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Abstract—Al-enabled science—in which advanced machine
learning technologies are used for surrogate models, autotuning,
and in-situ data analysis—is quickly being adopted in science
and engineering for tackling challenging computational problems.
However, current research on efficient execution of Al-enabled
science on high-performance computing (HPC) systems is far
from sufficient. The wide adoption of heterogeneous systems
comprising different types of processing devices (e.g., CPUs and
GPUs) further complicates the execution of Al-enabled science
on supercomputers. In this work, we present a performance
and power profiling study of two Al-enabled proxy applications
performing computational fluid dynamics on the production
ThetaGPU system at Argonne National Laboratory.

I. INTRODUCTION

The high-performance computing (HPC) community is
rapidly embracing Al-enabled simulations, in domains from
molecular dynamics simulation to environmental research [1]-
[5]. The rise of Al-enabled science (and the increasing avail-
ability of large-scale curated datasets) has the potential to
accelerate innovation in key areas in science and technology
[6]. Meanwhile, a dominant trend in HPC is the deployment
of heterogeneous processors (including CPUs, GPUs, and ded-
icated accelerators) to improve computing capabilities, boost
performance, and meet energy efficiency goals.

While new AI/ML models are being explored for sci-
entific discovery and innovation, little is known about Al-
enabled simulations on a heterogeneous CPU-GPU computing
environment. In addition, existing research on Al-enabled
science has focused on canonical experiments, with little or
no consideration of energy efficiency and scaling.

In this work, we present an experimental study of two
Al-enabled proxy applications simulating incompressible fluid
flow on the ThetaGPU production CPU-GPU machine at Ar-
gonne Leadership Computing Facility (ALCF). The objective
is to provide insights into the execution time, scaling, and
power consumption of Al-enabled science on heterogeneous
systems. The study focuses on two proxy applications: a
prototypical Mini-app, which embeds a Python/TensorFlow [7]
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machine learning model as a surrogate in a C++ computational
physics workflow, and PythonFOAM [8], which employs the
same ML tools for in-sifu analysis of data generated by the
popular and well-established OpenFOAM C++ computational
fluid dynamics toolkit [9].

II. SYSTEM AND APPLICATION DESCRIPTION
A. ThetaGPU

ThetaGPU consists of twenty-four NVIDIA DGX A100
nodes, each node with two 64-core AMD Rome CPUs and
eight NVIDIA A100 GPUs [10]. Jobs on ThetaGPU can
be allocated either by node or by GPU. In this study, all
experiments were conducted in full-node jobs, since sharing
nodes may result in performance variation.

B. Mini-app

Our Mini-app is a proxy application in which scientific
machine learning is deployed within a computational physics
workflow. It is representative of a number of scientific ma-
chine learning workloads, in which a simple finite-difference
calculation of a one-dimensional problem is performed using
a legacy language such as C++ and an ML-based surro-
gate model in Python is used to advance the solution field.
Specifically, snapshots of the solution field are linearly com-
pressed using singular value decomposition (SVD), and the
compressed representations are used as training data for a long
short-term memory (LSTM) neural network which predicts
compressed representations of the solution field in the future
[11]. Fig. 1 presents the code structure integrating C++ and
Python.

Mini-app has a set of hyperparameters which must be
determined before running the algorithm. We focus on NX and
DT, which control the problem size. NX specifies the number
of points of the spatial discretization of the finite difference
solver, while DT specifies the time step. These parameters
are not independent; for numerical stability, they must scale
approximately inversely. Table I lists the combinations of pa-
rameter values, covering a breadth of problem sizes, explored
in the following experiments.
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Fig. 1. Mini-app code structure coupling Python and C++ [11]
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TABLE I
MINI-APP PROBLEM SIZES
Problem Size  NX DT
Small (S) 2560 0.0001
Medium (M) 3840 0.0001
Large (L) 5120  0.00001

Our modifications to Mini-app, as well as details of the
dependency management and environment configuration on
ThetaGPU, are available as open source on GitHub [12]. Al-
though this study focuses on single-GPU profiling, future plans
include the use of multiple GPUs, so Mini-app was extended
with Horovod [13], a distributed training framework that can
be used to wrap a variety of Python ML platforms. Changes to
Mini-app’s machine learning code included making multiple
GPUs available to TensorFlow, sharding the LSTM training
data, and averaging the test loss among all workers.

