Performance Emulation of the Cell-based AMR Cosmology Simulation Code - ART
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Challenges in designing highly efficient cosmology simulation code: Physics Computation Time: Comparison of Actual Runtime and Emulated Runtime
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Tp is the physics computation time of a time step for the level of interest. wi (i=1,2,3) are constant
coefficients for the level. Nnic, Nic and Nparticle are the number of non-leaf local cells, leaf local
cells and particles, respectively. To extract these constant coefficients for each level, we can
simulate a few iterations, formulate the above equation for each process, and then solve a linear
system to obtain the best fit solution of coefficients. These coefficients can be viewed as the
expected runtime or each cell or particle.
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We employ a realistic cosmology data with a computational domain of
2563 root cells. As the ART code only supports SFCLB, we compare the
emulated runtime with the actual runtime using the SFCLB. Their
difference is within 12% of the actual runtime. Both curves have the
same trend as the number of processors increases.

» As more physics processes are included, cosmology simulations become more realistic
and complex than ever before.

Wy X anc + wo X Nlc + wg X Nparticle

» Cosmology simulation codes often employ adaptive mesh refinement (AMR), which use
complicated data structures and uneven communication among processes in parallel
implementation.
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» The physics evolution of cosmic structures is rapid and uneven, thus making dynamic
load balancing a challenging task.
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In order to explore efficient load balancing schemes, we study the Adaptive Refinement
Tree (ART) code, and design a performance emulator for quickly evaluating the
performance of various load balancing schemes.
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Ttrans is the data transmission time, ts is the latency for message passing, tc is the inverse of the
bandwidth, and n is the number of bytes for one time data transmission. The latency and N

. . . Load_Balance_Ratio =
bandwidth can be obtained by using Intel MPI Benchmarks (IMB).
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Wi is workload of process 1 and Np is the number of processes.
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The Adaptive Refinement Tree (ART) Code

Overall load balance ratio of different load balancing schemes

Emulator Design

» The ART code is an advanced N-body+hydro simulation tool. Number of Coarse Resolution Case Fine Resolution Casc
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