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Abstract—Cosmology simulations are highly communication-
intensive, thus it is critical to exploit topology-aware task map-
ping techniques for performance optimization. To exploit the ar-
chitectural properties of multiprocessor clusters (the performance
gap between inter-node and intra-node communication as well as
the gap between inter-socket and intra-socket communication),
we design and develop a hierarchical task mapping scheme
for cell-based AMR (Adaptive Mesh Refinement) cosmology
simulations, in particular, the ART application. Our scheme
consists of two parts: (1) an inter-node mapping to map ap-
plication processes onto nodes with the objective of minimizing
network traffic among nodes and (2) an intra-node mapping
within each node to minimize the maximum size of messages
transmitted between CPU sockets. Experiments on production
supercomputers with 3D torus and fat-tree topologies show that
our scheme can significantly reduce application communication
cost by up to 50%. More importantly, our scheme is generic and
can be extended to many other applications.

I. INTRODUCTION

Simulations are critical to making quantum leaps in cosmo-
logical research as they provide insight for the evolution of
the universe, e.g., the formation of stars and galaxies. There
are mainly two categories of cosmology simulation tools:
those that only simulate the dark matter (often referred to as
“N-body”), and those that model gas dynamics (often called
“hydro”). Since cosmologically relevant scales are mainly
dependent on the dark matter, a hydro simulation tool always
includes an N-body component for modeling the dark matter.
Typically, hydro simulations are much more compute-intensive
than purely N-body simulations. Modern hydro simulations be-
come even more computationally demanding in terms of both
runtime and memory as more and more physical processes
are included, e.g., gas cooling, star formation and feedback,
radiative transfer, and so on. Adaptive mesh refinement (AMR)
[1] has been widely applied to model the dynamics of cosmic
baryons (gas and stars) for cosmology simulation, since it can
follow the fragmentation of gas down to virtually unlimited
small scales. Several parallel codes based on AMR have been
developed for efficient large-scale cosmology simulations,
including Enzo [2] and the adaptive refinement tree (ART)
code [3].

In practice, production cosmology simulations often take a
large amount of runtime, e.g., several days, weeks or even
months, depending on the problem size and the amount
of computing resources used. Even with well-implemented
cosmology simulation codes, it is still challenging to achieve
scalable performance on high performance computing (HPC)
platforms due to the communication time between processes.
From the HPC system perspective, the interconnection net-
works are always sparse, e.g., fat-tree, 3D mesh or 3D torus.
As the system scales up, the diameter of the interconnection
network (i.e., the maximum distance between two nodes)
increases, and the bisection bandwidth (i.e., the minimum total
bandwidth of links connecting one half of the HPC system and
the other) often decreases. Consider that parallel cosmology
simulations usually have sparse communication pattern, it is
critical to map processes onto nodes properly, so that the
traffic in the network will be localized, leading to better
communication performance.

Finding an appropriate mapping of parallel application
processes onto nodes is called topology-aware task mapping. It
considers application-specific communication pattern and the
underlying network topology, and typically aims to reduce the
amount of traffic in the network. This problem has been much
studied for regular communication pattern and regular network
topologies [4]–[6]. In practice, the communication pattern may
be irregular, e.g., the ART code (detailed in Section II). On
the other hand, the user application is often assigned non-
continuous nodes, which form an irregular topology graph
from the user perspective. To the best of our knowledge, there
is little work on mapping real-world application processes with
irregular communication patterns. Moreover, most works only
consider the mapping of processes onto nodes, while the map-
ping of processes within a node is not investigated. On modern
HPC platforms, each node typically contains multiple sockets,
with each socket holding a multicore processor. It is observed
that intra-socket communication is usually faster than inter-
socket communication. Such performance gap should also be
exploited in task mapping for performance optimization.

In this paper, we consider cell-based AMR cosmology
simulations, in particular, the ART code, and develop mapping
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 Fig. 1. An example of large-scale ART simulation. Three panels show the dark matter (left), cosmic gas (middle) and stars (right), respectively.

algorithms to map application processes onto multiprocessor
clusters, where each node contains several multicore CPUs. In
order to exploit the architectural properties of multicore clus-
ters (the performance gap between inter-node and intra-node
communication, as well as the gap between inter-socket and
intra-socket communication), we propose to perform hierarchi-
cal task mapping. First, the mapping of processes onto nodes
(i.e., inter-node mapping) is obtained by using the recursive
bipartitioning technique to minimize the amount of traffic in
the network. Second, for each node, the mapping of processes
onto multicore CPUs (i.e., intra-node mapping) is derived
by minimizing the maximum size of messages transmitted
between CPU sockets. This hierarchical approach has a wide
applicability for cell-based AMR cosmology simulations, and
the general methodology of performing hierarchical mapping
can be extended to many parallel applications. Experiments
are performed on NICS Kraken (a cluster with 3D torus
network, each node containing two six-core sockets), and
TACC Ranger (a cluster with fat-tree network, each node
containing four quad-core sockets). Results show that the
proposed hierarchical mapping algorithm effectively optimizes
both inter-node mapping and intra-node mapping, reducing
communication time by up to 50%.