C. PythonFOAM

PythonFOAM is a computational fluid dynamics toolkit
based on OpenFOAM; it enhances OpenFOAM (which is
written in C++) with embedded Python in order to add
powerful, flexible in situ data analysis capabilities, including
machine learning [8]. Its combination of distinct computational
workloads—and its capacity for offloading its data analysis
to dedicated hardware—make it a useful showcase for Al-
enabled science.

OpenFOAM provides built-in capabilities for parallelization
using MPI. Domain decomposition is used for parallelization:
a normal OpenFOAM parallel workflow involves running an
external utility (provided by OpenFOAM) to decompose the
domain geometry and fields into subdomains; running an
OpenFOAM solver in parallel mode on the decomposed case,
with each subdomain assigned to a separate processor and
processors exchanging data at subdomain boundaries; and
running another external utility (also provided by OpenFOAM)
to reconstruct the subdomains results into the original domain

[14]. Since decomposition and reconstruction are outsourced
to separate utilities rather than performed in the main solver,
profiling the solver will not capture the parallelization over-
head of this workload, but it is negligibly small.

PythonFOAM permits an OpenFOAM solver to call Python
code using Python’s C APIL. Each PythonFOAM process
initializes its own Python interpreter, and can subsequently
manipulate objects and call methods in that environment;
this Python execution occurs serially, in the same process
as the C++ in which it is embedded. In parallel mode, the
multiple Python interpreters thus created are independent, but
can exchange data using the same MPI communicator used by
the host C++.

The specific application studied was the PythonFOAM
example solver AEFoam, which uses an autoencoder (period-
ically replaced) trained on snapshots of the domain flow field
to generate and output low-dimensional encodings thereof. A
single cycle of its control flow is depicted in Fig. 2; this
cycle repeats until the problem end time is reached. In parallel
mode, each AEFoam process has a separate, independent
autoencoder, trained on snapshots of its own subdomain only.
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Fig. 2. PythonFOAM (AEFoam solver) control flow on a single subdomain.
Operations (rectangular nodes) and data (rounded) in white occur in C++;
those in green, Python.

Normally, OpenFOAM calculates the value of every field at
every cell in its mesh for every iteration, but only writes those
values to disk at long intervals; values from the iterations be-
tween write intervals are discarded (since the storage and I/O
required would otherwise soon grow prohibitive). By training
an autoencoder in situ on snapshots of all iterations, rather
than from data saved to disk, large volumes of training data
can be collected quickly, and by using the trained autoencoder
to generate latent representations of the field of interest, good
approximations of any or all iterations can be saved—in both
cases without excessive I/O. This opens up new space in
simulation design tradeoffs.



AEFoam was studied using the case directory supplied in
the supplementary repository of [8], except that the problem
end time was reduced to 0.035s to limit runtime under
profiling. This does not affect solver behavior in preceding
timesteps. TensorFlow memory growth was enabled via envi-
ronment variable in order to permit more than one autoencoder
to train on the same GPU. Some bugs in AEFoam relating
to ownership of Python objects, which could cause segfaults
under memory pressure, were fixed. Finally, in order to study
multi-GPU performance, a short block was added to AE-
Foam’s Python module which restricted the physical devices
visible to TensorFlow if the solver was running in parallel
mode and multiple GPUs were available, effectively assigning
each autoencoder to a particular GPU. Parallel performance
was studied in powers of two, from 1 rank to the machine
maximum of 128. The detailed PythonFOAM code, along with
its configuration for ThetaGPU, is available as open source on
GitHub [12].

III. PERFORMANCE AND POWER CHARACTERIZATION

Both applications were studied across two compute modes:
CPU-only and CPU-1GPU (CPU plus a single GPU). Python-
FOAM was additionally studied under CPU-8GPU (CPU plus
8 GPUs). All experiments were conducted on one ThetaGPU
node with 64 cores. Each application in each compute mode
was profiled with multiple tools: CPU and other host-side
performance metrics were collected with Linux perf [15],
while GPU metrics were collected with the NVIDIA Systems
Management Interface (nvidia-smi) [16] and the NVIDIA
Nsight Systems CLI (nsys) [17]. The NVIDIA SMI was used
to measure overall system metrics such as power and GPU-
side memory use, while the Nsight Systems CLI was used to
gather detailed statistics on GPU activities.

