
P f  E l i  f h  C ll bPerformance Emulation of the Cell basePerformance Emulation of the Cell-basePerformance Emulation of the Cell-basePerformance Emulation of the Cell base
Jingjin Wu1 Roberto E González2 Zhiling Lan1 Nickolay Y GJingjin Wu1 Roberto E González2 Zhiling Lan1 Nickolay Y GJingjin Wu , Roberto E. González , Zhiling Lan , Nickolay Y. Ggj , , g , y

1 21Illinois Institute of Technology 2The University of Chicago1Illinois Institute of Technology, 2The University of ChicagoIllinois Institute of Technology,  The University of Chicago

{j 45 l 22}@iit d { d }@ ddj b{jwu45 lan yyu22}@iit edu {regonzar andrey}@oddjob u{jwu45,lan,yyu22}@iit.edu, {regonzar,andrey}@oddjob.uj yy g y j

Motivations PerformanMotivations Performan

ffChallenges in designing highly efficient cosmology simulation code: Physics Computation Time:Challenges in designing highly efficient cosmology simulation code: Physics Computation Time:
A h i i l d d l i l ti b li tiAs more physics processes are included, cosmology simulations become more realisticp y p , gy
d l th b fand complex than ever before. Tp is the physics computation time of a time stepp

l l d f l d h f ( ) h h
Tp is the physics computation time of a time step

ffi i f h l l N N d NCosmology simulation codes often employ adaptive mesh refinement (AMR), which use coefficients for the level. Nnlc, Nlc and Nparticle aCosmology simulation codes often employ adaptive mesh refinement (AMR), which use
li d d d i i i ll l

, p
cells and particles respectively To extract thescomplicated data structures and uneven communication among processes in parallel cells and particles, respectively. To extract thesp g p p

i l t ti simulate a few iterations formulate the above eqimplementation. simulate a few iterations, formulate the above eqp

h h l f h k
system to obtain the best fit solution of coeffic

The physics evolution of cosmic structures is rapid and uneven, thus making dynamic
system to obtain the best fit solution of coeffic

d i h ll i lThe physics evolution of cosmic structures is rapid and uneven, thus making dynamic
l d b l i h ll i k

expected runtime or each cell or particle.
load balancing a challenging task.

p p
g g g

D t T i i TiIn order to explore efficient load balancing schemes we study the Adaptive Refinement Data Transmission Time:In order to explore efficient load balancing schemes, we study the Adaptive Refinement Data Transmission Time:
Tree (ART) code and design a performance emulator for quickly evaluating theTree (ART) code, and design a performance emulator for quickly evaluating the
performance of various load balancing schemes T i th d t t i i ti i th l tperformance of various load balancing schemes. Ttrans is the data transmission time, ts is the late,

bandwidth and n is the number of bytes forbandwidth, and n is the number of bytes for
bandwidth can be obtained by using Intel MPI Bebandwidth can be obtained by using Intel MPI Be

The Adaptive Refinement Tree (ART) CodeThe Adaptive Refinement Tree (ART) Code
lEmulato

h d d d b d h d l l
Emulato

The ART code is an advanced N‐body+hydro simulation tool.The ART code is an advanced N body hydro simulation tool.
Th i ht fi t th d i fIt is an “MPI+OpenMP” C code with Fortran functions for compute intensive routines The right figure presents the design of ourIt is an MPI+OpenMP C code, with Fortran functions for compute intensive routines. g g p g
emulator According to the cell and particle

It employs the cell based adaptive mesh refinement (AMR) algorithm
emulator. According to the cell and particle

It employs the cell‐based adaptive mesh refinement (AMR) algorithm. counts and communication relationshipscounts and communication relationships,
the emulator estimates physics computationthe emulator estimates physics computation
ti d d t t i i ti i thtime and data transmission time using theg
performance models The total runtime isperformance models. The total runtime is
achieved by maintaining a time axis (shownachieved by maintaining a time axis (shown
in the left figure) for each process to recordin the left figure) for each process to record

i d i i i lcomputation and communication intervals.p

i i i i l f P0 i dcommunication time interval of P0 is computed ap
The MPI communication time include both daThe MPI communication time include both da

A 2D cell‐based AMR example: a quad‐tree with a refinement factor of 2. The ART code without evaluating synchronization time separatelA 2D cell based AMR example: a quad tree with a refinement factor of 2. The ART code
d 3D i l d i i i f bi ll hi h f

without evaluating synchronization time separatel
adopts a 3D computational domain consisting of cubic cells, which form an oct‐tree.adop s a 3 co pu a o a do a co s s g o cub c ce s, c o a oc ee

