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Motivations PerformanMotivations Performan

ffChallenges in designing highly efficient cosmology simulation code: Physics Computation Time:Challenges in designing highly efficient cosmology simulation code: Physics Computation Time:
A h i i l d d l i l ti b li tiAs more physics processes are included, cosmology simulations become more realisticp y p , gy
d l th b fand complex than ever before. Tp is the physics computation time of a time stepp

l l d f l d h f ( ) h h
Tp is the physics computation time of a time step

ffi i f h l l N N d NCosmology simulation codes often employ adaptive mesh refinement (AMR), which use coefficients for the level. Nnlc, Nlc and Nparticle aCosmology simulation codes often employ adaptive mesh refinement (AMR), which use
li d d d i i i ll l

, p
cells and particles respectively To extract thescomplicated data structures and uneven communication among processes in parallel cells and particles, respectively. To extract thesp g p p

i l t ti simulate a few iterations formulate the above eqimplementation. simulate a few iterations, formulate the above eqp

h h l f h k
system to obtain the best fit solution of coeffic

The physics evolution of cosmic structures is rapid and uneven, thus making dynamic
system to obtain the best fit solution of coeffic

d i h ll i lThe physics evolution of cosmic structures is rapid and uneven, thus making dynamic
l d b l i h ll i k

expected runtime or each cell or particle.
load balancing a challenging task.

p p
g g g

D t T i i TiIn order to explore efficient load balancing schemes we study the Adaptive Refinement Data Transmission Time:In order to explore efficient load balancing schemes, we study the Adaptive Refinement Data Transmission Time:
Tree (ART) code and design a performance emulator for quickly evaluating theTree (ART) code, and design a performance emulator for quickly evaluating the
performance of various load balancing schemes T i th d t t i i ti i th l tperformance of various load balancing schemes. Ttrans is the data transmission time, ts is the late,

bandwidth and n is the number of bytes forbandwidth, and n is the number of bytes for
bandwidth can be obtained by using Intel MPI Bebandwidth can be obtained by using Intel MPI Be

The Adaptive Refinement Tree (ART) CodeThe Adaptive Refinement Tree (ART) Code
lEmulato

h d d d b d h d l l
Emulato

The ART code is an advanced N‐body+hydro simulation tool.The ART code is an advanced N body hydro simulation tool.
Th i ht fi t th d i fIt is an “MPI+OpenMP” C code with Fortran functions for compute intensive routines The right figure presents the design of ourIt is an MPI+OpenMP C code, with Fortran functions for compute intensive routines. g g p g
emulator According to the cell and particle

It employs the cell based adaptive mesh refinement (AMR) algorithm
emulator. According to the cell and particle

It employs the cell‐based adaptive mesh refinement (AMR) algorithm. counts and communication relationshipscounts and communication relationships,
the emulator estimates physics computationthe emulator estimates physics computation
ti d d t t i i ti i thtime and data transmission time using theg
performance models The total runtime isperformance models. The total runtime is
achieved by maintaining a time axis (shownachieved by maintaining a time axis (shown
in the left figure) for each process to recordin the left figure) for each process to record

i d i i i lcomputation and communication intervals.p

i i i i l f P0 i dcommunication time interval of P0 is computed ap
The MPI communication time include both daThe MPI communication time include both da

A 2D cell‐based AMR example: a quad‐tree with a refinement factor of 2. The ART code without evaluating synchronization time separatelA 2D cell based AMR example: a quad tree with a refinement factor of 2. The ART code
d 3D i l d i i i f bi ll hi h f

without evaluating synchronization time separatel
adopts a 3D computational domain consisting of cubic cells, which form an oct‐tree.adop s a 3 co pu a o a do a co s s g o cub c ce s, c o a oc ee

Load BalanciLoad Balanci

h b f l d b l ll lThe basic unit for load balancing is root cell at levg

SFCLB: It employs a Hilbert space filling
The ART code simulates the

SFCLB: It employs a Hilbert space filling
The ART code simulates the

curve (SFC) [3] to cover all root cells and
evolution of the universe In each

curve (SFC) [3] to cover all root cells, and
h hevolution of the universe. In each then cuts the curve into some segments

iteration, it evolves a time advance
g

ith i il t f kl diteration, it evolves a time advance
d h h d b l

with similar amount of workload.
dt. This is achieved by recursivelydt. This is achieved by recursively

l i ti t f ll th l l GraphLB: It converts the load balancingevolving time steps for all the levels. GraphLB: It converts the load balancingg p
Th fi h th fl t l problem into a graph partitioning problemThe figure shows the flow control problem into a graph partitioning problem

b ll d
g

of the ART code The four steps in by mapping root cells into vertices, andof the ART code. The four steps in y pp g ,
th i hb i l ti hi i t dthe dotted region are the major the neighboring relationships into edges.the dotted region are the major
Its objective is to minimize the total edge

steps for evolving a time step at
Its objective is to minimize the total edge

steps for evolving a time step at weight subject to the constraints that the
each level

weight subject to the constraints that the
f l [ ]each level. partitions are of equal size. METIS [4] isp q [ ]

l d f i l t tiemployed for implementation.

G LBGroupLB: It takes into consideration levelGroupLB: It takes into consideration level
h i i Isynchronization cost. It generates many groupsy g y g p

relationships and then assigns these groups toThe figure presents the recursive relationships, and then assigns these groups toThe figure presents the recursive
problemexecution order for evolving time problem.execution order for evolving time

h l l (l l l lsteps at three levels (level 0 to levelsteps at three levels (level 0 to level
2)2).)

D il b ll b d AMR d h ART d il bl i [1] d [2] i lDetails about cell‐based AMR and the ART code are available in [1] and [2], respectively.[ ] [ ], p y
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Wi is workload of process i and Np is the number of processes

i
Wi is workload of process i and Np is the number of processes.
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Generally GroupLB provides the best performance It achieves a good load balance quality by balancingGenerally, GroupLB provides the best performance. It achieves a good load balance quality by balancing
both overall and level‐by‐level workload, and minimizes communication cost by preserving spatial locality.both overall and level by level workload, and minimizes communication cost by preserving spatial locality.
F th fi l ti th th l d b l i h h i il f h thFor the fine resolution case, these three load balancing schemes have similar performance when there are
more than 512 processors because of granularity Granularity is imposed by our choice of simulation andmore than 512 processors because of granularity. Granularity is imposed by our choice of simulation and

f d l linput. It is not a fundamental limitation.p
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