
Study of Workload Interference with Intelligent
Routing on Dragonfly

Yao Kang
Department of Computer Science

Illinois Institute of Technology
Chicago, USA

ykang17@hawk.iit.edu

Xin Wang
Department of Computer Science

Illinois Institute of Technology
Chicago, USA

xwang149@hawk.iit.edu

Zhiling Lan
Department of Computer Science

Illinois Institute of Technology
Chicago, USA

lan@iit.edu

Abstract—Dragonfly interconnect is a crucial network technol-
ogy for supercomputers. To support exascale systems, network
resources are shared such that links and routers are not dedicated
to any node pair. While link utilization is increased, workload
performance is often offset by network contention. Recently,
intelligent routing built on reinforcement learning demonstrates
higher network throughput with lower packet latency. However,
its effectiveness in reducing workload interference is unknown.
In this work, we present extensive network simulations to study
multi-workload contention under different routing mechanisms,
intelligent routing and adaptive routing, on a large-scale Dragon-
fly system. We develop an enhanced network simulation toolkit,
along with a suite of workloads with distinctive communication
patterns. We also present two metrics to characterize application
communication intensity. Our analysis focuses on examining how
different workloads interfere with each other under different
routing mechanisms by inspecting both application-level and
network-level metrics. Several key insights are made from the
analysis.

Index Terms—HPC, interconnect network, Dragonfly, network
interference

I. INTRODUCTION

High-performance computing (HPC) systems rely on effi-
cient and scalable interconnect networks to support unprece-
dented system size at a reasonable cost. Recent high-radix,
low-diameter Dragonfly topology has demonstrated its high
capability on the current Top500 list [1] [2]. The next genera-
tion Slingshot interconnects also adopt Dragonfly topology to
support future exascale HPC systems [3].

Dragonfly topology achieves extreme performance by ar-
ranging network resources of routers and links into fully
connected groups. As a result, Dragonfly is a hierarchical
topology that uses global links for inter-group connection
and local links to connect routers in the same group. The
hierarchical design makes Dragonfly a low-diameter system
such that any point in the network can be accessed by
crossing the interconnect hierarchy in three hops. The fully
connected inter-group structure also makes Dragonfly a high
path diversity network with abundant routing path possibilities.
A packet can either be minimally forwarded from its source
group to the destination group or be relayed at an intermediate
group in the system. Larger systems with more groups further
increase the degree of path diversity. While high path diversity

provides more flexibility in choosing the packet forwarding
path, it poses a significant challenge in routing design.

Due to the sharing nature of Dragonfly, traffic flows from
different applications have a high probability of competing for
a portion or the entire network forwarding path, thus leading to
workload interference. Adaptive routing is widely deployed on
production Dragonfly systems to deal with high path diversity
and network congestion [3]–[5]. When forwarding a packet,
adaptive routing [1], [6] chooses a path between either a
minimal path or a non-minimal path via an intermediate
group according to local information such as router port
queue occupancy. Although heuristic based adaptive routing
can mitigate the workload interference in some degree, several
empirical studies conducted on production Dragonfly systems
have indicated that HPC applications can see a slowdown as
much as 70% [7], [8]. Communication interference among
different workloads can lead to many negative impacts, e.g.,
longer application execution time and wasted resource cycles,
all of which lead to low system productivity.

In order to address workload interference, various ap-
proaches have been studied. Several efforts have demonstrated
that careful job placement such as contiguous placement can
help mitigate workload interference [9], [10]. Contiguous
placement helps isolate an application from others by placing
application processes in the same group. While contiguous
placement is shown to be effective for reducing workload inter-
ference through network simulation studies, it may cause local
hot spots [11]. In addition, contiguous placement is impractical
in practice as it can cause severe system fragmentation. For ex-
ample, external fragmentation occurs when there is a sufficient
number of compute nodes available for a job; however, they
cannot be allocated to the job because these compute nodes
are not in a contiguous partition. Another research approach
is application-aware routing [12]. The main idea is to build
an analytical model to estimate network congestion and use it
to adjust adaptive routing bias at the application’s runtime.
Continuous network monitoring is needed for performance
modeling, which causes undesirable overhead to application
performance. Besides, the model may not be accurate which
further impacts the effectiveness of this approach. Other more
sophisticated methods such as congestion control, with support
of additional hardware and/or software, are also proposed to

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

be used in combination with adaptive routing algorithms [3],
[13].

In this study, we investigate workload interference by
presenting a quantitative analysis of intelligent routing for
mitigating workload interference on Dragonfly systems. Q-
adaptive routing is an intelligent routing method built on
reinforcement learning for Dragonfly [14]. Preliminary results
indicate that Q-adaptive routing provides superior performance
than adaptive routing under either well balanced or extremely
imbalanced network traffics. However, its effectiveness for
reducing workload interference is an open problem.

Quantitative analysis of workload interference under rout-
ing on Dragonfly is challenging. Dragonfly is a proprietary
network technology, and is targeted for large-scale supercom-
puters such as those listed on the Top500 list. Although dozens
of Dragonfly systems are available at national supercomputer
centers, routing configuration is part of system configuration,
which is impossible for general users to make changes at
will [10], [11], [15]. Following the common practice in the
literature [16], [17], we use high-fidelity flit-level network
simulation in this study.

Our study makes four contributions. First, we enhance the
well-known Structural Simulation Toolkit (SST) toolkit for the
quantitative analysis (Section III). Several SST core and ele-
ment modules are extended to support workload interference
analysis at the flit level. The extended SST toolkit is available
as open source software on GitHub [18]. Second, in order
to represent realistic HPC workloads, nine applications with
distinct communication patterns are selected and developed
for the study. These applications include both conventional
HPC workloads and emerging machine learning workloads.
They are also available on GitHub, along with the enhanced
SST toolkit. Moreover, we present two metrics to formally
characterize communication intensity of HPC applications
(Section IV). We use the augmented SST toolkit to systemati-
cally analyze workload interference through pairwise workload
and mixed workload analysis on a 1,056-node Dragonfly
system. Third, even with high-fidelity network simulation,
how to effectively study workflow interference with differ-
ent routing mechanisms is quite challenging. In particular,
an overwhelming amount of application-level and network-
level data series can be collected. In this study, we propose
two sets of quantitative metrics for interference analysis: (1)
application-level metrics such as application communication
throughout, average application packet latency, and application
communication time; and (2) network-level metrics such as
router port stall time, link traffic size and congestion index
(Section V-VI). These metrics are used in various simulation
configurations to examine when and how interference occurs.
Fourth, several key insights are obtained through the analysis,
some being listed below:

• Application communication intensity can be well cap-
tured by two metrics, that it, message injection rate and
peak communication ingress volume. An application with
a lower message injection rate tends to be interfered
by those with a higher rate, and an application with

high peak ingress volume can cause severe workload
interference to other applications.