Load BalanciLoad Balanci

h b f l d b l ll lThe basic unit for load balancing is root cell at levg

SFCLB: It employs a Hilbert space filling
The ART code simulates the

SFCLB: It employs a Hilbert space filling
The ART code simulates the

curve (SFC) [3] to cover all root cells and
evolution of the universe In each

curve (SFC) [3] to cover all root cells, and
h hevolution of the universe. In each then cuts the curve into some segments

iteration, it evolves a time advance
g

ith i il t f kl diteration, it evolves a time advance
d h h d b l

with similar amount of workload.
dt. This is achieved by recursivelydt. This is achieved by recursively

l i ti t f ll th l l GraphLB: It converts the load balancingevolving time steps for all the levels. GraphLB: It converts the load balancingg p
Th fi h th fl t l problem into a graph partitioning problemThe figure shows the flow control problem into a graph partitioning problem

b ll d
g

of the ART code The four steps in by mapping root cells into vertices, andof the ART code. The four steps in y pp g ,
th i hb i l ti hi i t dthe dotted region are the major the neighboring relationships into edges.the dotted region are the major
Its objective is to minimize the total edge

steps for evolving a time step at
Its objective is to minimize the total edge

steps for evolving a time step at weight subject to the constraints that the
each level

weight subject to the constraints that the
f l [ ]each level. partitions are of equal size. METIS [4] isp q [ ]

l d f i l t tiemployed for implementation.

G LBGroupLB: It takes into consideration levelGroupLB: It takes into consideration level
h i i Isynchronization cost. It generates many groupsy g y g p

relationships and then assigns these groups toThe figure presents the recursive relationships, and then assigns these groups toThe figure presents the recursive
problemexecution order for evolving time problem.execution order for evolving time

h l l (l l l lsteps at three levels (level 0 to levelsteps at three levels (level 0 to level
2)2).)

D il b ll b d AMR d h ART d il bl i [1] d [2] i lDetails about cell‐based AMR and the ART code are available in [1] and [2], respectively.[ ] [ ], p y

RESEARCH POSTER PRESENTATION DESIGN © 2011

www.PosterPresentations.com

d AMR C l  Si l i  C d  ARTed AMR Cosmology Simulation Code ARTed AMR Cosmology Simulation Code – ARTed AMR Cosmology Simulation Code – ARTed AMR Cosmology Simulation Code ARTgy
nedin2 3 Andrey V Kravtsov2 Douglas H Rudd4 Yongen Yu1nedin2,3 Andrey V Kravtsov2 Douglas H Rudd4 Yongen Yu1nedin , Andrey V. Kravtsov , Douglas H. Rudd , Yongen Yu, y , g , g
3 4o 3Fermi National Accelerator Laboratory 4Yale Universityo, 3Fermi National Accelerator Laboratory, 4Yale Universityo,  Fermi National Accelerator Laboratory,  Yale University 

hi d di @f l d l dd@ l duchicago edu gnedin@fnal gov douglas rudd@yale eduuchicago.edu, gnedin@fnal.gov, douglas.rudd@yale.edug g g g y

nce Models Experimental Resultsnce Models Experimental Results
Comparison of Actual Runtime and Emulated Runtime

10000

Comparison of Actual Runtime and Emulated Runtime

We employ a realistic cosmology data with a computational domain of
9000

10000 We employ a realistic cosmology data with a computational domain of
8000 2563 root cells. As the ART code only supports SFCLB, we compare the
6000
7000

Actual Runtime(s
)

256 root cells. As the ART code only supports SFCLB, we compare the
l t d ti ith th t l ti i th SFCLB Th i5000

6000 Actual Runtime
Emulated RuntimeTi

m
e emulated runtime with the actual runtime using the SFCLB. Their

p for the level of interest. wi (i=1,2,3) are constant 3000
4000

T

difference is within 12% of the actual runtime Both curves have thep for the level of interest. wi (i 1,2,3) are constant
h b f l f l l ll l f l l

2000
3000 difference is within 12% of the actual runtime. Both curves have the

d h b fare the number of non‐leaf local cells, leaf local
0

1000 same trend as the number of processors increases.,
se constant coefficients for each level we can 192 256 512 1024

0
p

se constant coefficients for each level, we can Number of Processors

quation for each process and then solve a linearquation for each process, and then solve a linear
Emulated Runtime of Fine Resolution CaseEmulated Runtime of Coarse Resolution Case Use two resolution case for performancecients. These coefficients can be viewed as the 9000

Emulated Runtime of Fine Resolution Case
3000

Emulated Runtime of Coarse Resolution Case Use two resolution case for performance cients. These coefficients can be viewed as the
8000

90003000

evaluation with the emulator:
7000

2500

( )6000
SFCLBs)

2000
SFCLBs) (1) Coarse resolution case with max 

4000

5000 SFCLB
GraphLBm

e(
s

1500
SFCLB
GraphLBm

e(
s ( )

refinement level of 6
3000

4000 GroupLBTi

1000
GroupLBTi refinement level of 6.

2000
500 (2) Fine resolution case with max

0

1000
500 (2) Fine resolution case with max 

192 256 512 1024
0

192 256 512 1024
0 refinement level of 9.

f i i th i f th
Number of Processors

192 256 512 1024
Number of Processors

refinement level of 9.
ency for message passing, tc is the inverse of they g p g,
one time data transmission The latency andone time data transmission. The latency and
nchmarks (IMB)nchmarks (IMB).

