

 Exploit Failure Prediction for Adaptive Fault-Tolerance in Cluster

Computing

Yawei Li and Zhiling Lan

Department of Computer Science

Illinois Institute of Technology, Chicago, IL 60616
{liyawei, lan}@iit.edu

Abstract
As the scale of cluster computing grows, it is

becoming hard for long-running applications to

complete without facing failures on large-scale clusters.

To address this issue, checkpointing/restart is widely

used to provide the basic fault-tolerant functionality, yet

it suffers from high overhead and its reactive

characteriristic. In this work, we propose FT-Pro, an

adaptive fault management mechanism that optimally

chooses migration, checkpointing or no action to reduce

the application execution time in the presence of failures

based on the failure prediction. A cost-based evaluation

model is presented for dynamic decision at run-time.

Using the actual failure log from a production cluster at

NCSA, we demonstrate that even with modest failure

prediction accuracy, FT-Pro outperforms the traditional

checkpointing/restart strategy by 13%-30% in terms of

reducing the application execution time despite failures,

which is a significant performance improvement for

long-running applications.

1. Introduction

To meet the increasing computational demand in

science and engineering, computing capacity of clusters

has been increased dramatically in the past decades and

various systems with hundreds to thousands of processors

have been deployed. According to [3], one third of the

TOP500 systems have more than 500 processors.

Increasing number of processors improves the overall

performance; however, it also increases the probability of

hardware and software failures of the system.

Furthermore, the present trends in denser integration of

semiconductor circuits, lower power consumption, and

utilization of COTS components also lead to increasing

occurrence of system failures [20]. In the meantime, many

scientific applications are designed to run for days, weeks,

or longer until completion. Therefore, it becomes difficult

or impossible for long-running simulations to complete

without facing failures on large-scale clusters, and this is

becoming a major performance impediment for cluster

computing due to the work loss.

Checkpoint/recovery (CPR) is a commonly used

technique for fault management in cluster computing, and

a wealth of literatures is available covering a wide range

of issues related to checkpointing/recovery

[6][7][11][14][16][17][25]. Among them, how to reduce

the cost associated with checkpointing has been studied

extensively. Much work has been done on selecting the

optimal checkpointing intervals or reducing the overhead

per checkpointing action so as to reduce the

checkpointing overhead. In fact, a major issue with CPR

is that it only deals with failures after their occurrence

through the rollback approach. When one of the parallel

processes experiences a failure, other processes have to

restart from the most recently saved state prior to the

failure. Thus, significant performance loss can be incurred

due to the non-trivial failure downtime and recovery cost.

In the past decades, much progress has been made in

the field of failure prediction. For instance, modern

hardware devices are designed with various features (e.g.

hardware sensors) that can monitor the degradation of an

attribute over time for early failure detection [1][2][5],

and a number of statistical and machine learning based

prediction techniques have been presented with up to a

considerable accuracy [8][9][18][19][20][22][23][24].

Proactive fault tolerance techniques based on failure

prediction have been adopted to achieve high availability

for safety-critical applications [4][15], but not well

studied for cluster computing [5].

This paper fills this gap by investigating and

evaluating FT-Pro, an adaptive fault management

approach that exploits failure prediction. Here, the

“adaptive” means that the proposed scheme dynamically

chooses a preventive action, e.g. proactive process

migration or reactive checkpointing, during the execution

of parallel applications. A cost-based evaluation

algorithm is proposed to adaptively select different

preventive actions based on the accuracy of failure

prediction. Further, a skip-window strategy is employed

to prevent severe impact brought by the false-negative

error of failure prediction. In FT-Pro, the primary goal is

to reduce unnecessary checkpoints and avoid failures so

 2

as to minimize the completion times of parallel

applications.