The rest of this paper is organized as follows. Section II
introduces the ART code and illustrates its communication
pattern. Section III presents our proposed algorithms for hier-
archical task mapping. After experimental results are shown
in Section IV, we present concluding remarks in Section V.

II. THE ART CODE

The ART code is an advanced “hydro+N-body” simulation
tool for cosmological research. It simulates the evolution of the
universe, or more specifically, the formation of stars and galax-
ies. It employs a combination of multi-level particle-mesh and
shock-capturing Eulerian methods for simulating the evolution
of dark matter and cosmic gas, respectively. High dynamic
range is achieved by applying adaptive mesh refinement to
both gas dynamics and gravity calculations. The ART code is
distinguished from the rest of cosmological simulation tools
in the large number of physical processes it includes, which
enable comprehensive simulation of cosmological phenomena
and provide deep insight for cosmologists. Fig. 1 shows the
visualization of a large-scale ART simulation, including dark
matter, cosmic gas and stars.
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Fig. 2. A 2D cell-based adaptive mesh refinement example: a quad tree with
a refinement factor of 2.

As cosmology simulations usually consume a large amount
of computing resources in terms of both runtime and memory,
they are typically carried out on massively parallel high
performance computing (HPC) platforms, e.g., HPC clusters.
Production ART simulations typically involve physics com-
putations for thousands of time steps, and can take several
weeks or even months using hundreds of processing cores on
production HPC platforms. The communication takes signif-
icant amount of runtime. Different from existing studies that
use dynamic task scheduling and sophisticated load balancing
for performance optimization [7], [8], we exploit topology-
aware techniques to reduce the communication time. In this
section, we present an overview of the ART code to highlight
its communication pattern. Additional details about the ART
code can be found in [3], [9]–[11].

A. Cell-based AMR

The cell-based AMR algorithm is adopted in the ART code
for efficient large-scale cosmology simulation. It achieves high
spatial resolution in localized regions by performing refine-
ment and de-refinement based on individual cell. Initially,
a uniform mesh is employed for the entire computational
domain. During computation, if a cell requires higher spatial
resolution, then it is refined into smaller cells at the finer level.
If some smaller cells still require higher resolution, then they
are further refined into even smaller cells. Each refinement
operation decreases the cell size in each dimension by a factor
of r, which is called refinement factor. If in some region the
level of refinement for a cell is larger than required, then



 

Fig. 3. A space-filling curve traversing a 2D mesh (left), and a parallel
partition of the 2D adaptive mesh into four parts (right). The cells with the
same color are assigned to the same process.

the high resolution cells are de-refined, i.e., they are removed
and replaced with the corresponding coarser cell. The overall
computational mesh is refined and de-refined dynamically to
fit computation, resulting in a dynamic hierarchy of cells.
Fig. 2 shows a cell-based AMR example on the 2D mesh,
including the hierarchy of cells and the overall mesh structure.
For simplicity, there are only 3 levels of cells from level 0 to
2. The dotted cells are refined into smaller cells at the higher
level as higher spatial resolution is required. The cell-based
AMR algorithm enables cosmologists to perform large-scale
cosmology simulations which are completely intractable on a
uniform mesh.

The ART code considers a cubic computational domain,
which represents the universe. At the beginning, the cubic
domain is divided into many uniform cubic cells, which are
called root cells. Throughout the ART simulation, cells are
dynamically refined and de-refined with a refinement factor of
2, i.e., each refinement operation evenly divides a cubic cell
into 8 cells, namely an “oct”. All the cells are organized in
oct-trees [12], [13], so that the adaptive mesh can be built and
modified in parallel efficiently.