Wi is workload of process i and Np is the number of processes

i
Wi is workload of process i and Np is the number of processes.

or Design Overall load balance ratio of different load balancing schemesor Design Overall load balance ratio of different load balancing schemes

Load_Balance_Ratio of Each Level 
( )

Load_Balance_Ratio of Each Level
(256 P Fi R l ti )

Load_Balance_Ratio of Each Level 
(192 Processors Coarse Resolution)

Load_Balance_Ratio of Each Level
(256 Processors Coarse Resolution)

100%
(192 Processors, Fine Resolution)

100%
(256 Processors, Fine Resolution)

90%
100%

(192 Processors, Coarse Resolution)

90%
100%

(256 Processors, Coarse Resolution)

80%
90%
00%

at
io 80%

90%

at
io 80%

90%

at
io 80%

90%

at
io

60%
70%
80%

ce
_R

a

60%
70%

ce
_R

a

60%
70%

ce
_R

a

60%
70%

ce
_R

a

40%
50%
60%

SFCLB
GraphLBBa

la
nc

40%
50% SFCLB

G hLBBa
la

nc

40%
50%

%

SFCLB

Ba
la

nc

40%
50% SFCLB

Ba
la

nc

20%
30%
40% GraphLB

GroupLB

oa
d_

B

20%
30%
40% GraphLB

GroupLB

oa
d_

B

20%
30%
40% GraphLB

GroupLBoa
d_

B

20%
30%
40% GraphLB

GroupLBoa
d_

B

0%
10%
20%Lo

0%
10%
20%Lo

10%
20% G oup

Lo

10%
20%

p

Lo

0 1 2 3 4 5 6 7 8 9
0%

L l
0 1 2 3 4 5 6 7 8 9

0%

Level 0 1 2 3 4 5 6
0%

0 1 2 3 4 5 6
0%

Level Level 0 1 2 3 4 5 6
Level

0 1 2 3 4 5 6
Level

Load_Balance_Ratio of Each Level 
(512 Processors Fine Resolution)

Load_Balance_Ratio of Each Level 
(1024 Processors Fine Resolution)

Load_Balance_Ratio of Each Level
(512 Processors Coarse Resolution)

Load_Balance_Ratio of Each Level 
(1024 Processors Coarse Resolution)

90%
100%

(512 Processors, Fine Resolution)

90%
100%

(1024 Processors, Fine Resolution)

90%
100%

(512 Processors, Coarse Resolution)
90%

100%
(1024 Processors, Coarse Resolution)

70%
80%
90%

R
at

io

70%
80%
90%

R
at

io

80%
90%

at
io

70%
80%
90%

at
io

60%
70%

nc
e_

R

60%
70%

nc
e_

R

60%
70%

e_
R

a

60%
70%

ce
_R

a

40%
50% SFCLB

GraphLB

_B
al

an

40%
50% SFCLB

GraphLBBa
la

n

40%
50%

%
SFCLB
GraphLBal

an
ce

40%
50% SFCLB

GraphLBBa
la

nc

20%
30%
40% p

GroupLB

oa
d_

20%
30%
40% G ap

GroupLB

oa
d_

B

20%
30%
40% GraphLB

GroupLB

ad
_B

a

20%
30%
40% GraphLB

GroupLBad
_B

The left figure shows the time axes of two 10%
20%L

0%
10%
20%Lo

10%
20%

Lo
a

0%
10%
20%

Lo

The left figure shows the time axes of two
0 1 2 3 4 5 6 7 8 9

0%
0 1 2 3 4 5 6 7 8 9

0%
0 1 2 3 4 5 6

0%
0 1 2 3 4 5 6

0%

processes P0 & P1 The 2nd MPI communication
0 1 2 3 4 5 6 7 8 9

Level Level
0 1 2 3 4 5 6

Level Level

processes P0 & P1. The 2 MPI communication
Average Communication Time for Each Level Average Communication Time for Each Level Average Communication Time for Each Level Average Communication Time for Each LevelT ( T ) B id T 1600

g
(192 Processors, Fine Resolution)

1600
(256 Processors, Fine Resolution) Average Communication Time for Each Level

(192 Processors, Coarse Resolution)
350

Average Communication Time for Each Level
(256 Processors, Coarse Resolution)s Tc = t2‐t1 = (t0 + Ttrans) – t1. Besides, t3 = t2 + Tp.