• Compared to adaptive routing, Q-adaptive routing can
greatly reduce workload interference by saving up to
42.63% communication time and mitigating up to 70.80%
communication performance variation caused by network
contention. System-wide network analysis shows that Q-
adaptive routing optimizes overall network utilization by
balancing system traffic, eliminating hot spots and hence
avoiding network congestion.

• For collective communication operations, tail latency
control becomes important since the operation completes
only after all have received the messages. Moreover,
workload interference can be hidden by the application
with long computation time and short communication
time.

II. BACKGROUND AND RELATED WORK

A. Dragonfly Topology

Dragonfly is a hierarchical topology by arranging network
resources of routers and links into high-radix groups [1].
An example is shown in Figure 1. The groups are fully
connected by global links and routers in the same group are
connected through local links. Although groups are always all-
to-all connected to assure system connectivity, the intra-group
connection structure is not fixed and can have various forms.
For example, routers within the same group can also be all-
to-all connected for higher system throughput or be arranged
into a two-dimensional array or a tree to support a larger
system size [5], [19], [20]. In this study, we focus on the
Dragonfly with a fully connected intra-group connection since
this structure will be deployed on the next-generation HPC
systems [3].

41 2 41 2 41 2

1 2 8

Compute Node

Router

Global Link Local Link

Group

12 4 12 4 12 4

Fig. 1. The hierarchical structure of 1,056-node Dragonfly system.

With a fully connected inter-group and intra-group structure,
Dragonfly is a low-diameter topology. Any packet can be de-
livered within three hops by crossing: (1) one local link in the
source group to reach the router that has global link connection
to the destination group, (2) one global link crossing groups,
(3) and one local link in the destination group to the destination
router. Since two local links are required with one global link,
local and global links are typically provisioned in a ratio of
2:1 on each router to make sure global link bandwidth is not
wasted due to the insufficient local links [1].

B. Routing on Dragonfly

Unlike fat-tree topologies, the hierarchical design and fully
shared network resources make Dragonfly routing unique.
Static routing such as minimal routing that performs well on
other topologies is not ideal for Dragonfly due to the limited
number of global links between source and destination groups.
Hence, Dragonfly relies on adaptive routing to let routers sense
local congestion and bypass hot spots by forwarding packets
non-minimally through an intermediate group if necessary.
Adaptive routing is a class of heuristic methods that use
router’s port queue occupancy to estimate network congestion.
When forwarding a packet, a router first randomly selects
two minimal paths and two non-minimal paths and checks
their corresponding port queue occupancy [4]. When the best
minimal path queue occupancy is less than twice of the best
non-minimal path queue occupancy, the packet is minimally
forwarded, otherwise, the non-minimal path is used.

Depending on where the dynamic routing decision is made,
adaptive routing algorithms have three widely used solutions:
Universal Globally-Adaptive Load-balanced routing (UGAL)
lets the source router make a one-time routing decision with
two variants. In case a packet enters an intermediate group,
UGALg (UGAL group) forwards it minimally towards the
destination group, whereas UGALn (UGAL node) tries to
avoid local link congestion by having the packet firstly visit a
random router in that intermediate group [21]. PAR (Progres-
sive Adaptive Routing) is similar to UGALn, except that it
allows routers in the source group to revise the previously
made minimal routing decision in case local congestion is
encountered at downstream routers [6]. Although adaptive
routing is good at avoiding near-end congestion, they are
oblivious to the network condition at a few hops away hence
may cause network congestion.

Q-adaptive Routing is a recent Dragonfly routing solution
leveraging reinforcement learning (RL) techniques [14]. In
Q-adaptive routing, each router learns the overall network
condition, records the knowledge in a light-weight two-level
Q-table, and uses the table for packet forwarding. Through
the process of sending packets and receiving feedback signals
from the neighbors, every router learns the system-wide net-
work condition and stores the information in the Q-table. Simi-
lar to adaptive routing algorithms, Q-adaptive routing forwards
packets either minimally or non-minimally. In other words,
unlike adaptive routing which makes routing decisions based
on local information, Q-adaptive routing uses the learned
overall system condition and global path congestion to direct
packet delivery (Figure 2). In addition, Q-adaptive routing
is fully distributed such that routers make their independent
decisions without requiring any shared information.

In this study, we investigate workload interference under the
aforementioned routing mechanisms on Dragonfly systems.

C. Related Works

Chunduri et al. studied Dragonfly network interference on
production systems and observed as much as 7x performance
variability for MPI collectives and 70% variability for MILC

x
2. Read table &
forward packet

3.Forward
packet

4. Send back Q-value

1. Receive
 packet

G1

G2

Gg

...

By Port
1 2 k-p...From NodeTo Group

...

N1

N2

Np

...

N1

N2

Np

...

N1

N2

Np

...

Q-values: Estimated
Delivery Time

y

Fig. 2. Q-adaptive routing and its two-level Q-table per router. Router
X follows four steps to forward a packet and update its table. Through
the process of sending packets and receiving feedback signals from the
neighbors, every router learns the system-wide network condition and records
the knowledge in its two-level Q-table for packet forwarding.

application due to the network contention [7]. Simulation stud-
ies show that network interference also appears on Dragonfly
variants under different intra-group connection structures [9],
[22]. Yang et al. observed the bully effect on the Dragonfly sys-
tem that communication intensive application affects less in-
tensive applications and purposed using contiguous placement
to reduce network interference [10]. Jain et al. proposed to use
random placement to improve system throughput by reducing
network hot-spots on Dragonfly systems [11]. In addition to
job placement, QoS is another approach to mitigate network
interference by separating traffic flows of different applications
or communication types into isolated channels [13], [23], [24].
At the routing level, Smith et al proposed adaptive flow-aware
routing to mitigate network interference [25]. De Sensi et al
proposed to use dynamic adaptive routing bias to constrain
the contention effect [12]. A more complicated congestion
control mechanism is also proposed such that when congestion
happens, the message generation rate is throttled to drain the
network system [3], [26].

This work presents a quantitative analysis of different rout-
ing methods with respect to workload interference mitigation,
hence complementing the above related interference studies.

III. NETWORK SIMULATION DESIGN

Workload interference can be analyzed through application
tracing and profiling. However, the data collected in the trace is
limited to the given application, and the information of other
co-running applications is not included. Although analyzing
application trace or profile can unveil the interference effect
of the studied application, it fails to answer how and when
workload interference occurs.

High-fidelity network simulation is a viable approach to
study workload interference [10], [27]. In this study, we
leverage the well-known Structural Simulation Toolkit (SST)
for interference analysis [28]. The SST toolkit contains a
number of core and element libraries. In this work, we enhance
three SST libraries, namely Ember, Firefly, and Merlin, for the
quantitative network study. SST/Ember contains a collection of

Firefly:

reduction tree alltoall ring

MPI Operations App ID

Packets Packet ID, App ID

Merlin

Ember MPI App
FFT3D, Halo3D, LQCD, ...

computation

time stamp

time stamp

send/recv
/collective

LULESH, Stencil5D
IO Module:
comm. time
exec. time

...