B. Domain Decomposition

In order to take advantage of the cell-based AMR and
exploit the spatial locality, the ART code adopts a domain de-
composition scheme [14] based on Hilbert’s space-filling curve
(SFC) [15]. The SFC is identified by a traversal of all the root
cells according to their spatial coordinates. A parallel partition
of root cells is obtained by dividing the curve into Np (number
of processors) equal parts, where each part is weighted by the
total workload of the corresponding computational domain. It
is to be noted that each root cell keeps all its child cells at
finer refinement levels as a single composite unit, thus being
the basic object for domain decomposition. Fig. 3 presents a
space-filling curve on a 2D mesh and a parallel partition of
cells into four parts. Because of the spatial locality preserved
by the curve, each part is a continuous domain consisting of
nearby cells, and this property also holds for the 3D case of
parallel partition of the cubic universe in ART. This SFC-based
domain decomposition scheme enables efficient partitioning
of the adaptive mesh by transforming a multidimensional
problem (e.g., 2D or 3D) into a unidimensional one, and it
has been widely employed in parallel AMR implementations
[3], [16]–[18].
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Fig. 4. The communication pattern of ART during a large-scale cosmology
simulation with 1536 processes.

Since the computational mesh and cosmological objects
evolve dynamically during a cosmology simulation, the work-
load distribution between processes changes. In order to ensure
load balance, ART regularly examines the workload distribu-
tion during simulation, and performs domain decomposition
to re-balance workload when necessary.

C. Communication Pattern

With the SFC-based domain decomposition, each process of
ART mainly performs computation for its local computational
domain, and communicates with other processes to get the
boundary information, which are the data associated with the
external boundary cells of each process. It is worth noting
that each process only keeps the data associated with its
local computational domain, enabling a fully parallel solution
for both computation and memory. Updating the boundary
information is the dominating communication routine of ART.
It is implemented by using MPI Irecv() and MPI Isend()
followed by MPI Waitall(). As the physics computation of
each process depends on updated boundary data, such com-
munication cannot be overlapped with computation to reduce
runtime.

Generally, each process only communicates with relatively
small number of processes whose computational domain
is nearby, and the amount of communication between two
processes is mainly dependent on the number of boundary
cells between their computational domains. Fig. 4 shows the
communication pattern of ART for a production simulation
with 1536 processes. Each blue dot at (i, j) represents the
communication between process i and j, and “nz” denotes
the total number of blue dots, i.e., the total number of com-
municating process pairs. Clearly, each process only commu-
nicates with a few other processes, and most communication
is between neighboring processes since most blue dots are
along the diagonal. The communication pattern may vary for
different mesh structure and different number of processes,
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Fig. 5. Interconnected multiprocessor clusters with multicore CPUs on each
node.

yet the sparse and diagonal dominant property always holds
due to the spatial locality provided by the SFC-based domain
decomposition.

For such sparse and diagonal dominant communication
pattern, the system default mapping, which assigns continu-
ous processes to multiprocessor nodes, would provide good
performance as most communication is within nodes. How-
ever, the default mapping can at least be improved by using
efficient task mapping techniques to reduce the amount of
traffic and contention in the network. As the 3D adaptive
mesh for modeling the universe in the ART code is highly
irregular, conventional geometric mapping algorithms [6] are
not applicable for mapping ART processes. In this paper,
we investigate graph methods for task mapping of ART. The
task mapping procedure is designed to integrate with domain
decomposition, and it generates a mapping of ART processes
(i.e., decomposed subdomains) to compute nodes and cores.

III. HIERARCHICAL TASK MAPPING

A. Problem Statement

We consider the problem of mapping parallel ART processes
onto interconnected multiprocessor clusters as illustrated in
Fig. 5. Each node has several multicore CPUs. The com-
munication pattern of ART is represented as a task graph
Gt(Vt, Et), which can be extracted from the decomposed
subdomains. Each vertex in Vt denotes a process, and each
edge (u, v) ∈ Et represents the communication between
process u and v. A weight c(u, v) is introduced for each
edge to denote the amount of communication in bytes between
respective processes. The topology of a multicore cluster is
characterized by a topology graph Gp(Vp, Ep), where each
vertex in Vp represents a node, and each edge in Ep denotes
the link between respective nodes. We also introduce edge
weight for the topology graph to represent the distance in hops
between nodes, so that both direct and indirect links can be
modeled properly.