1200
1400

1200
1400

300
350

300

350
( ) , p

ata transmission time and synchronization time
1000
1200

SFCLB 1000
1200

SFCLB 250
300

SFCLB
250

SFCLB
ata transmission time and synchronization time

600
800

SFCLB
GraphLB
GroupLBm

e(
s) 800

SFCLB
GraphLB
GroupLBm

e(
s)

150
200

SFCLB
GraphLB
G LBe(

s)

150

200
SFCLB
GraphLB
Gro pLBe(

s)y
400
600 GroupLB

Ti
m

400
600 GroupLB

Ti
m

100
150 GroupLB

Ti
m

e

100

150 GroupLB

Ti
m

ey.
0

200 200
400

50 50

ing Schemes 0 1 2 3 4 5 6 7 8 9
0

0 1 2 3 4 5 6 7 8 9
0

0 1 2 3 4 5 6
0

0 1 2 3 4 5 6
0

ing Schemes Level 0 1 2 3 4 5 6 7 8 9
Level

0 3 5 6
Level

0 1 2 3 4 5 6
Levelg

l
Average Communication Time for Each Level

(512 Processors Fine Resolution)
Average Communication Time for Each Level

(1024 Processors Fine Resolution)
Average Communication Time for Each Level

(512 Processors Coarse Resolution)
Average Communication Time for Each Level

(1024 Processors Coarse Resolution)vel 0.
1400
1600

(512 Processors, Fine Resolution)
1600

(1024 Processors, Fine Resolution)
350

(512 Processors, Coarse Resolution)
350

(1024 Processors, Coarse Resolution)

1200
1400

1200
1400

250

300
250

300

1000 SFCLB) 1000
1200

SFCLB) 200

250
SFCLB) 200

250
SFCLB
GraphLB)

600
800 GraphLB

GroupLBm
e(

s

600
800 GraphLB

GroupLBm
e(

s)

150

200
GraphLB
GroupLBm

e(
s

150
GraphLB
GroupLB

im
e(

s

400
600 GroupLBTi

400
600 GroupLB

Ti
m

100
p

Ti

50

100Ti

0
200

0
200

0

50
0

50

0 1 2 3 4 5 6 7 8 9
0

Le el
0 1 2 3 4 5 6 7 8 9

0

Le el
0 1 2 3 4 5 6

0

Level
0 1 2 3 4 5 6

0

LevelLevel Level Level Level

Generally GroupLB provides the best performance It achieves a good load balance quality by balancingGenerally, GroupLB provides the best performance. It achieves a good load balance quality by balancing
both overall and level‐by‐level workload, and minimizes communication cost by preserving spatial locality.both overall and level by level workload, and minimizes communication cost by preserving spatial locality.
F th fi l ti th th l d b l i h h i il f h thFor the fine resolution case, these three load balancing schemes have similar performance when there are
more than 512 processors because of granularity Granularity is imposed by our choice of simulation andmore than 512 processors because of granularity. Granularity is imposed by our choice of simulation and

f d l linput. It is not a fundamental limitation.p

ReferencesReferences

[1] T. Plewa, T. Linde and V. G. Weirs, Adaptive Mesh Refinement–Theory and Applications, Springer, 2005.[ ] , , p f y pp , p g ,

[ ] l d h khl “ d f h h l[2] A. V. Kravtsov, A. A. Klypin, and A. M. Khokhlov, “Adaptive refinement tree: a new high‐resolution N‐
l‐by‐level balance and attempts to minimize

[ ] , yp , , p g
body code for cosmological simulations ” Astrophysical Journal Supplement vol 111 p 73 Jul 1997l by level balance and attempts to minimize

f ll di h i i i
body code for cosmological simulations, Astrophysical Journal Supplement, vol. 111, p. 73, Jul. 1997.

of root cells according to their communication [3] A R BUTZ “Alternative algorithm for Hilbert’s space filling curve ” IEEE Trans Computers pp 424 426g
processes by solving a constrained bin packing

[3] A. R. BUTZ, Alternative algorithm for Hilbert s space‐filling curve, IEEE Trans. Computers, pp. 424–426,
processes by solving a constrained bin packing Apr. 1971.Apr. 1971.

[4] METIS, http://glaros.dtc.umn.edu/gkhome/views/metis.[4] METIS, http://glaros.dtc.umn.edu/gkhome/views/metis.

A k l dAcknowledgmentsAcknowledgments

This work is supported in part by National Science Foundation grants OCI 0904670 Jingjin Wu is in partThis work is supported in part by National Science Foundation grants OCI‐0904670. Jingjin Wu is in part
supported by China Scholarship Council.supported by China Scholarship Council.