 We study the impact of failure prediction on the

performance gain achieved by FT-Pro as compared to the

traditional CPR. More specifically, we compare the

performance of FT-Pro against periodic checkpointing

under a wide range of prediction accuracies, problem

sizes, and system parameters. Experiments show that FT-

Pro outperforms periodic checkpointing by about 13% to

30% with the false-negative error and false-positive error

ranging from 0.1 to 0.9 respectively. The paper makes the

following contributions:

• Instead of solely relying on checkpointing for fault

tolerance, the proposed FT-Pro utilizes a cost-based

evaluation algorithm to innovatively integrates

proactive process migration with reactive

checkpointing;

• Unlike most fault-tolerant research works that require

the knowledge of global failure distribution

[6][7][14][25], the proposed FT-Pro makes use of

local failure event prediction at each node;

• Instead of optimizing the system availability, FT-Pro

targets on parallel applications running on large-scale

clusters with the objective of reducing the execution

times despite failures;

• We demonstrate that the proposed adaptive fault

management scheme can be effective even with

modest prediction accuracy.

The rest of the paper is organized as below. In Section

2, we review the related research works. Next, in Section

3, the main idea of FT-Pro is presented and the cost-based

evaluation model is elaborated. We show the experiments

comparing FT-Pro against the traditional CPR under

various conditions in Section 4, and conclude the paper in

Section 5.

2. Relate Work

Failure Event Prediction. In recent years, literature

indicates significant progresses in the area of failure event

prediction that estimates the occurrence of failures in a

short time ahead. The time weaver [23][24] adopts

genetic algorithm to identify the predictive temporal

failure pattern from time-series data and shows a

capability to detect 63% telecommunication failure events.

Instead of depending on equal spaced time-series data, in

[19][20][22] the researchers propose a rule-based data

mining method to predict failure events based on the

frequent event set before the failure event with an

accuracy up to 70%. Hoffiman et al. [8] employ Markov

chain and UBF function for failure forecasting. Their

results show that they can achieve 82%-92% accuracy by

using these methods in predicting rare failure events.

 Prediction-based Fault Management. More and

more works have been conducted to utilize the results

obtained in failure prediction. In OSCAR, the failure

event prediction is used to schedule deliberate job

checkpointing and migration in the Linux Beowulf cluster

[9]. In [4], the authors present a scheme that first predicts

the resource exhaustion failure and proactively conducts

software rejuvenation. In [21], the failure event prediction

is cooperated with software rejuvenation to improve the

performability of the stateful distributed systems. In [13],

a fault-tolerant job scheduling algorithm is proposed for

BlueGene/L system. It considers the failure state of each

node in the next a few seconds and allocates jobs to

reduce the total failure loss across the system. Oliner et al.

[12] propose a coordinative checkpointing strategy that

optimistically skips a checkpoint when no failure

prediction exists in the near future to maximize the

system throughput. The MEAD system [16] predicts

failure occurrences in distributed CORBA environment

and switches the processing to the backup server by

redirecting the client requests. AMPI [5] provides a

checkpointing and migration infrastructure so as to allow

AMPI objects to migrate away from a node in case of an

imminent failure.

3. FT-Pro Description

3.1 Nomenclatures

First we illustrate a set of nomenclatures that are

frequently used in the rest of the paper (see Table 1).

3.2 Main Ideals

In the design of FT-Pro, we make several

assumptions. First, we assume that an event-based failure

prediction mechanism is available on each node to

forecast a failure event before the failure occurrence.

Second, no failure occurs during the checkpointing,

recovery, or process migration. Lastly, failure events are

independent. These assumptions are widely used in both

the literatures and realistic systems

[4][12][13][19][20][22][23][24].

The performance of an event-based failure predictor

is generally measured by two errors: the false-positive and

false-negative error, which depends on the prediction

window. Here, the false-positive error fp reflects the

precision of the failure predictor, which is defined

as

false positive
fp

false positive true positive+
= . A smaller fp indicates that

the predictor reports fewer false alarms. The false-

negative error fn reflects the accuracy of the predictor,

which is defined as

false negative
fn

false negative true positive+
= . A

 3

smaller fn indicates that the predictor can recognize more

failures.

Table 1 Nomenclature

P Number of nodes allocated to the application

T The fault-free running time of the application

I The fault-tolerance interval requested by

users

Lckp The index of the last checkpointing

S Number of spare nodes

fp False positive error of the failure predictor

fn False negative error of the failure predictor

pf The failure probability of the application

during the next decision interval

f Failure type

Nf Number of predicted failure in the next

interval

Cf The failure downtime for a specific failure

type f

Cd The estimated failure downtime of the

application in the next interval

Ccp Cost per checkpoint

Cpm Cost per process migration

LW Length of skip-window

Efp Expected application execution time under

FT-Pro

Ecp Expected application execution time under

periodic checkpointing

FT-Pro adopts a cooperative approach, that is, the

application programmer or user can insert fault tolerance

requests denoted as decision points in the application and

FT-Pro makes run-time decision on what type of

preventive action should be taken at each decision point.