Fat-tree, ...

Dragonfly
IO Module:

packet detail
src, dest,

path ...

Fig. 3. Enhancing SST for workload interference analysis. Our enhancements
are shaded in green.

MPI motifs that represent real-world application communica-
tion behaviors. The communication generated by SST/Ember
is passed to SST/Firefly, a state machine based MPI implemen-
tation layer that simulates blocking, non-blocking communica-
tion, and MPI collective operations with eager and rendezvous
protocols. Finally, the Firefly MPI messages are packetized
and transmitted to SST/Merlin, which provides high-fidelity,
flit-level network simulation including Dragonfly topology.

Figure 3 depicts the interplay of these SST libraries, along
with our enhancements. Specifically, we implement an IO
module that can record any desired performance counter at
any frequency. For the purpose of simulation efficiency, the IO
module can be flexibly configured to coalesce multiple write
operations into one action to balance the trade-off between IO
efficiency and system memory usage. The designed IO module
enables us to investigate every detail of a simulated system at
both application and network level. At the application level,
all the studied MPI applications are updated to accurately
timestamp each iteration’s starting, ending time, and time
spent on different messaging operations. The applications
are connected with the IO module to record all the metrics
for post-simulation analysis. We also enhance SST/Merlin
Dragonfly topology by connecting it with the IO module to
record every packet’s detailed information including source,
destination, sending, receiving time, and forwarding path.
Moreover, we enhance the bridge between SST/Ember and
SST/Merlin by passing application’s job ID to provide fine-
grained per-application network link usage statistics.

In this study, we focus on a 33-group, 1,056-node Dragonfly
system as shown in Figure 1. Each group contains eight fully
connected routers with a total of 32 global links. Each router

TABLE I
LIST OF APPLICATIONS WITH THEIR COMMUNICATION PATTERNS.

Pattern App Total Msg
(MB)

Execution
time (ms)

Injection
Rate

(GB/s)

Peak
Ingress
Volume

Random UR 11829.48 13.31 888.48 3.07KB

Sweep LU 13713.22 13.71 999.88 30.0KB
Alltoall FFT3D 15781.09 12.53 1259.35 51.68KB
Stencil Halo3D 47769.10 10.85 4403.81 1.15MB

LQCD 11924.31 13.79 864.70 4.60MB
Stencil5D 9833.95 13.70 717.87 14.0MB

Allreduce CosmoFlow 2373.84 13.65 173.86 2.25MB
DL 9714.44 11.86 819.12 2.30MB

Stencil
LULESH 17900.12 12.34 1450.78

1.95MB
+Sweep 14.91KB

hosts four compute nodes using 128B flits and 512B packets.
To ensure network bandwidth is not limited by the flying
credits of credit-based flow control, each router port can buffer
up to 30 packets. Local and global links are configured with
200Gb/s bandwidth according to the Slingshot system [3].
Considering the difference in link length, flit transmission
latency is 30ns and 300ns for local and global links to keep
the 1:10 ratio as used in previous works [1], [6], [21]. The
evaluated adaptive routing algorithms are configured with zero
bias towards the minimal path and Q-adaptive routing with the
same hyperparameters as in [14].

IV. APPLICATIONS AND COMMUNICATION PATTERNS

Although existing studies show that communication-
intensive applications can bully other applications on Drag-
onfly [10], there is no formal definition of communication
intensity. We propose two metrics to characterize application
communication patterns. Both metrics can be measured or be
derived from the application source code.

• Message injection rate is defined as an average value
derived from an application’s total message size and its
execution time. It is measured as the average bandwidth
requirement of an application assuming its packets are
steadily injected into the network.

• Peak ingress volume is defined as an application’s peak
bandwidth requirement, meaning the amount of message
that the network is expected to process in a short time.
It is measured as the consecutive message size injected
into the network by the application.

In order to well capture representative workloads on pro-
duction systems, we carefully select nine applications based
on their communication patterns. They cover a broad range
of workloads, which are grouped into five representative
communication patterns commonly observed in the traditional
scientific and the emerging machine learning applications.
Some applications are from the SST package, and some are

developed in this work. Table I summarizes these applications,
along with their communication patterns.

• Random: Random is a typical one-to-one communication
pattern in the scientific field to study network perfor-
mance. The Uniform Random (UR) is mainly used as
a background application to mimic a system under a bal-
anced network load with each process sending messages
to random targets.

• Sweep: The Lower-Upper (LU) Gauss-Seidel solver ap-
plication from the NAS Parallel Benchmark suite is
featured by a sweep communication pattern [29]. LU
arranges its processes as a 2D square and initiates the
network communication from one square corner. All
processes send data to their downstream neighbors af-
ter receiving messages from their upstream peers along
both square dimensions. As a result, the communication
behaves like a wavefront sweeping from one corner of
the square to the other diagonal corner stage by stage,
which causes long communication latency. Because each
process has two downstream partners, LU’s peak ingress
volume counts two messages.

• Alltoall: This MPI collective is important for applications
that perform parallel Fast Fourier Transforms (FFT) such
as pF3D [30], NAMD [31], and VASP [32]. SST imple-
ments MPI Alltoall through a multi-step ring exchange
such that process N receives data from process N − i
and sends data to process N + i in round i. Since
each process only sends one message in each round,
Alltoall operation’s peak ingress volume only counts one
message. When the communicator is large, many rounds
of send and receive are required hence leading to long
communication latency.
The studied FFT3D application maps the problem to a
two-dimensional processes array, where processes on the
same row and column perform Alltoall operations.

• Stencil: Stencil computation is an important class of
algorithms in scientific computing and a representative
one-to-many communication pattern [33]. Under a stencil
pattern, processes are arranged into a multi-dimensional
grid, and each process talks with its nearest neighbors
in both directions along all the dimensions. As a result,
stencil’s peak ingress volume must consider both the
message size and process grid dimension. Because at
each communication step, processes send data to multiple
destinations, stencils are high-throughput and aggressive
on occupying network resources.
Halo3D is a 3D-stencil application that processes com-
municate with its six neighbors along three dimensions.
Lattice Quantum ChromoDynamics (LQCD) is a QCD
simulation application to study strong force theory fea-
tured with a 4D-stencil pattern of eight neighbors [34].
Stencil5D is a synthetic application used to study the
impact of peak ingress volume that processes have up to
ten neighbors.