These diverse profiling methods were orchestrated and
consolidated with a tool called Mantis [18], which simplifies
multi-configuration application profiling on a heterogeneous
system. For instance, Mini-app includes three different sizes
(see Table I); given appropriate configuration, Mantis can
automatically run all these sizes under each profiling tool.
In addition, although these tools output various CSV, JSON,
SQLite, and proprietary “qdrep” files, Mantis can unify the
formats into a single file for convenient analysis. This greatly
simplifies the profiling and data analysis workflow.

A. Mini-app Study

Full analysis of Mini-app is still a work in progress. While
the Python part of Mini-app has been extended with Horovod
for distributed learning, the C++ part is still sequential;
therefore, the results presented below focus on CPU-only and
single-GPU configurations.

While the profiling tools used in this study are considered
lightweight, they did have non-trivial overheads. Experiments
show that the discrepancy between an uninstrumented and a
profiled run of Mini-app ranges from just a few minutes (with
NVIDIA SMI) to over an hour (with NVIDIA Nsight), with an
overhead of up to 146%. This effect on overall performance,

particularly for the larger sizes, meant that Mantis had to
profile only a few configurations in each run in order to avoid
exceeding ThetaGPU’s 12-hour maximum job time [19].

Fig. 3 shows scaling results with respect to growing Mini-
app problem sizes. The data were extracted from perf’s
“instructions” counter. As expected, the application runtime
grows with increasing problem size, especially for the large
size, while GPU acceleration provides some performance
benefit over the corresponding CPU-only problem (shown as
percent speedup). However, as the problem size increases, the
relative improvement decreases. There are two reasons for this
scaling behavior. First, as the problem size increases, so does
the amount of data being moved between CPU and GPU. The
increasing overhead of data movement leads to decreasing
benefit of running Mini-app on CPU-1GPU over CPU-only.
Second, Mini-app is CPU-bound.
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Fig. 3. Mini-app wall-clock runtime on CPU-only (blue) and CPU-1GPU
(red) vs. problem size. Relative performance improvement of CPU-1GPU over
CPU-only is indicated in percent.

Fig. 4 presents side-by-side profiling results for instructions
on the CPU and utilization of the GPU. CPU behavior is
very similar between problem sizes. (Although there is an
apparent difference in “spike” frequency, this is merely a
result of the relative timescale; in fact, the spikes occur at
approximately the same absolute intervals.) More importantly,
as the problem size increases, the relative duration of the
machine learning phase—the portion of time that the GPU is
utilized—actually decreases. Starting from size M, the GPU
works for less than half of the total runtime of the application.
This demonstrates that the CPU bottlenecks the performance
of Mini-app. While efforts to accelerate the machine learning
phase—through GPU offloading, parallelization, or both—can
certainly improve the performance of Mini-app, these benefits
will decrease as problem size increases and the computational
physics phase becomes dominant.

Fig. 5 shows the power draw over time. As with GPU
memory used, the GPU power draw is relatively low for a
time, and then jumps up when the machine learning algorithms
run. The minimum and maximum power draws are somewhat
less correlated between problem sizes here than is memory
usage; the amount of data being processed does not necessarily
contribute to more power consumed per unit of time.
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Fig. 4. CPU instructions (top) and GPU utilization (bottom) vs. relative time, CPU-1GPU. CPU and GPU data were collected in separate profiling runs.
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Fig. 5. Power draw vs. relative time, CPU-1GPU.

B. PythonFOAM Study
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Fig. 6. PythonFOAM wall-clock runtime on CPU-only (blue), CPU-1GPU
(red), and CPU-8GPU (green) vs. number of MPI ranks.

Scaling results for PythonFOAM are illustrated in Fig. 6.
(CPU-1GPU data were not collected for 64 or 128 ranks
because the amount of memory required to run 64 or 128
autoencoders exceeded that available on a single GPU.) A
slight benefit from GPU offloading is evident at 1-2 ranks.

Overall, PythonFOAM scaled very poorly, implying that the
case directory used (with its 20,540 cells) described too small

a problem to be appropriate for a scaling analysis. Inspecting
the output from the 128-rank decomposition revealed that at
this size multiple subdomains contained no cells. Re-running
the scaling analysis with a larger problem size is an obvious
future direction for this work.