More specifically, at each decision point, the predictor at

each node is consulted to provide a failure forecasting

between the current and the next decision points. Based

on this information and the application status, FT-Pro

estimates the costs for different preventive actions and

invokes an appropriate action that introduces the minimal

cost. The cost models will be presented in the next

subsection. Currently, FT-Pro supports three different

preventive actions:

� Process Migration: all the processes first conduct a

coordinated checkpointing; and the processes running

on suspicious nodes are migrated to other healthy

nodes.

� Checkpointing: all the processes are stopped to

conduct a coordinated checkpointing.

� No action: the application continues its execution

without being interrupted.

Figure 1 illustrates the main ideal used in FT-Pro.

Suppose a parallel application composed of P processes.

At each decision point (denoted as DP), FT-Pro

adaptively determines which action should be taken. For

example, at the decision point DP1 and DP3, the

checkpointing action is taken; at DP2 and DP5, “no

action” is taken to skip unnecessary overhead; and at DP4,

to avoid a predicted failure, process Pn is migrated to the

spare node Ps.

Figure 1. The FT-Pro Adaptive Fault Management

3.3 Cost-Based Evaluation Models

The primary objective in high performance cluster

computing is to reduce the execution time. Hence, FT-Pro

uses the execution time as the primary performance

metric for the adaptive decision making. Without

assuming failure distributions as done in most related

work, FT-Pro adopts a greedy-style algorithm to make

runtime decisions. At each decision point, FT-Pro selects

the action which results in the minimum Enext, the

expected execution time for the application from the

current decision point to the next one. Through such a

greedy strategy, FT-Pro aims to reduce the overall

execution time of the application despites failures. In

other words, the problem statement of the adaptive

decision making used in FT-Pro is given as below:

Suppose the parallel application is executing on P

processors with a fault-free execution time of T and

S spare nodes are available, at each decision point,

FT-Pro adaptively choose an action(e.g. process

migration, checkpointing, or no action) with the

objective to minimize Enext.

Here, the number of spare nodes determines the

maximal number of processes that can be migrated at a

specific decision point simultaneously. The value of S can

be designated by the user or through the negotiation with

the scheduler. In case that the number of predict-to-failure

nodes exceeds that of spare nodes, FT-Pro migrates the

processes with more severe failures, i.e. whose predicted

failures have longer downtime.

 4

To evaluate Enext, FT-Pro first estimates the failure

probability of the application in the next interval based on

the failure prediction of each node. Suppose Nf out of P

nodes have predicted failures and each has a failure type fi

(1<i<Nf). Thus pf, the failure probability of the

application in the next interval, can be calculated as

follows:

� Process migration: suppose this action is selected and

S (out of Nf) processes are migrated to the spare

nodes. Thus We have :

1

1
 (1)

0

fN S

f

if

f

fp if N S
P

if N S

−

=


− >

= 
 ≤

∏

� Checkpointing: suppose this action is selected. The

probability of no failure for a node in the next

interval is fp according to the definition of false-

positive error. Therefore, we have:

1

1 0
 (2)

0 0

fN

f

if

f

fp if N
p

if N

=


− >

= 
 =

∏
.

� No action: suppose this action is selected. The failure

probability of the application is the same as the case

when checkpointing is chosen.

1

1 0
 (3)

0 0

fN

f

if

f

fp if N
p

if N

=


− >

= 
 =

∏

FT-Pro then evaluates Cd, the failure downtime of the

application in the next interval, which is calculated as the

average of Nf possible failures:

� Process migration:

()

1

1

 (4)

0

fN

ft i f

ifd

f

C if S N
N SC

if S N

=


∗ <

−= 


≥

∑

� Checkpointing: all the nodes with a predicted failure

contribute to the possible downtime. Thus we have:

f(i)

1

1
C (5)

fN

d

if

C
N =

= ∗∑

� No action:, the failure downtime is the same as the

case of checkpointing:

f(i)