• Allreduce: Distributed machine learning applications pe-

riodically aggregate and distribute the learned information
among all processes to update model parameters [35].
As a result, collective communication such as Allreduce
becomes heavily used and is presented as an important
message movement pattern on the HPC systems. In SST,
MPI Allreduce is implemented by arranging processes
into a binary tree where the desired data is firstly aggre-
gated from leaf to root and then distributed in the opposite
direction. Allreduce peak ingress volume counts two
messages considering each tree node has two children.
CosmoFlow is a fully synchronous data parallel dis-
tributed deep learning (DL) cosmology application [36].
CosmoFlow shows strong scaling performance with the
main communication pattern of 28.15 MB Allreduce mes-
sages every 129 ms. To make the application have similar
execution time as other applications, we proportionally
decrease both message size and communication interval
by 25x and keep its intrinsic communication intensity. To
represent large-scale distributed DL applications with a
massive training dataset, a heavier Allreduce application
named DL is studied. DL has similar message size but
shorter communication interval, such that its message in-
jection rate is around 4.7x higher than that of CosmoFlow.

• Hybrid: The Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics (LULESH) is a widely
studied proxy application designed for exascale hard-
ware/software co-design effort [37]. LULESH represents
a typical hydrocode such as ALE3D using MPI non-
blocking (MPI Isend, MPI Irecv) and collective opera-
tions [38]. LULESH communication pattern is dominated
by a 26-point 3D-stencil followed by a sweep3D data
exchange [39], [40]. LULESH shows good weak scaling
performance on production systems [41]. We implement
LULESH based on the communication analysis listed in
the literature [39], [40].

V. PAIRWISE WORKLOAD ANALYSIS

In this section, we study pairwise workload interference
by co-running a target application with a background ap-
plication. The goal is to analyze how the communication
performance of the target application is impacted by the
background application with different message injection rates
and peak ingress volumes. Specifically, FFT3D, LU, LQCD,
CosmoFlow, Stencil5D and LULESH are selected as the target
applications covering different communication patterns and
intensities. Each target application is co-run with a background
application from different communication pattern categories.
For pairwise analysis, the 1056-node system is equally divided
to host a target application and a background application. To
maintain a perfect process cube, LULESH takes 512 (=83)
nodes leaving 16 nodes being idle. Random job placement is
used in our experiments.

For each target application, its process-to-node mapping is
kept unchanged across different runs (i.e., standalone or co-
running with a background application). Therefore, a variation
in communication time of the same application under different

UGALg UGALn PAR Q-adp
(a)

0

5

10

15
Co

m
m
.T

im
e
(m

s)
FFT3D

UGALg UGALn PAR Q-adp
(b)

0

10

20

30
LU

UGALg UGALn PAR Q-adp
(c)

0

5

10

15

Co
m
m
.T

im
e
(m

s)

LQCD

UGALg UGALn PAR Q-adp
(d)

0

1

2

3

CosmoFlow

UGALg UGALn PAR Q-adp
(e)

0

5

10

Co
m
m
.T

im
e
(m

s)

Stencil5D

UGALg UGALn PAR Q-adp
(f)

0

5

10

15

20

LULESH

Background: None UR LU FFT3D CosmoFlow DL Halo3D

Fig. 4. Average communication time (bar) and standard deviation (vertical line) of a target application over all processes. The results for six target applications
are presented in (a)-(f). For a target application, each colored bar indicates its communication time under a background application (or none).

runs unveils the effect of workload interference. To make a
fair comparison, Q-adaptive starts an application under the
same condition as adaptive routing algorithms without any
pre-trained information. Thus, the time spent on training Q-
adaptive routing is included in its communication time.

Note that we use both application-level metrics and
network-level metrics for interference analysis. We mainly
focus on the communication time and its variation across
application processes for the application-level analysis. We
leverage packet latency distribution, tail latency dispersion,
and application communication throughput for the network-
level analysis.

In order to clearly identify workload interference, we first
conduct standalone experiments to collect target application
performance in an interference-free environment. Figure 4
presents the application communication time under different
pairwise analyses. The blue bars show the communication time
of applications when it is the only job on the system. For the
standalone cases, FFT3D and CosmoFlow perform similarly

among different routing algorithms, whereas LU, LQCD,
Stencil5D, and LULESH perform the best under Q-adaptive
routing with an average of 23.46% smaller communication
time compared with PAR.

In short, compared with adaptive routing, Q-adaptive
achieves equal or better performance when each target ap-
plication runs alone with random placement.

A. Impact of Message Injection Rate

Applications with a higher injection rate tend to delay
those with a lower rate. Q-adaptive routing reduces
workload interference with shorter communication
time and less variation.

Figure 4(a) shows that UR or LU causes negligible inter-
ference effect on FFT3D. The average communication time
of FFT3D in both cases increases by less than 3% with all
the studied adaptive and Q-adaptive routing algorithms. As
summarized in Table I, FFT3D is hardly affected by UR and

0 5 10 15 20
time (ms)

(a)

0

1

2

3

4

5
Th

ro
ug

hp
ut

(G
B/
m
s)

PAR

0 5 10 15
time (ms)

(b)

0

1

2

3

4

5
Q-adp

FFT3D_alone Halo3D_alone FFT3D_interfered Halo3D_interfered

Fig. 5. Network throughput of FFT3D and Halo3D along simulated time. Q-adaptive protects FFT3D’s performance from Halo3D’s interference with 2.58x
higher throughput compared with that of PAR shown in green lines.

LU, both having lower injection rates. CosmoFlow causes a
mild interference impact on FFT3D with an average of 22.51%
communication delay under adaptive routing and a smaller
10.81% delay under Q-adaptive routing. Although the injection
rate of CosmoFlow is smaller than that of FFT3D, CosmoFlow
has a considerably larger peak ingress volume. The effect
of peak ingress volume is discussed in §V-C. Compared
with CosmoFlow as background application, DL — a higher
injection rate application — causes more severe interference
impact on target applications. Interference from DL makes
FFT3D spend 2.00x, 2.11x, 1.97x, and 1.32x more time on
communication with UGALg, UGALn, PAR, and Q-adaptive
routing, respectively. Among adaptive routing algorithms,
PAR’s 11.24ms average communication time is slightly longer
than UGALg’s 10.23ms and UGALn’s 10.98ms. However,
PAR has a smaller communication time variation of 97.14%
compared with UGALg’s 99.53% and UGALn’s 110.77% vari-
ation. Although network interference is inevitable, Q-adaptive
has the shortest communication time with the most stable per-
formance. Q-adaptive’s 7.08ms communication time is 37.05%
smaller than that of PAR. Compared with the standalone case,
Q-adaptive’s communication time variation is 32.34%, which
is 70.80% smaller than UGALn’s 110.77% variation. The
highest injection rate application of Halo3D causes the most
interference. Halo3D delays FFT3D’s communication time by
2.67x, 2.83x, and 2.73x using UGALg, UGALn, and PAR
respectively. However, Q-adaptive reduces the interference
effect by completing the communication within 8.93ms, which
is 42.63% smaller than PAR’s 15.57ms.