The mapping of tasks onto nodes is specified by a function
ϕ : Vt → Vp. As each node can accommodate multiple
processes, without loss of generality, we assume that |Vt| is a
multiple of |Vp|, so that each node is assigned |Vt|

|Vp| processes.
There are at least four metrics to evaluate the quality of a
mapping, including the widely-used hop-bytes and dilation,
and recently proposed maximum interconnective message size

[19] and the worst-case congestion [20]. Hop-bytes represents
the total amount of inter-node communication. It is computed
as the total amount of inter-process communication weighted
by the distance in hops between corresponding mapped nodes,
i.e.,

hop-bytes(ϕ) ∆
=

∑
∀(u,v)∈Et

c(u, v)d
(
ϕ(u), ϕ(v)

)
,

where d(ϕ(u), ϕ(v)) is the hop distance, usually measured
by the length of the shortest path between node ϕ(u) and
ϕ(v). The dilation of an edge (u, v) ∈ Et is the length of the
shortest path connecting ϕ(u) and ϕ(v) in Gp. The dilation
of a mapping is the maximum dilation among all edges in
Gp, and it measures the most stretched edge. The maximum
interconnective message size is the maximum size of messages
transmitted between nodes. The congestion of a link in the
network is measured by the amount of traffic on that link
divided by the link capacity, and the worst-case congestion
over all links denotes the worst-case contention in the network.
In general, finding the optimal mapping ϕ that minimizes
one or more of the aforementioned metrics is an NP-hard or
NP-complete problem. Many heuristic algorithms have been
proposed to find a fairly good mapping in reasonable amount
of runtime, including greedy approaches [4], [20], geometric
methods [6], recursive bipartitioning [20]–[22], graph similar-
ity [20], and so on.

To the best of our knowledge, most studies focus on
mapping tasks onto nodes (i.e., a single-level mapping), while
the mapping of tasks within nodes is undefined. A proper inter-
node mapping typically reduces the communication between
nodes by grouping most heavily communicating processes
within nodes, leading to large amount of intra-node commu-
nication. If inter-node mapping has been optimized properly,
then it becomes critical to optimize the intra-node mapping
by exploiting the topology within a node. In this paper, we
optimize both inter-node mapping and intra-node mapping in
a hierarchical manner.

B. Proposed Approach

Typically, the inter-node communication is more expensive
than intra-node communication. Likewise, within a node, the
inter-socket communication is often more expensive than intra-
socket communication 1. To fully exploit these communication
characteristics on multicore clusters, we propose to perform
task mapping hierarchically in two phases:

• First, perform inter-node mapping;
• Second, perform intra-node mapping within each multi-

processor node.
In the first phase, the mapping of tasks onto nodes can be
derived by using conventional task mapping techniques. In the
second phase, novel technique is required to map tasks onto
multicore CPUs within each node.

1This is our observation from the experiments on several production
multiprocessor clusters. The performance of intra-node communication is
determined by specific MPI implementation.



Algorithm 1 Recursive Mapping
Input: task graph Gt(Vt, Et), topology graph Gp(Vp, Ep).
Output: mapping ϕ : Vt → Vp.
1 recursive mapping(Vt, Vp)
2 {
3 if (|Vp| = 1) {
4 ϕ(u) = Vp, ∀ process u ∈ Vt;
5 return;
6 }
7 (Vt0, Vt1)← bipartition

(
Gt(Vt, Et)

)
;

8 (Vp0, Vp1)← bipartition
(
Gp(Vp, Ep)

)
;

9 Calculate C0, C1, D0, D1;
10 if (C0D0 + C1D1 ≤ C0D1 + C1D0) {
11 recursive mapping(Vt0, Vp0);
12 recursive mapping(Vt1, Vp1);
13 }
14 else {
15 recursive mapping(Vt0, Vp1);
16 recursive mapping(Vt1, Vp0);
17 }
18 }
Fig. 6. The recursive bipartitioning algorithm for inter-node mapping.

1) Inter-Node Mapping: We employ the recursive biparti-
tioning heuristic [20]–[22] for mapping ART processes onto
multiprocessor nodes, aiming at minimizing hop-bytes. This
approach solves the task mapping problem in a divide-and-
conquer manner. It performs recursive bipartitioning for both
task graph and topology graph, and maps subsets of processes
to subsets of nodes until a final mapping is obtained. Many
topologies and communication patterns can be handled by
recursive bipartitioning, and it is proved to be a successful task
mapping technique in the software package SCOTCH [23].

Fig. 6 presents our recursive bipartitioning algorithm for
inter-node mapping. Recall that both task graph and topology
graph are weighted, and their edge weights represent the
amount of communication in bytes between processes and
the distance in hops between nodes, respectively. In order to
reduce hop-bytes, it is critical to map heavily communicating
processes onto the same multiprocessor node, or at least
nearby nodes. To achieve this goal, the task graph is partitioned
with the minimum edge-cut, while the topology graph is split
with the maximum edge-cut. In each step of the algorithm,
The resulting subsets of processes (Vt0, Vt1) and subsets of
nodes (Vp0, Vp1) can be mapped in two ways: the direct
mapping Vt0 → Vp0, Vt1 → Vp1; and the exchanged mapping
Vt0 → Vp1, Vt1 → Vp0. To choose a proper mapping, we
heuristically estimate the cost of these two mappings. Let
Cu be the amount of communication in bytes associated with
process u, Di be the aggregate distance between node i and
other nodes. Let Ck and Dk be the average Cu and Di for
the subsets of processes Vtk and the subsets of nodes Vpk

(k = 0, 1), respectively.