1

1
C (6)

fN

d

if

C
N =

= ∗∑

Now we can move to calculate Enext that is used to

make a decision at the current decision point. Due to the

uncertainty of the exact failure time, we consider the

pessimistic case in which the actual failure occurs

immediate before the next decision point. Suppose that

the index of the current decision point is L, then based on

the failure probability pf and the corresponding failure

Enext is calculated as follows:

� Process migration: (1) The failure occurs in the next

interval with a probability pf. In this case, (Ccp+Cpm)

is the cost of migration operation, Cd is the cost of

the failure downtime, and 2I is spent on the

execution and the rollback during this interval. (2)

There is no failure in the next interval with a

probability of (1- pf). In this case, the application runs

successfully to the next decision point with the

execution cost of I and (Ccp+Cpm) for migration

operation. By the law of total expectation we have:

(2)*

()*(1) (7)

next d cp pm f

cp pm f

E I C C C p

I C C p

= + + +

+ + + −

� Checkpointing: (1) The failure occurs in the next

interval with a probability pf. In this case each

process takes Ccp time on the checkpointing, Cd time

to experience failure downtime, and 2I time for

execution from the current decision point to the next

one and then rollback. (2) There is no failure in the

next interval with a probability of (1- pf). In this case,

each process takes Ccp time on the checkpointing and

I time for the execution from the current decision

point to the next one. Thus we have:

(2)* ()*(1) (8)
next d cp f cp f

E I C C p I C p= + + + + −

� No action: (1) The failure occurs in the next interval

with a probability pf. In this case, all the processes

first spend I time for the execution and then roll back

from the next decision point to the last checkpoint,

Lckp. (2) There is no failure in the next interval with a

probability of (1- pf). In this case, application

smoothly proceeds to the next decision point. Thus

we have

(2)* * *(1) (9)next ckp d f fE L L I C p I p = − + + + − 

Due to the randomness of failures, currently it is

impossible for a predictor to detect all the failures in

advance. In general, the ratio of unpredicted failures is

quantified by fn. In FT-Pro, if we solely depend on the

failure prediction, the work loss caused by the unexpected

failures could be significant when a number of “no

action” decisions are taken continuously before an

unpredicted failure. As shown in Figure 2, solely based on

Enext, FT-Pro selects “no action” decisions for the

consecutive decision intervals from Ik1 to Ikj because no

failure is alarmed during these intervals. If a false-

negative prediction occurs in the interval of (Ikj+1), the

application would end up with a significant penalty and

roll a long way back to where the last checkpointing is

taken. To address this issue, we employ a skip-window

mechanism such that FT-Pro enforces a checkpointing

when the number of the consecutive “no-action” intervals

increases to the window size. The main purpose is to limit

the loss of any false-negative failure to a tolerable range,

 5

i.e. the length of the skip-window. Currently FT-Pro

heuristically calculates the skip-window size LW as:

(/) / LW MTTF I fn= . The rationale here is to enforce a

checkpointing approximately before an un-predicted

failure. MTTF is the mean time to failure value of the

system, so the term (MTTF/I) denotes the average number

of intervals between two failures. Hence the above

formula indicates the average number of intervals

between un-predicted failures considering the false

negative error.

Figure 2. Adverse impact of false-negative error

In summary, the pseudo-code of the adaptive fault

management mechanism is shown in Figure 3.

Figure 3. Adaptive decision making algorithm

4. Experiments

In this section, we present the performance results

comparing FT-Pro against the traditional periodic

checkpointing strategy. We use the mean execution time

as our evaluation metric, which is calculated as the

average of multiple runs. For the convenience of

comparison, we also calculate the relative execution time

reduction of FT-Pro over periodic checkpointing:

 -

cp fp

cp

E E
relative reducation

E
=

4.1 Experiment Environments and Methodology

Instead of replying on any special failure distribution,

we use a real failure log of the eight-month period from

the production supercomputer Platinum at NCSA [10].

Platinum consists of 520 IA-32 nodes. For every failure

entry on each node, there are three associated properties:

failure time, failure type and downtime. MTTF of the

entire system is 0.79 hour and it is 14.2 day per node.