To investigate the effect of injection rate, we examine the
FFT3D-Halo3D co-running case. Figure 5 shows the applica-
tion communication throughput along the simulated time under
PAR and Q-adaptive routing. Both standalone and interfered
cases are plotted in different colors. The standalone results
in Figure 5(a) and (b) show that Halo3D (orange line) is
a communication intensive application with continuous high
throughput. In contrast, FFT3D (blue line) features burden
network throughput on which the valleys correspond to the
forward and backward FFT computation and the peaks for

the Alltoall operation between computations. When FFT3D
and Halo3D are co-run together, Halo3D (red line), as the
application with a higher injection rate, is hardly affected
by FFT3D, with less than 2% variation with respect to both
average throughput and application execution time under PAR
and Q-adaptive routing. However, Halo3D maintains its high
network throughput at the cost of degraded FFT3D perfor-
mance (green line). In Figure 5(a), due to Halo3D’s aggressive
network requirement, FFT3D’s average throughput (green line)
using PAR is only 0.44GB/ms, which is 82.62% smaller than
the 2.51GB/ms throughput of standalone case. Once Halo3D
finishes at 14.66ms, FFT3D regains network bandwidth with
an average of 2.46GB/ms throughput. In contrast, Q-adaptive
is capable of protecting FFT3D’s performance while keeping
Halo3D’s high throughput. In Figure 5(b), with Q-adaptive
routing, the average throughput of FFT3D under Halo3D’s
interference is 1.13GB/ms, which is 2.58x higher than PAR’s
0.44GB/ms. Once Halo3D finishes at 11.05ms, FFT3D regains
network resources with an average of 2.50GB/ms throughput.

A similar effect is also observed for the LU shown in Figure
4(b). UR and FFT3D cause no more than 6.06% variation on
average communication time for all the studied routing algo-
rithms. CosmoFlow delays LU’s communication by 9.34% on
average under adaptive routing and by 9.99% under Q-adaptive
routing. In the Allreduce pattern category, the higher injection
rate DL application causes more impact on LU. When co-
running with DL, LU spends 43.49%, 46.63%, and 40.16%
more time on communication under UGALg, UGALn and
PAR, respectively. PAR has a more stable performance with a
slightly smaller communication time variation compared with
other adaptive routing algorithms. Nevertheless, Q-adaptive’s
16.96ms communication time is the smallest among all the
studied routing algorithms, with only a 28.15% variation. The
highest injection rate application, Halo3D, leads to significant
interference on LU with the largest communication time and
the greatest variation. The three adaptive routing algorithms
spend an average of 27.63ms on communication with an
average of 75.77% variation compared with the standalone
cases. Although Q-adaptive’s average communication time is

increased to 20.24ms from 13.24ms, the interference effect is
still the smallest compared with adaptive routing algorithms.

Figure 4(f) confirms the effect of message injection rate
on workload interference. Significant interference effect is
only observed with Halo3D background application, whose
injection rate is the highest among all the studied applications.
Halo3D causes LULESH to spend an average of 46.81%
more time on communication under adaptive routing and
only 19.62% more time under Q-adaptive routing. DL affects
LULESH’s communication in a much smaller magnitude with
an average of 21.08% delay under adaptive routing and only
12.30% under Q-adaptive routing. Other background applica-
tions cause no more than 7.35% and 4.35% communication
time increase under adaptive and Q-adaptive routing respec-
tively.

B. Impact of Tail Latency

MPI collective performance degradation caused by
network interference is manifested by long tail latency.

In Figure 4(a), Q-adaptive reduces up to 42.63% commu-
nication time for FFT3D under the network interference from
Halo3D. Q-adaptive has better performance thanks to its better
packet tail latency control capability. Figure 6 depicts FFT3D’s
packet latency distribution with 95th and 99th percentile
latency for both standalone and interfered by Halo3D cases.
The box ranges from the first quartile (Q1) to the third quartile
(Q3) of the data, with a yellow line at the median. When
FFT3D is the only job on the system, Q-adaptive has a better
average packet latency with a mean of 1.27 µs and a median
of 1.16 µs, which are 10.32% and 25.15% smaller than those
of PAR. Because Q-adaptive routing starts without any pre-
trained information, the learning and exploration process of
reinforcement learning algorithm makes a few packets being
routed with longer latency, shown as the larger tail latency un-
der the standalone case. However, by comparing the standalone
communication time in Figure 4(a), this small difference in tail
latency is negligible for overall communication performance.

PAR_alone
Q-adp_alone

PAR_interfered

Q-adp_interfered

0

5

10

15

Pa
ck
et

la
te
nc

y
(u
s)

FFT3D

p99
p95
mean

Fig. 6. FFT3D packet latency distribution under both standalone and
interfered by Halo3D cases with the 95th and 99th percentile latencies.

When FFT3D is interfered by Halo3D, Q-adaptive routing
provides much better tail latency control. Although PAR
and Q-adaptive have similar median packet latency (1.55 µs,
1.28 µs), the 95th and 99th percentile latency of PAR are
significantly delayed to 6.50 µs and 16.92 µs, which are 1.59x
and 2.01x longer than Q-adaptive’s 4.08 µs and 8.40 µs. For
the Alltoall operation, it is only considered completed by a
process when all messages are received. Therefore, the tail
latency has a more important influence on the application’s
communication time than the mean and median. As a result,
we observe that compared with PAR, although Q-adaptive
has similar median packet latency, its 50.35% smaller 99th
percentile latency helps FFT3D save 42.63% time spent on
communication as shown in Figure 4(a) brown bars.

C. Impact of Peak Ingress Volume

Applications with larger peak ingress volume can
better tolerate other application’s interference by ag-
gressively occupying network resources.

According to Table I, the peak ingress volume of LQCD
is larger than all the background applications. As shown
in Figure 4(c), LQCD is nearly immune to the network
interference. With PAR, even the highest injection rate Halo3D
application only makes LQCD spend up to 10.10% more
time on communication. Similarly, the largest peak ingress
volume application, Stencil5D, experiences no more than
8% communication time variation under all the background
applications as shown in Figure 4(e). Stencil5D has higher
communication time variance among its processes due to
the imperfect multidimensional process cube. It is difficult
to create a balanced 5D-grid with similar size along five
dimensions. As a result, many processes are on the grid
edges or surfaces with fewer neighbors, hence completing
communication faster than those in the center of the grid.

LQCD has a 4D-stencil communication pattern with maxi-
mum of 8 neighbors, and Stencil5D has up to 10 neighbors.
Both are considered communication intense applications with
large peak ingress volume. Since router buffers and links
process packets on a first-come, first-served basis, applications
with a higher peak ingress volume have a greater chance to
insert their packets in front of other applications. As a result,
packets of applications with a smaller peak ingress volume,
such as Halo3D, have to be queued and delayed.

