utilization is High (e.g., above
95% on Theta). Hence, it is prudent for the job scheduler to proac-
tively avoid the allocation of user jobs onto the system under High
utilization.

4 SCHEDULING FOR PRODUCTIVITY
In this section, we investigate a scheduling policy named CEIL.
CEIL is designed to proactively avoid the allocation of user jobs
onto the system under high utilization. The goal is to improve
system productivity measured by scheduling makespan (defined as
the total length of time to complete all the jobs), rather than system
utilization.

4.1 CEIL Description
The design of CEIL is based on two typical operating features of
HPC systems: (1) not all users are in a hurry for their job completion;
(2) the resource utilization on the system fluctuates throughout the
day. Thus, we introduce the notion of postponable jobs where these



jobs can be postponed and possibly get scheduled to run under
relatively low utilization periods.

CEIL can work with any base scheduler that enforce job priority
according to a site’s policy. It allows users to specify at job submis-
sion whether their job is postponable or not. Users can also specify
an expected job completion time for a postponable job. Besides the
conventional Waiting Queue as is adopted in the existing sched-
ulers, there is an additional queue called Postpone Queue. When
jobs are submitted, the jobs which can be postponed are put in the
Postpone Queue temporarily. The conditions of releasing jobs from
Postpone Queue to Waiting Queue are described in the following
subsection. Jobs in the Waiting Queue are ordered according to the
site’s policy. Only the jobs in the Waiting Queue can be scheduled
for execution. CEIL selects the job from the head of the Waiting
Queue and checks whether the allocation of this job would increase
utilization beyond a threshold (e.g, 95%). If the check fails, CEIL
allocates the resources for the job. However, there is an exception to
this check for the jobs requesting the entire machine or occupying
95% or more of the nodes. In such cases, CEIL will schedule them
without applying the threshold limitation. During the backfilling
process, CEIL backfills the ready jobs from the Waiting Queue be-
fore looking at the Postpone Queue. CEIL also avoids backfilling
jobs which would increase utilization beyond the threshold.

Given that the scheduler only allocates resources to the jobs in
the Waiting Queue, jobs are not kept permanently in the Postpone
Queue. Thus, when one of the following conditions is satisfied, the
jobs in the Postpone Queue are moved to the Waiting Queue.

Empty Waiting Queue: When the Waiting Queue is empty,
jobs in the Postpone Queue are moved to the Waiting Queue so
that the job scheduler can allocate available resources to these jobs
for improving the system utilization.

Low utilization: When the utilization is low and there are still
jobs in the Waiting Queue, it means the sizes of the jobs in the
Waiting Queue are too large to be “backfilled”. When these big jobs
accumulate in the Waiting Queue, there is a possibility that the
jobs in the Postpone Queue will not complete before the deadline,
i.e., the specified expected job completion time. Hence, a threshold
of 60% utilization is used to specify the lower bound of system
utilization. If the system utilization is lower than this threshold,
jobs in the Postpone Queue are moved to the Waiting Queue.

Approaching user’s expected job completion time: When
the user’s expected job completion time for a job in the Postpone
Queue is approaching nearer, it should be moved from the Postpone
Queue to the Waiting Queue. In this study, a threshold of (job
completion time - job runtime estimate - 3hour) is used to determine
the latest timestamp when a postponable job should be moved to
the Waiting Queue.

4.2 Experimental Configuration
CEIL is built on top of a base scheduler where the base scheduler
enforces job priority and CEIL is integrated to improve system
productivity by leveraging postponable jobs and fluctuating system
usage. In the rest of the paper, we useWFP to denote the original
scheduling policy deployed on Theta, whereas CEIL to denote the
integration of CEIL with the base scheduler. All the scheduling poli-
cies use EASY Backfilling [18] to mitigate resource fragmentation.

Table 4: Theta workload traces

Time period Nodes Users Projects Jobs

07/01/2017-/07/31/2017 3624 148 41 7632
01/01/2018-/01/31/2018 4392 132 75 16184

Table 5: Six workloads with various configurations

Workload Trace Postponable jobs%

Workload 1 Theta in 07/2017 30%
Workload 2 50%
Workload 3 70%
Workload 4 Theta in 01/2018 30%
Workload 5 50%
Workload 6 70%

Event-driven, trace-based simulation with real workload traces is
widely used for evaluating job scheduling efficiency in HPC. In
our experiments, we use two one-month real workload traces from
Theta, and the open-source scheduling simulator CQSim [1] is used
for trace-based simulations.

Table 4 summarizes the Theta workload traces used in our trace-
based simulation. We use two separate one-month logs to represent
different stages of Theta, where the July 2017 workload represents
an early production phase and the Jan 2018 workload represents a
mature and stable phase. The July trace contains 7, 632 jobs, whereas
the January trace contains 16, 184 jobs. We randomly mark some
jobs in the log as the postponable jobs to synthesize a new work-
load. For each trace, we generate three workloads with different
percentages of postponable jobs. In total, we evaluate six work-
loads which are summarized in Table 5. As some jobs are marked
as postponable, we adopt a mechanism similar to that described
in the deadline-based study [19] to specify the deadlines for the
postponable jobs. The deadline for each postponable job is set as
max(24hr , runtime estimate ∗ 10) [19]. According to the log analy-
sis and application experiments listed in Section III, the application
runtime is increased by 5.2%-21.1% when the system utilization is
above 95% on Theta. Hence, for a given application, if it is allocated
and executed when the system utilization is greater than 95%, we
increase its runtime by a random value between 5.2% and 21.1%.