There are three types of failures: software error, hardware

error and scheduled maintenance. Table 2 summaries the

failures in the system.
Table 2 Failure summary of Platinum

In our experiments, the failure simulator scans the

failure log of each node in the time order and simulates a

failure when a real failure entry is encountered. For an

application running on P nodes, if one of the P nodes

encounters a failure during the execution, the application

is stopped for the downtime associated with the failure.

Thus the timing and distribution of failures in our

experiments reflect the real failure behavior of the

Platinum system.

The user application is a general MPI program, and the

cost of checkpointing and migration is simulated by

controllable cost. To model the behavior of failure

predictor, the entire 8-month on each node is divided into

multiple intervals by decision points. When inquired

about the failure prediction in the next interval, the failure

predictor scans the failure log of each working node and

provides a failure prediction based on the false-negative

error fn and the false-positive error fp as follows:

(1) To simulate fn: for each time interval, if a failure

entry exists, the predictor reports a failure of its type with

the probability of (1-fn)

(2) To simulate fp: suppose the predictor has totally

reported x failures so far for those intervals with actual

failure events. For all the other intervals without an actual

failure occurrence, the predictor randomly chooses

(x*fp/(1-fp)) intervals and predicts a false failure alarm

for each of them. The corresponding failure type of each

false-alarmed failure is randomly determined with the

distribution percentage shown in Table 2.

Failure type Distribution

percentage

Downtime (hour)

Software error 83% 0.7

Hardware error 1% 100.7

Maintenance 16% 1.2

 6

4.2 Execution Times

First, we demonstrate the performance gain achieved

by the proposed FT-Pro as compared to the traditional

periodic checkpointing under various conditions. Based

on real system scenario [10][11], we use the time unit and

set the parameters as follows: Ccp = 0.05 and Cpm = 0.05.

The default interval of the decision point, i.e. user

requested checkpointing is set according to the well-

known equation 2 *cpI C MTTF= [25]. The accuracy of

the predictor is controlled by: fp=0.2 and fn=0.3. Here,

we conservatively choose S = 1, allowing only one

process migration at each decision point.

Figure 4 shows the execution times on two processors

in which the fault-free application execution time T is

ranging from 100 to 5000 time units. Figure 5 illustrates

the relative improvement of FT-Pro against the periodic

checkpointing mechanism. As seen from these figures,

FT-Pro always maintains a steady performance gain

(between 13.6% and 14.3%) for different values of T,

which is a significant improvement for parallel

applications, especially those long-running applications.

We also evaluate FT-Pro against the periodic

checkpointing under various numbers of processors.

Figure 6 presents the relative improvement of FT-Pro

with the number of processor ranging from 4 to 128. The

figure shows that FT-Pro has a good scalability: as the

number of processors P increases and the fault-free

application execution time T increases, the relative

reduction steadily increases to a convergent point, nearly

20%. We also notice that in the case that T= 500 and

P=64 or 128, the relative reduction has an abrupt increase.

This is due to the fact that according to the failure log,

several nodes suffer a long-time downtime for four

consecutive days. When P increases, the probability that

these nods are allocated to the application is increased and

the consequent failure downtime makes the execution

time under traditional checkpointing much longer as

compared to its relative shorter T.

Application execution time

0

1000

2000

3000

4000

5000

6000

7000

10 50 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000T

E
x
p
e
c
t
e
d

e
x
e
c
ut
i
o
n

t
i
m
e Efp

Eckp

Efp

 Ecp

Figure 4. Application expected running time under
FT-Pro and Checkpointing (P=2)

Relative performance improvement

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

10 50 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T

R
e
l
a
t
i
v
e
r
e
d
u
c
t
i
o
n

P=2

 Figure 5. Relative performance improvement for P=2

Relative performance improvement

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

4 8 16 32 64 128

Number of Nodes P

R
e
l
a
t
i
v
e
r
e
d
u
c
t
i
o
n

T=500

T=1000

T=2000

T=4000

Figure 6. Relative performance improvement on
different number of processors

4.3 Impact of Prediction Accuracy

In this set of experiments, we study the sensitivity of FT-

Pro to the prediction accuracy. In Figure 7, we examine

the performance of FT-Pro with different T values on 128

nodes where the fp value varies from 0.1 to 0.9 with a

fixed fn = 0.3. It is observed that the performance

variance incurred by the changes of fp is trivial. As fp

increases to 0.9, the relative improvement of FT-Pro is

always around 20%. This is because that the value of fp

only increases the possibility of checkpointing and

migration decision. Unnecessary checkpointing and

migrations incurred by false-positive errors have lower

overhead compared to the benefit of FT-Pro.