To verify this effect, LQCD is co-run with Stencil5D, whose
peak ingress volume is the largest among all the studied
applications. Figure 7 illustrates the effect of packet delay
by plotting packet latency along simulated time. In Figure
7(a), when LQCD is the only job in the system, its mean and
99th percentile latency with PAR are 13.59 µs and 42.94 µs
in the first 15ms. However, introduction of Stencil5D into
the system delays those values to 21.37 µs and 77.44 µs, a
57.32% and 80.36% increase respectively. As expected, the
significantly delayed LQCD packets force the application
to spend more time on communication as shown in Figure

0 5 10 15 20 25
time (ms)

(a)

0

20

40

60

80
Pa

ck
et

La
te
nc

y
(u
s)

LQCD

0 5 10 15
time (ms)

(b)

0

100

200

300

400
Stencil5D

PAR_alone Q-adp_alone PAR_interfered Q-adp_interfered

Fig. 7. Packet latency of LQCD and Stencil5D. Stencil5D with larger peak ingress volume delays LQCD’s packets significantly under PAR.

UGALgUGALn PAR Q-adp
(a)

0

10

20

Co
m
m
.T

im
e
(m

s)

LQCD

UGALgUGALn PAR Q-adp
(b)

0

5

10

Stencil5D

Background: None Interfered

Fig. 8. Communication time of LQCD and Stencil5D. “None” means the
application is the only job on the system and “interfered” denotes the pairwise
running of LQCD and Stencil5D. LQCD is heavily interfered by Stencil5D,
whose peak ingress volume is the largest.

8(a). Under PAR, LQCD’s communication time surges from
17.10ms to 25.51ms, a 49.14% increase. In contrast, Stencil5D
with a larger peak ingress volume is barely affected by LQCD
with less than 3% communication time variation under all
the studied routing algorithms as shown in Figure 8(b). Q-
adaptive outperforms adaptive routing algorithms by providing
the smallest communication time for both applications in all
scenarios. LQCD only suffers a 9.27% communication time
increase from 13.43ms to 14.67ms. As a result, Q-adaptive
provides better performance for both applications and reduces
interference at the same time.

D. Impact of Computation

Application with long compute time and short commu-
nication time can mask communication interference.

In Figure 4(d), CosmoFlow exhibits a stable performance
between standalone and interfered cases with less commu-
nication time variation. Compared with Halo3D, background
applications such as UR, LU and FFT3D have lower injection
rate and smaller peak ingress volume. These background
applications introduce negligible network interference on Cos-
moFlow with less than 1.5% communication time increase

under all the studied routing algorithms. A larger interference
effect on CosmoFlow is observed when co-running with DL,
which has a similar peak ingress volume but a higher injection
rate. CosmoFlow has to spend up to 6.27% more time on
communication with UGALg, but only 1.10% with Q-adaptive
routing. Halo3D as the highest injection rate application causes
15.93%, 22.03%, 21.88% communication time variation under
UGALg, UGALn, and PAR respectively. However, Q-adaptive
can still handle this intensive case very well with 2.90ms
communication time, or a 4.88% variation. Figure 9 depicts
CosmoFlow’s network throughput under the interference of
Halo3D. Unlike the other applications, CosmoFlow is special
because of its long computation interval between communi-
cations. As a result, Halo3D seems to be the only job on the
system most of the time with a similar average throughput
between the standalone and interfered cases. In Figure 9(b),
CosmoFlow reaches its peak throughput of 3.15GB/ms when
the first Allreduce operation is issued at 5.51ms. This high
throughput pulse temporally brings down Halo3D’s throughput
to 2.95GB/ms, which then quickly recovers to its average of
4.51GB/ms. However, the intermittent decrease in throughput
does not affect the overall communication time.

VI. MIXED WORKLOAD ANALYSIS

In this set of experiments, we go beyond pairwise analysis
by co-running multiple applications of different communi-
cation patterns, denoted as mixed workload analysis. The
goal is to analyze workload interference under a mixture of
applications. Our analysis focuses on capturing application
communication performance under workload interference as
well as system-wide network congestion and/or hot spots.
Table II summarizes the mixed workload, in which each
application takes around one-sixth of the system nodes. LQCD
and Stencil5D occupy more compute nodes to construct the
high-dimensional process grids.

TABLE II
APPLICATIONS IN MIXED WORKLOAD ANALYSIS

Application FFT3D CosmoFlow LU UR LQCD Stencil5D
Job size 140 138 140 139 256 243

0 5 10 15
time (ms)

(a)

0

1

2

3

4

5
Th

ro
ug

hp
ut

(G
B/
m
s)

PAR

0 5 10 15
time (ms)

(b)

0

1

2

3

4

5
Q-adp

CosmoFlow_alone Halo3D_alone CosmoFlow_interfered Halo3D_interfered

Fig. 9. CosmoFlow and Halo3D network throughput along simulated time. The peak of CosmoFlow throughput temporally drags down Halo3D’s throughput,
but the over interference effect is negligible.

UGALg UGALn PAR Q-adp
(a)

0

5

10

15

20

Co
m
m
.T

im
e
(m

s)

FFT3D

UGALg UGALn PAR Q-adp
(b)

0

1

2

3

4

CosmoFlow

UGALg UGALn PAR Q-adp
(c)

0

10

20

30

LU

UGALg UGALn PAR Q-adp
(d)

0

10

20

30

Co
m
m
.T

im
e
(m

s)

UR

UGALg UGALn PAR Q-adp
(e)

0

5

10

15

20 LQCD

UGALg UGALn PAR Q-adp
(f)

0

2

4

6

8

Stencil5D

Background: None Interfered

Fig. 10. Application communication time comparison: “none” denoting there is no other co-running application and “interfered” denoting multiple applications
in the mixed workloads are co-running in the system.

A. Application Performance Under Workload Interference

Compared with adaptive routing, Q-adaptive routing
reduces workload interference by 49.23% on average.
Applications with large peak ingress volume can resist
interference from other workloads.

Figure 10 depicts the network interference from the mixed
workload on each individual application. Among the mixed
workload applications, Stencil5D has the largest peak ingress
volume and resists network interference with less than 2%
communication delay caused by the other applications. The
second largest peak ingress volume application, LQCD, also
has a relative stable performance with an average of 17.87%
communication delay under adaptive routing and only a
6.50% delay under Q-adaptive routing. On average, FFT3D,

CosmoFlow, LU, UR and LQCD spend 96.01% more time
on communication under adaptive routing. However, these
applications experience less communication delay under Q-
adaptive routing. Specifically, compared with adaptive rout-
ing, Q-adaptive results in an average of 49.23% interference
reduction for these applications.

B. System-wide Network Analysis

Q-adaptive routing achieves better system-wide perfor-
mance by providing more balanced traffic distribution,
less congestion, and less hot spots.

Adaptive routing algorithms are sensitive to local conges-
tion, whereas Q-adaptive routing sends packets based on the
overall network condition. As a result, in the case of a fully

loaded system, packets are more likely to be unnecessarily
non-minimally forwarded by adaptive routing methods. This
inefficiency consumes more network resources to deliver the
same amount of traffic and leads to unbalanced network usage
with hot spots.