Cu =
∑

∀(u,v)∈Et

c(u, v),

Di =
∑

∀ node j ̸=i

d(i, j),

Ck =
1

|Vtk|
∑

∀u∈Vtk

Cu,

Dk =
1

|Vpk|
∑

∀i∈Vpk

Di.

The cost of the direct mapping is estimated by (C0D0 +
C1D1), while that of the exchanged mapping is (C0D1 +
C1D0). This estimated cost can be considered as a prediction
of hop-bytes. The mapping with smaller estimated cost is
selected in order to minimize hop-bytes.

Theorem 1: The time complexity of recursive bipartitioning
is O

(
(|Et|+ |Ep|) log |Vp|

)
, and the time complexity for cost

estimation is O
(
(|Vt|+ |Vp|) log |Vp|

)
based on precomputed

Cu and Di.
Proof: The multilevel k-way partitioning scheme [24]

computes a bipartition of a graph G(V,E) in O(|E|) time.
The depth of recursive bipartitioning is ⌈log2 |Vp|⌉, and the
size of the graph is decreased by half in each step. Hence,
the total runtime for partitioning the task graph Gt(Vt, Et)

is
∑⌈log2 |Vp|⌉−1

k=0 2kO(|Et|)/2k = O(|Et| log |Vp|). Similarly,
the topology graph Gp(Vp, Ep) is recursively bipartitioned in
O(|Ep| log |Vp|) time. Thus the overall runtime of recursive
bipartitioning is O

(
(|Et|+ |Ep|) log |Vp|

)
. For cost estimation,

both Cu and Di can be precomputed and then they are
used to calculate Ck and Dk in different recursive mapping
calls. The Cu of all processes can be computed in O(|Et|)
time. The distance between a pair of nodes can be obtained
by using platform-dependent techniques, e.g., the pairwise
node distance in a 3D mesh or 3D torus network can be
computed from the coordinates. The Di of all nodes can be
calculated in O(|Vp|2) time using pairwise node distances. In
the recursive mapping procedure, the runtime for computing
Ck and Dk is

∑⌈log2 |Vp|⌉−1
k=0 2kO(|Vt|+|Vp|))/2k = O

(
(|Vt|+

|Vp|) log |Vp|
)
.

In order to reduce the runtime of recursive mapping, the
original task graph Gt(Vt, Et) is partitioned into |Vp| equal
parts by minimizing inter-part communication, where each part
has |Vt|

|Vp| processes. Then an induced task graph Ĝt(V̂t, Êt)
which represents the communication between groups of pro-
cesses is used for efficient recursive mapping.

Theorem 2: With the induced task graph Ĝt(V̂t, Êt), the
time complexity of recursive bipartitioning is O

(
(|Êt| +

|Ep|) log |Vp|
)
, and the time complexity for cost estimation

is O
(
|Vp| log |Vp|

)
.

We use the graph partitioning tool hMETIS [25] for parti-
tioning the original task graph, and the recursive bipartitioning
of both the induced task graph and the topology graph. The
resulting subsets of processes and subsets of nodes may be
unbalanced in some rare cases. A greedy approach is applied to



Algorithm 2 Intra-node Mapping
Input: intra-node task graph G̃t(Ṽt, Ẽt).
Output: mapping of processes onto multicore CPUs.
1 Partition intra-node task graph into ncpus equal

parts Pi (0 ≤ i < ncpus);
2 Map processes in Pi onto CPU i;
3 Loop
4 Identify the edge (u, v) ∈ Et leading to MIMS,

i.e., u ∈ Pi, v ∈ Pj , i ̸= j,MIMS = c(u, v);
5 If the minimum IMS of exchanging a pair of

processes to group both process u and v onto
either CPU i or j is smaller than MIMS;

6 Exchange the pair of processes with the
minimum IMS;

7 Else
8 Break;
9 End If

10 End Loop

Fig. 7. The algorithm for intra-node mapping by minimizing the maximum
inter-socket message size (MIMS).

achieve balanced bipartition by moving the vertex which leads
to the optimal edge-cut. In practice, if |Vp| ̸= 2k, the number
of nodes in some step of the recursive mapping will be odd,
then the cost estimation is not required, and a direct mapping
which maps process groups to equal number of nodes is
adopted. The mapping produced by the recursive bipartitioning
algorithm may be further improved to reduce hop-bytes. The
local search algorithm in [26], and the heuristic in [20] with
the threshold accepting technique can be employed to further
optimize the mapping, but such mapping optimization has not
been exploited in this work.