 Under the same setting, we evaluate the impact of fn on

performance of FT-Pro with a fixed fp = 0.2. The result is

illustrated in Figure 8. As shown in the figure, the relative

reduction for each T decreases for about 3%. This

degradation is more apparent than that caused by fp. The

increasing value of fn indicates an increasing miss rate of

predicted failures. Hence, the result shows that in general

the work loss caused by unpredicted failures is larger than

the overhead introduced by unnecessary checkpointing or

migration actions. In the mean time, the impact of the

 7

skip-window is investigated as shown in Figure 10. We

notice that without skip-window, for each T, the

performance of FT-Pro degrades quickly as the fn grows.

Relative performance improvement

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False positive error Pfp

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n

T=500

T=1000

T=2000

T=4000

Figure 7. The impact of false-positive error

Relative performance improvement

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False negative error Pfn

R
el
at
i
ve

re
d
uc
ti
o
n

T=500

T=1000

T=2000

T=4000

Figure 8. The impact of false-negative error

Relative performance improvement

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False negative error Pfn

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n

T=500

T=1000

T=2000

T=4000

Figure 9 The impact of false-negative error without
skip-window

4.3 Impact of Preventive Actions

In this set of experiments, we evaluate the sensitivity of

FT-Pro to the costs of preventive actions. Using the same

setting as in the previous experiment in figure 4.1, we

vary the number of spare nodes, the cost ratio of

/
cp pm

C C and the size of decision intervals respectively in

Figure 12-14. Figure 12 shows that even if there is only

one spare node available, FT-Pro can still outperform

merely checkpointing. The main reason is that failure

events are essentially rare and the probability of two

simultaneous failures is small. The results in Figure 13

indicates that FT-Pro can maintain a stable performance

gain when the ratio of /
cp pm

C C varying from 1 to 32. As

described in Section 3, FT-Pro adaptively chooses a

preventive action with the lowest expected execution time

so as to avoid frequent migration when the migration cost

is high. In Figure 14 and 15, we change the decision

intervals, i.e. user’s fault tolerance request interval, from

I/8 to 8*I, where I is the default interval described in 4.2.

Figure 14 shows that as the interval increases, the relative

reduction of FT-Pro decreases. When the interval is small,

the periodic checkpointing strategy introduces significant

overhead by frequently interrupting the application,

whereas FT-Pro can assist the application to ignore those

unnecessary checkpointing requests. This again illustrates

the advantage of FT-Pro: if the user unwisely posts too

frequent checkpointing requests, FT-Pro can mitigate this

adverse effect. Figure 15 shows the expected execution

times of the same experiment, indicating when the

interval becomes larger, and the execution times by using

these strategies tend to increase. When the interval

increases, FT-Pro has fewer chances to make adaptive

decision so that the possibility of encountering failures

increases.

Relative performance improvement

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 4 8 16 32

Number of spare nodes S

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n

T=500

T=1000

T=2000

T=4000

Figure 12. The Impact of number of spare nodes

Relative performance improvement

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 4 8 16 32

Cost ratio Ccp/Cpm

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n

T=500

T=1000

T=2000

T=4000

Figure 13. The impact of cost ratio

 8

Relative performance improvement

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

I/8 I/4 I/2 I 2I 4I 8I 16I 32I

Decision interval

Re
l
a
t
iv
e

r
ed
u
c
t
io
n

Series1

Series2

Series3

Series4

 Figure 14. The impact of decision interval on relative
reduction

Application exection time

0

1000

2000

3000

4000

5000

6000

I/8 I/4 I/2 I 2I 4I 8I 16I 32I

Decision interval

E
x
p
ec
t
e
d
 e
x
e
c
ut
i
o
n
t
i
m
e

Eckp

Efp

Efp

 Ecp

Figure 15. The impact of decision interval on
application execution time

6 Conclusions

 In the paper, we proposed an innovative fault

management mechanism which exploits the failure

prediction to adaptively conduct checkpointing and

migration for cluster computing. Through extensive

experiments with the real failure log from a production

supercomputer at NCSA, we demonstrated that FT-Pro

can significantly reduce application execution time

compared to the traditional checkpointing/restart strategy

with even modest prediction accuracy.