Nevertheless, the pathological behavior here is interesting
in itself. In particular, The increased runtime at 16 ranks and
above on one or more GPUs suggests that host/device memory
movement swamps any computational advantage gained on the
GPU. Theoretically, it should be possible to confirm or refute
this by examining the “GPU Memory Operations Summary”
collected by NVIDIA NSight—but in fact, AEFoam always
nondeterministically hanged when run in parallel mode on
at least one GPU under NSight (regardless of the number
of GPUs made available, either through environment config-
uration or ThetaGPU’s job allocator, and even with NSight
configured to collect data only on one GPU). At this time, it
is not clear what causes the hang. Nsight Systems’s user guide
specifies that profiling runs greater than five minutes are not
officially supported [20]; although substantially longer runs
completed successfully for both Mini-app and PythonFOAM,
the suggested use of a fixed profiling duration, possibly com-
bined with a reduced write interval (to decrease the training
time of the autoencoders), may serve as a workaround.

Fig. 7 shows three CPU counters, the most important of
which is number of instructions, collected with perf in the
CPU-only configuration. There is an obvious periodicity. The
28 spikes correspond in number to the 28 write intervals
completed at the end time, but because writing itself should not
require more instructions than computation, and other behavior
at the end of a write interval differs based on whether a
new autoencoder should be trained, it is hard to convincingly
attribute this to a particular task.

In comparison, combined CPU-GPU analysis is much more
illustrative. Fig. 8 shows AEFoam’s characteristic profile on
CPU and GPU: load alternates between CPU, where the CFD
simulation is solved (as indicated by the rise in CPU instruc-
tion volume), and GPU, where the autoencoder is trained (as
indicated by the rise in GPU power draw). The 14 autoencoder
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Fig. 7. CPU statistics vs. absolute time, CPU-only, 2 MPI ranks. All counters
were collected in the same profliing run.

training intervals are clearly identifiable on both devices. CPU
L2 total latency (I2_latency.12_cycles_waiting_on_fills) and
L3 total latency (xi_sys_fill_latency) both fall when instruc-
tions rise, indicating that the pimpleFoam solver on which
AEFoam is based has good locality that tolerates load.
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Fig. 8. CPU and GPU statistics vs. absolute time, CPU-8GPU, 2 MPI ranks.
CPU and GPU data were collected in separate profiling runs; hence, time
alignment is approximate, especially later in the run.

An unexpected feature of this trace is the irregular pe-
riodicity of the CPU/GPU alternation; although most GPU-
heavy intervals are about the same length, suggesting that
each autoencoder takes a similar time to train, the CPU-
heavy intervals vary by almost an order of magnitude. This

may be due to the turbulent nature of fluid flow over the
backward-facing step in this problem, with some timesteps
placing heavier demands on the solver than others.

IV. CONCLUSION

In this short paper, we present a performance and power pro-
filing study of two Al-enabled proxy applications—integrating
legacy computation in C++ with ML modeling in Python—on
a hybrid CPU-GPU machine. Since both applications were
initially developed on CPU-only systems [8], [11], part of
our work was to port these applications to the hybrid CPU-
GPU environment where the C++ computation was executed
on CPUs and the Python ML modeling was executed on
GPUs. Both applications, along with their configuration for
ThetaGPU and their profiling results, are made available on
GitHub [12].

Because these Al-enabled applications were built with mul-
tiple programming models and executed on a hybrid CPU-
GPU system, multiple profiling tools were needed for col-
lecting performance and power data, which added substantial
complexity to the profiling process. For both benchmarks,
we observed the performance benefit of running these Al-
enabled applications in the CPU-GPU mode over in the
CPU-only mode. The scaling of these applications on hybrid
systems depends on many factors, including application prob-
lem size, workload distribution over CPUs and GPUs, and
data movement effects. For example, the overhead of data
movement between CPU and GPU can diminish the benefit of
using the CPU-GPU. Our on-going work includes porting and
profiling these benchmarks on heterogeneous systems other
than ThetaGPU (e.g., systems equipped with different CPU
and GPU configurations). We are also interested in collecting
more data movement statistics across the memory hierarchy
as well as among CPU and GPU for a better understanding of
heterogeneous computing.
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