2) Intra-Node Mapping: The motivation of intra-node map-
ping is to exploit the performance gap between intra-socket
communication and inter-socket communication for perfor-
mance optimization. For each multiprocessor node, we choose
to minimize the maximum inter-socket message size (MIMS),
which is computed as

MIMS ∆
= max

(u,v)∈Et

c(u, v),

subject to the condition that process u and v are on different
CPU sockets of the same node.
MIMS is the maximum size of process-pairwise bidirectional
messages transmitted between CPU sockets. The resulting
mapping places heavily communicating processes on the same
multicore CPU.

Fig. 7 shows the sketch of our algorithm for intra-node
mapping. It utilizes the intra-node task graph G̃t(Ṽt, Ẽt) which
represents the communication between processes within a mul-
tiprocessor node, and maps processes onto multicore CPUs.
We assume that the number of processes |Ṽt| is a multiple of
ncpus (number of CPUs), so that each CPU is assigned |Ṽt|

ncpus
processes. The intra-node mapping is performed in two steps:

• First, initial mapping by graph partitioning;
• Second, fine tuning with a greedy heuristic.

The processes are partitioned into ncpus (number of CPUs)
equal parts Pi(0 ≤ i < ncpus) by minimizing inter-part com-
munication, where each part is mapped onto the corresponding
CPU. In each iteration of fine tuning, the edge (u, v) ∈ Et

resulting in MIMS is identified, i.e., u ∈ Pi, v ∈ Pj , i ̸=
j,MIMS = c(u, v). Then we evaluate whether we can group
both processes u and v onto CPU i or j by exchanging a
pair of processes to reduce MIMS. The resulting inter-socket
message size (IMS) of exchanging process u ∈ Pi and a
process w ∈ Pj \ {v} can be computed as

IMS(u↔ w) = max
(

max
x∈Pi,x ̸=u

c(u, x), max
x∈Pj ,x̸=w

c(w, x)
)
,

Likewise, the resulting IMS of exchanging process v ∈ Pj and
a process w ∈ Pi \ {u} can also be computed. The minimum
IMS of exchanging a pair of processes can be derived by
evaluating all possible process pairs:

(u↔ w), u ∈ Pi, w ∈ Pj \ {v},

(w ↔ v), w ∈ Pi \ {u}, v ∈ Pj .

If it is less than MIMS, then we exchange the pair of processes
with the minimum IMS. Otherwise, the algorithm terminates.

The initial mapping can be obtained in O(|Ẽt|) time by
using the multilevel k-way partitioning algorithm [24]. In each
iteration of fine tuning, the edge (u, v) leading to MIMS can
be identified in O(|Ẽt|) time. In order to evaluate the resulting
IMS of exchanging process pairs, for each process in Pi and
Pj , the maximum amount of communication with another
process in the same part need to be computed. This procedure
takes O(|Ẽti| + |Ẽtj |) time, where Ẽti and Ẽtj be the set
of edges representing the communication between processes
within Pi and Pj , respectively. Then it requires O( |Ṽt|

ncpus )
comparisons to find the minimum IMS of exchanging two
processes.

Theorem 3: The overall time complexity of each iteration
of fine tuning is O(|Ẽt|+ |Ẽti|+ |Ẽtj |+ |Ṽt|

ncpus ).
hMETIS [25] is employed to partition the intra-node task

graph into balanced parts for initial mapping, which is further
improved through fine tuning. It is worth noting that the initial
mapping has the minimum total amount of inter-socket com-
munication, and the fine tuning procedure usually terminates
in a few iterations.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Experiments are carried out on two production multipro-
cessor clusters, NICS Kraken [27] and TACC Ranger [28],
which have different network topologies. Kraken is a Cray
XT5 system with a 3D torus interconnect topology. It is
comprised of 9, 408 compute nodes and each node contains
two 2.6 GHz six-core AMD Opteron processors. Ranger is
a Sun Constellation Linux cluster with a full-CLOS fat-tree
topology. It has a total of 3, 936 compute nodes and each
node has four 2.3 GHz quad-core AMD Opteron processors.