Four widely used metrics are used to evaluate the different sched-
uling methods:

• Makespan is defined as the total length of the schedule to
complete all the jobs. It is used tomeasure scheduling through-
put and system productivity.

• Percentage of high utilization periods is defined as the propor-
tion of the time when the system utilization is higher than
95% in this study.

• User wait time measures the time period between a job’s
expected end time and its actual end time. For a postponable
job, its expected end time is submitted by its user. For other
jobs, job’s expected end time is the job’s requested runtime
after job submission, indicating the user wants their job to be
executed immediately— right after its submission. User wait
time is the same as the conventional job wait time for regular



Table 6: Comparison of system-level scheduling metrics.

Workload Scheduling policy Makespan(s) Percentage of high utilization periods

Workload 1,2,3 WFP 2608532 21.81%
CEIL 2608497 0.06%

Workload 4,5,6 WFP 2684287 45.20%
CEIL 2684202 0.09%
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Figure 4: Comparison of system utilization after applying CEIL and actual system utilization on three randomly selected days.
The blue line shows the actual system utilization on Theta. The red line is corresponding to 95% utilization. The green line
shows system utilization after applying CEIL with 50% postponable jobs (Workload 5).
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Figure 5: Comparison of CEIL and WFP

jobs; however, it is slightly different from job wait time for
postponable jobs. The difference lies in the part that user
wait time doesn’t consider the time period for which user is
not actively waiting for job completion. As an example, if a
user submits a postponable job with a deadline of 8 hours,
as long as the job completes within eight hours, user wait
time is zero.

• job slowdown is defined as the ratio of job response time
(user wait time plus job runtime) to the job runtime. Usually,
a small time bound (60 seconds) is used to avoid the value
skewed by extremely small jobs [14]. This metric captures
the factor that a long job can endure longer waiting time
than a short job.

Note that the first two metrics are used to measure system-level
scheduling performance, whereas the other two metrics are used
to measure user satisfaction.

4.3 Preliminary Results
Table 6 presents system-level scheduling metrics: makespan and
percentage of high utilization periods. Across all the six workloads
tested in this study, CEIL is capable of maintaining the percentage
of high utilization periods under 0.1% — significantly reduced from
the original percentages of 20%-45%. For each workload, there is a
very small percentage of high system utilization periods. This is due
to the fact that Theta targets capability computing and its workload
contains several capability jobs (e.g., whole-machine jobs).

Figure 4 shows comparison of system utilization after applying
CEIL and actual system utilization on three randomly selected days.
The figure clearly shows that CEIL is capable of "smoothing" re-
source utilization curve by delaying some postponable jobs from
high utilization periods to low utilization periods. The resource uti-
lization on a system typically fluctuates throughout the day. CEIL



leverages this utilization feature for reducing high system utiliza-
tion without impacting the system throughput. Although CEIL can
significantly reduce the percentage of high utilization periods, it
does not impact system throughput (measured by makespan) for
all the workloads tested in this study.

Figure 5 presents the average user wait time and bounded slow-
down. CEIL can effectively reduce average user wait time by 12.5%-
35.3%. Job bounded slowdown is reduced by 7.4%−20.2%. In general,
the reduction is higher in the workload 1-3 than that in the work-
load 4-6. The reason is that workload 1-3 are from July of 2017
when Theta was in the early production period. As such, we notice
the workloads in July of 2017 have more low utilization periods
than the workloads in Jan of 2018. Theta is a production system
serving the users all over the world, and at any time, not all users
are in a hurry for their job completion. CEIL takes advantage of
this observation: it smartly delays some postponable jobs without
impacting user’s satisfaction of the scheduling service; meanwhile,
it reduces user wait time for the unpostponable jobs.

5 CONCLUSIONS
In summary, we have investigated whether there is a strong cor-
relation between application runtime and system utilization. Our
extensive log analysis and real application experiments indicate
that a high system utilization can cause application runtime in-
crease by 5.2% to 21.2%. Next, we have investigated a scheduling
strategy CEIL to proactively avoid job allocation under high system
utilization. Preliminary results have demonstrated that CEIL can
effectively smoothen system utilization by leveraging the fluctu-
ating resource demand pattern and the existence of postponable
jobs. As a result, CEIL is capable of improving both system-level
metrics (makespan and percentage of high utilization periods) and
user-level metrics (user wait time and bounded slowdown).

There are some limitations in this work. First, the selection of
95% as the high utilization is specific to the Theta workload. De-
termining the tipping point via more experimental and analytical
study remains as a future work. Second, CEIL explores the fact that
some users are willing to delay the execution of their jobs and sys-
tem utilization often exhibits diurnal pattern. CEIL is not suitable
for the systems which are always heavily utilized. We hope that this
work-in-progress study will motivate the community to rethink the
design of HPC scheduling for tackling the job interference problem
on shared dragonfly systems.
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