G0

G2

G4
G6G8G10

G12

G14

G16

G18

G20

G22
G24 G26

G28

G30

G32

Q-adp
(a)

G0

G2

G4
G6G8G10

G12

G14

G16

G18

G20

G22
G24 G26

G28

G30

G32

PAR
(b)

0.08

1.35

2.18

2.80

Fig. 11. Network stall time analysis. Circles denote local links within a
group, and a larger circle means higher stall time. Edges between groups
denote global links, and a darker color means longer stall time on the global
link. For visibility purpose, only global links from Group 0 are plotted. These
plots clearly indicate that Q-adpative routing outperforms PAR in terms of
reducing network stall time on both local and global links.

Figure 11 depicts network stall time caused by congestion.
Compared with PAR, Q-adaptive forwards packets more ef-
ficiently with less congestion shown as the smaller average
stall time both within groups (31.42ms vs. 59.15ms) and be-
tween groups (0.52ms vs. 1.33ms). Q-adaptive routing avoids
network congestion by having a more balanced system-wide
traffic distribution than PAR. In Figure 11(b), obvious hot spots
are observed at Group 1, 2, 10 and 21. These hot spots also
congest the traffic from Group 0 causing a longer global link
stall time. Moreover, among the overly loaded global links,
PAR extremely underutilizes G0-G28 global link with only
0.59ms stall time compared with the average of 1.33ms.

0 10 20 30
Src. group

(a)

0

10

20

30

D
es
t.
gr
ou

p

Q-adp

0 10 20 30
Src. group

(b)

0

10

20

30
PAR

0.00

0.05

0.10

Fig. 12. Heat map of global link congestion index (non-diagonal dots)
and local link congestion index (diagonal dots). PAR results in unbalanced
traffic distribution on global and local links with clear diagonal and verti-
cal/horizontal lines.

We further analyze system-wide traffic distribution by
adapting a metric called congestion index from [42]. It is
defined as the ratio between average link throughput and its
maximum capacity. As shown in Figure 12, compared with Q-
adaptive routing, PAR generally has a darker color, indicating
overall system congestion. The clear diagonal line in Figure

12(b) demonstrates the unbalanced utilization between local
and global links. Additionally, the pattern of darker horizontal
and vertical lines at group 8, 14, 16, 21 and lighter lines
at group 2,3,5,6,27,28 unveils the unbalanced global traffic
distribution.

UGALg
UGALn

PAR Q-adp
(a)

0

20

40

60

Pa
ck
et

La
te
nc

y
(u
s)

p99 p95 mean

0 10 20 30 40
time (ms)

(b)

0

2

4

Th
ro
ug

hp
ut

(G
B/
m
s)

PAR Q-adp

Fig. 13. System-wide packet latency distribution and aggregated network
throughput under the mixed workload. Q-adaptive routing achieves signifi-
cantly smaller tail latency with higher throughput.

Figure 13 depicts system-wide packet latency distribution
and the aggregated network throughput. In Figure 13(a), Q-
adaptive has the most concentrated packet latency distribution
with the smallest average and tail latency. Q-adaptive’s 3.87 µs
average packet latency and 15.13 µs 99th percentile latency
are more than 63% smaller than those of PAR. Being able
to deliver packets more quickly also leads to higher system
throughput. As shown in Figure 13(b), Q-adaptive achieves
an average throughput of 1.27GB/ms, which is 35.11% higher
than PAR’s 0.94GB/ms average throughput.

To conclude, the mixed workload analyses demonstrate that
Q-adaptive routing can effectively balance system traffic to
avoid network hot spots and congestion. As a result, when Q-
adaptive routing is used, the system can deliver packets more
quickly, and therefore yields a higher network throughput,
which in turn leads to better application performance.

VII. CONCLUSION

High-radix, low-diameter Dragonfly interconnect topology
is a crucial component for exascale computing. A major
problem on Dragonfly system is the network competition
among co-existing applications for shared network resources
(aka workload interference) such that the applications may
experience a huge communication delay. In this study, through
pairwise workload analysis and mixed workload network
interference study, we have shown that without using any
additional complicated techniques, intelligent routing such as
Q-adaptive routing can greatly reduce network congestion and
save communication time by up to 42.63%. We have also
presented two metrics to formally quantify an application’s
communication intensity: message injection rate and peak
ingress volume. Several key insights have been presented in
our pairwise and mixed workload analyses.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback and
insightful comments. This work is supported in part by

US National Science Foundation grants CNS-1717763, CCF-
2109316, and CCF-2119294.

REFERENCES

[1] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture. IEEE, 2008, pp. 77–88.

[2] top500.org. (2021) Top500 list. [Online]. Available:
https://www.top500.org/lists/top500/2021/11/

[3] D. Sensi, S. Girolamo, K. McMahon, D. Roweth, and T. Hoefler,
“An in-depth analysis of the slingshot interconnect,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 481–494.

[4] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series
network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

[5] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: a
scalable hpc system based on a dragonfly network,” in SC’12: Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 2012, pp. 1–9.

[6] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large
scale interconnection networks,” in Proceedings of the 36th annual
international symposium on Computer architecture, 2009, pp. 220–231.

[7] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on xeon phi based cray xc
systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017, pp.
1–13.

[8] B. Li, S. Chunduri, K. Harms, Y. Fan, and Z. Lan, “The effect of system
utilization on application performance variability,” in Proceedings of
the 9th International Workshop on Runtime and Operating Systems for
Supercomputers, 2019, pp. 11–18.

[9] X. Wang, M. Mubarak, Y. Kang, R. B. Ross, and Z. Lan, “Union: An
automatic workload manager for accelerating network simulation,” in
2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2020, pp. 821–830.

[10] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch out
for the bully! job interference study on dragonfly network,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2016, pp. 750–
760.

[11] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2014, pp. 336–347.

[12] D. De Sensi, S. Di Girolamo, and T. Hoefler, “Mitigating network
noise on dragonfly networks through application-aware routing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–32.

[13] K. A. Brown, N. McGlohon, S. Chunduri, E. Borch, R. B. Ross, C. D.
Carothers, and K. Harms, “A tunable implementation of quality-of-
service classes for hpc networks,” in International Conference on High
Performance Computing. Springer, 2021, pp. 137–156.

[14] Y. Kang, X. Wang, and Z. Lan, “Q-adaptive: A multi-agent reinforce-
ment learning based routing on dragonfly network,” in Proceedings of
the 30th International Symposium on High-Performance Parallel and
Distributed Computing, 2021, pp. 189–200.

[15] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots
on two-level direct networks,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–11.