TABLE I
AVERAGE INTRA-SOCKET AND INTER-SOCKET COMMUNICATION TIME (PINGPING)

No. of Bytes No. of Repetitions Kraken (us) Ranger (us)
Intra-Socket Inter-Socket Difference Intra-Socket Inter-Socket Difference

0 1000 0.56 0.81 43.38% 1.27 1.76 38.85%
1 1000 0.58 0.74 27.57% 1.33 1.78 33.85%
2 1000 0.59 0.74 26.96% 1.32 1.78 34.78%
4 1000 0.60 0.75 25.26% 1.32 1.79 35.45%
8 1000 0.62 0.74 20.89% 1.35 1.79 32.68%
16 1000 0.61 0.75 21.90% 1.39 1.81 30.73%
32 1000 0.64 0.83 28.95% 1.35 1.78 31.15%
64 1000 0.65 0.84 30.43% 1.35 1.85 36.92%
128 1000 1.09 1.31 20.06% 1.43 1.88 31.63%
256 1000 1.16 1.39 19.82% 1.55 2.00 28.95%
512 1000 1.37 1.64 19.84% 1.92 2.36 22.76%
1024 1000 1.75 2.08 19.19% 2.48 3.04 22.72%
2048 1000 2.57 3.02 17.77% 3.69 4.34 17.63%
4096 1000 4.39 5.17 17.76% 6.31 6.99 10.77%
8192 1000 7.30 8.87 21.45% 11.59 12.22 5.42%
16384 1000 14.64 16.95 15.76% 24.64 29.12 18.17%
32768 1000 27.86 32.63 17.13% 46.25 54.37 17.54%
65536 640 53.92 64.14 18.94% 89.79 104.73 16.64%
131072 320 36.74 38.11 3.74% 168.94 201.66 19.37%
262144 160 71.09 71.76 0.93% 257.23 342.63 33.20%

A communication benchmark similar to IMB (Intel MPI
Benchmarks) [29] is designed to measure the intra-socket
communication time and the inter-socket communication time
for performance analysis. Note that IMB cannot be employed
for this purpose because we would like to test all possible
communicating pairs of processors. We are particularly inter-
ested in the performance of PingPing, since the communication
between ART processes can be viewed as concurrent PingPing
operations between many process pairs.

To evaluate the performance of the proposed hierarchical
task mapping algorithm, we extract the communication part
of a production ART simulation (with a box of 36 comoving
Mpc on a side and the uniform top level mesh of 2563 root
cells) for tests. For comparison, we evaluate five different
mapping mechanisms: (1) the system default mapping, which
is topology-agnostic; (2) an optimized mapping using MPI
topology function MPI GRAPH CREATE [30]; (3) the pure
inter-node mapping using the algorithm in Section III-B1;
(4) the pure intra-node mapping using the algorithm in Sec-
tion III-B2; (5) the hierarchical mapping integrating both inter-
node mapping and intra-node mapping. Hope-bytes, the max-
imum inter-socket message size (MIMS) and communication
time are used as evaluation metrics.

All the experiments were conducted in production mode
without dedicated nodes, and there are other users sharing the
interconnection network. For each set of experiments with a
particular number of processes, we get the topology informa-
tion between nodes at runtime, generate different mappings
by using the proposed algorithms, and run all the tests with
different mappings in a single batch script. It is worth noting

that different runs often get nodes with different pairwise dis-
tances, and the interference of other running applications may
also be different. Hence, the results obtained from different
runs may not be comparable.

B. Results

 

Fig. 8. The intra-node topology of Ranger (from TACC Ranger website
[28]).

Table I presents the average intra-socket and inter-socket
PingPing communication time over all possible communicat-
ing processor pairs. The overhead of inter-socket communi-
cation compared to intra-socket communication is reported
under the columns “Difference”, and the larger difference
values between Kraken and Ranger are highlighted in bold.
Clearly, Ranger shows a larger performance gap between
intra-socket and inter-socket communication for most message



sizes, because it has more complicated intra-node topology. As
shown in Fig. 8, there are four interconnected CPU sockets
and no direct link exists between socket 0 and 3 on Ranger.
Meanwhile, there are only two CPU sockets on each node
of Kraken. Such architectural difference results in different
communication saving when applying the pure intra-node
mapping and the hierarchical mapping (see Fig. 12 and 16).
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Fig. 9. Comparison of inter-node mapping and default mapping on Kraken
in terms of hop-bytes.
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Fig. 10. Comparison of intra-node mapping and default mapping on Kraken
in terms of MIMS (the maximum inter-socket message size).
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Fig. 11. Comparison of hierarchical mapping and inter-node mapping on
Kraken in terms of MIMS (the maximum inter-socket message size).

Fig. 9 compares of the pure inter-node mapping and the
system default mapping on Kraken in terms of hop-bytes.
The inter-node mapping algorithm (listed in Fig. 6) effectively
reduces hop-bytes for all the test cases, and the maximum
reduction is up to 59%.

Fig. 10 compares the pure intra-node mapping and the
system default mapping on Kraken in terms of MIMS. and
Fig. 11 compares the hierarchical mapping and the pure inter-
node mapping on Kraken in terms of MIMS. The intra-node
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Fig. 12. Communication time reduction of different mapping mechanisms
compared to default mapping on Kraken.

mapping algorithm (listed in Fig. 7) largely reduces MIMS
by up to 83%. For the first test case with 24 processes, the
system default mapping happens to have the minimum MIMS,
and the MIMS of the pure inter-node mapping is also close to
the minimum, so no MIMS reduction or only limited reduction
can be achieved.

The communication time reduction of different mapping
mechanisms compared to the system default mapping is illus-
trated in Fig. 12, where “MPI Graph”, “Intra-Node”, “Inter-
Node” and “Hierarchical” represent MPI topology mapping,
the pure intra-node mapping, the pure inter-node mapping and
the hierarchical mapping, respectively. MPI Graph does not
achieve much performance improvement except the first test
case with 24 processes, and it fails for the largest test with
1, 536 processes. The pure intra-node mapping often provides
minor performance improvement, while the pure inter-node
mapping has much better performance. In contrast, the hi-
erarchical mapping always outperforms both the pure intra-
node mapping and the pure inter-node mapping, achieving
communication time reduction by up to 25%.
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Fig. 13. Comparison of inter-node mapping and default mapping on Ranger
in terms of hop-bytes.

The experiments on Ranger have similar performance re-
sults as illustrated in Fig. 13 to 16. For all the test cases,
the inter-node mapping algorithm (listed in Fig. 6) is able
to reduce hop-bytes by up to 76%, and the intra-node map-
ping algorithm (listed in Fig. 7) reduces MIMS by up to
79%. MPI Graph provides similar performance as the system
default mapping. Both the pure intra-node mapping and the
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Fig. 14. Comparison of intra-node mapping and default mapping on Ranger
in terms of MIMS (the maximum inter-socket message size).
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Fig. 15. Comparison of hierarchical mapping and inter-node mapping on
Ranger in terms of MIMS (the maximum inter-socket message size).
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Fig. 16. Communication time reduction of different mapping mechanisms
compared to default mapping on Ranger.

pure inter-node mapping can achieve communication time
reduction for most test cases. For the test with 32 processes,
the pure inter-node mapping results in more communication
time despite of reduced hope-bytes. This phenomenon is
mainly attributable to the fact that the intra-node PingPing
communication can be slower than the nearby inter-node
PingPing communication for large message sizes on Ranger.
This is due to small memory bandwidth per core on Ranger,
and possibly as well as inefficient implementation of intra-
node communication algorithms in the mvapich library. The
hierarchical mapping often achieves much better performance
than both the pure intra-node mapping and the pure inter-node
mapping, reducing the communication time by up to 50%.

By comparing Fig. 12 and 16, we can observe that the
hierarchical mapping is much more effective on Ranger (with
respect to the performance of the pure inter-node mapping),
and the pure intra-node mapping generally achieves more
communication time reduction (in percentage) on Ranger,
because Ranger has a larger performance gap between intra-
socket and inter-socket communication as shown in Table I.
Basically, such performance gap indicates how critical it is to
perform intra-node task mapping, and we can expect that the
intra-node task mapping will become increasingly important
as more processors are included in each node.

V. CONCLUSION

In this study, we have presented hierarchical task mapping
of cell-based AMR cosmology simulations onto a cluster
composed of multiprocessor nodes. Our mapping algorithm
contains two phases: an inter-node mapping (i.e., mapping
application processes onto nodes) by minimizing hop-bytes
and an intra-node mapping (i.e., mapping application processes
onto CPUs within each node) by minimizing the maximum
inter-socket message size. Experimental results on production
HPC platforms demonstrate that the proposed hierarchical
mapping greatly outperforms the system default mapping
that is topology-agnostic and the optimized mapping using
MPI topology function. Our preliminary results show that
for cosmology simulations, the proposed hierarchical mapping
can reduce their communization time by up to 50%, as
compared to the system default mapping. More importantly,
this hierarchical approach is not limited to cell-based AMR
cosmology simulations, instead the algorithm itself is quite
generic and can be applied to many other applications that
show similar communication patterns.
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