[16] N. McGlohon, C. D. Carothers, K. Hemmert, M. Levenhagen,
K. A. Brown, S. Chunduri, and R. B. Ross, “Exploration of
congestion control techniques on dragonfly-class hpc networks
through simulation,” in 2021 International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). Los Alamitos, CA, USA: IEEE
Computer Society, nov 2021, pp. 40–50. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PMBS54543.2021.00010

[17] M. Mubarak, P. Carns, J. Jenkins, J. K. Li, N. Jain, S. Snyder,
R. Ross, C. D. Carothers, A. Bhatele, and K.-L. Ma, “Quantifying i/o
and communication traffic interference on dragonfly networks equipped

with burst buffers,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 204–215.

[18] Y. Kang, X. Wang, and Z. Lan, “Study of Workload Interference with
Intelligent Routing on Dragonfly,” Aug. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6975878

[19] M. Flajslik, E. Borch, and M. A. Parker, “Megafly: A topology for
exascale systems,” in International Conference on High Performance
Computing. Springer, 2018, pp. 289–310.

[20] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi,
“Dragonfly+: Low cost topology for scaling datacenters,” in 2017
IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB). IEEE, 2017,
pp. 1–8.

[21] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott, “Overcoming
far-end congestion in large-scale networks,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2015, pp. 415–427.

[22] Y. Kang, X. Wang, N. McGlohon, M. Mubarak, S. Chunduri, and Z. Lan,
“Modeling and analysis of application interference on dragonfly+,” in
Proceedings of the 2019 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, 2019, pp. 161–172.

[23] M. Mubarak, N. McGlohon, M. Musleh, E. Borch, R. B. Ross, R. Hug-
gahalli, S. Chunduri, S. Parker, C. D. Carothers, and K. Kumaran,
“Evaluating quality of service traffic classes on the megafly network,” in
International Conference on High Performance Computing. Springer,
2019, pp. 3–20.

[24] J. J. Wilke and J. P. Kenny, “Opportunities and limitations of quality-of-
service in message passing applications on adaptively routed dragonfly
and fat tree networks,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2020, pp. 109–118.

[25] S. A. Smith, C. E. Cromey, D. K. Lowenthal, J. Domke, N. Jain,
J. J. Thiagarajan, and A. Bhatele, “Mitigating inter-job interference
using adaptive flow-aware routing,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 346–360.

[26] N. McGlohon, C. D. Carothers, K. S. Hemmert, M. Levenhagen, K. A.
Brown, S. Chunduri, and R. B. Ross, “Exploration of congestion control
techniques on dragonfly-class hpc networks through simulation,” in 2021
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 2021, pp.
40–50.

[27] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling par-
allel simulation of large-scale hpc network systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 1, pp. 87–100, 2016.

[28] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[29] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige,
“Performance analysis of a hybrid mpi/cuda implementation of the
naslu benchmark,” ACM SIGMETRICS Performance Evaluation Review,
vol. 38, no. 4, pp. 23–29, 2011.

[30] C. H. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams,
“Filamentation and forward brillouin scatter of entire smoothed and
aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5, pp. 2023–
2032, 2000.

[31] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “Namd: Biomolecular
simulation on thousands of processors,” in SC’02: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing. IEEE, 2002, pp. 36–
36.

[32] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid
metals,” Physical Review B, vol. 47, no. 1, p. 558, 1993.

[33] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing cuda performance in
3d stencil methods with annotated c,” in Proceedings of the international
conference on Supercomputing, 2011, pp. 214–224.

[34] R. Babich, M. A. Clark, and B. Joó, “Parallelizing the quda library for
multi-gpu calculations in lattice quantum chromodynamics,” in SC’10:
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2010, pp. 1–11.

[35] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[36] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-

moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[37] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang et al., “Exploring traditional and
emerging parallel programming models using a proxy application,” in
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 919–932.

[38] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[39] C. D. Carothers, J. S. Meredith, M. P. Blanco, J. S. Vetter, M. Mubarak,
J. LaPre, and S. Moore, “Durango: Scalable synthetic workload gener-
ation for extreme-scale application performance modeling and simula-
tion,” in Proceedings of the 2017 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, 2017, pp. 97–108.

[40] P. C. Roth, J. S. Meredith, and J. S. Vetter, “Automated characterization
of parallel application communication patterns,” in Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing, 2015, pp. 73–84.

[41] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “Upc++: a
pgas extension for c++,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. IEEE, 2014, pp. 1105–1114.

[42] F. He, X. Yan, Y. Liu, and L. Ma, “A traffic congestion assessment
method for urban road networks based on speed performance index,”
Procedia engineering, vol. 137, pp. 425–433, 2016.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The experiments reported in the paper are simulated with the en-
hanced SST simulation toolkit. The enhancements include the ad-
dition of adaptive routing mechanisms (UGAL, PAR), intelligent
routing (Q-adaptive), the extension of SST-Elements ”Merlin” and
“Ember”, and several HPC and ML applications. The enhanced
toolkit is open-sourced with the GitHub link provided below. The
experiments setup configuration file is also provided along with
the published code. The experiments include pairwise workload
simulations between a target application and a background ap-
plication. The target applications include FFT3D, LU, LQCD, and
Cosmoflow. The background applications include UR, LU, FFT3D,
DL, and Halo3D. All possible pairwise combinations are studied
with an additional case of LQCD-Stencil5D simulation. A mixed
workload consisting of FFT3D, CosmoFlow, LU, UR, and LQCD
is also studied in the paper. For all the simulated workloads, we
evaluated the application and system performance under UGALg,
UGALn, PAR, and Q-adaptive routing algorithms. We used the Ar-
gonne JLSE Skylake cluster where each node contains two Intel
Xeon Platinum 8180M CPUs with 768GB RAM. The simulation
toolkit is compiled with openMPI/4.1.1, gcc/11.1.0, Python/3.6

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/SPEAR-IIT/

q-adaptive_sst/tree/df_interference_rl
Artifact name: Enhanced SST toolkit for Dragonfly network inter-

ference study
Citation of artifact: Arun F Rodrigues, K Scott Hemmert, Brian

W Barrett, Chad Kersey, Ron Oldfield, Marlo Weston, Rolf
Risen, Jeanine Cook, Paul Rosenfeld, Elliot Cooper-Balis, et
al. 2011. The structural simulation toolkit. ACM SIGMETRICS
Performance Evaluation Review 38, 4 (2011), 37–42 Y. Kang, X.
Wang, and Z. Lan, “Q-adaptive: A multi-agent reinforcement
learning based routing on dragonfly network,” in Proceedings
of the 30th International Symposium on High-Performance
Parallel and Distributed Computing, 2021, pp. 189–200.

Artifact 2
Persistent ID: 10.5281/zenodo.6975878
Artifact name: DOI for the source code
Citation of artifact: Y. Kang, X. Wang, and Z. Lan, “Study of Work-

load Interference with Intelligent Routing on Dragonfly” SC’22
Reproduction of the artifact with container: The experiments re-

ported in the paper are network system simulations. The simulation
configuration and setup parameters are provided along with the
published source code. The provided container contains both the
source code and the compiled executables. A running script is also
provided to reproduce the reported experiments