 Our future work includes integrating the proposed

adaptive fault management mechanism with various

failure prediction algorithms and providing an automatic

fault tolerant tool for cluster computing.

Acknowledgement

The authors would like to thank Xianhe Sun at Illinois

Institute of Technology for numerous comments and

suggestions that contributed to this work. We also would

like to thank Charng-da Lu at University of Illinois at

Urbana-Champaign for the Platinum failure log.

References

[1] Health Application Programming Interface (HAPI) . Available at

http://www.renci.org/software/hapi/

[2] Hardware monitoring by lm sensors. Available at

http://secure.netroedge.com/lm78/info.html.

[3] A. Bouteiller et al., “Coordinated Checkpoint versus Message

Logging for Fault Tolerance MPI”, Proc. of IEEE Cluster03, 2003

[4] V. Castelli et al., “Proactive Management of Software Aging”,

IBM Journal of Research and Development, 45(2), 2001

[5] S. Chakravorty, C. Mendes, and L. Kale, “Proactive Fault

Tolerance in Large Systems”, Proc. of HPCRI workshop, 2005

[6] E.G. Coffman and E.N. Gilbert, “Optimal Strategies for

Scheduling Checkpoints and Preventive Maintenance”, IEEE Trans.

Reliability, vol. 39, no. 1, pp. 9-18, Apr. 1990.

[7] A. Duda, “The Effects of Checkpointing on Program Execution

Time”, Information Processing Letters, vol. 16, no. 5, pp. 221-229,June

1983.

[8] Hoffmann GA, Salfner F., Malek M. Advanced Failure Prediction

in Complex Software Systems,. SRDS 2004

[9] C. Leangsuksun, T. Liu, S. L. Scott T. Rao, andRichard Libby. A

failure predictive and policy-basedhigh availability strategy for Linux

high performancecomputing cluster. Proceedings of 5th LCIInternational

Conference on Linux Clusters, 2004

[10] Charng-Da Lu, Ph.D. thesis, University of Illinois at Urbana-

Champaign, 2005

[11] A. Oliner, Ramendra K. Sahoo, José E. Moreira, Meeta S. Gupta,

“Performance Implications of Periodic Checkpointing on Large-Scale

Cluster Systems”, IPDPS 2005

[12] A. J. Oliner, L. Rudolph, Ramendra K. Sahoo, José E. Moreira,

Manish Gupta: Probabilistic QoS Guarantees for Supercomputing

Systems. DSN 2005

[13] A. Oliner, Ramendra K. Sahoo, José E. Moreira, Manish Gupta,

Anand Sivasubramaniam: Fault-Aware Job Scheduling for BlueGene/L

Systems. IPDPS 2004

[14] Tatsuya Ozaki, Tadashi Dohi, Hiroyuki Okamura, Naoto Kaio,

“Min-Max Checkpoint Placement under Incomplete Failure

Information”, DSN 2004: 721-730

[15] Soila M. Pertet, Priya Narasimhan, “Proactive Recovery in

Distributed CORBA Applications”, DSN 2004: 357-366

[16] Hiroyuki Okamura, Yuki Nishimura, Tadashi Dohi: A Dynamic

Checkpointing Scheme Based on Reinforcement Learning. PRDC 2004:

151-158

[17] J. S. Plank and K. Li, “Ickp: a consistent checkpointer for

multicomputers”, IEEE Parallel & Distributed Technology, 2(2):62--67,

Summer 1994.

[18] D. Tang, R. Iyer, and S. Subramani, “Failure Analysis and

Modeling of a VAXcluster System”, Proc. of Intl. Symp. Fault

Tolerance Computing, 1990

[19] R. Vilalta and S. Ma, Predicting Rare Events in Temporal

Domains Using Associative Classification Rules, Technical Report,IBM

Research, T. J. Watson Research Center, Yorktown Heights, NY (2002).

[20] Ramendra K. Sahoo, A. Oliner, Irina Rish, Manish Gupta, José E.

Moreira, Sheng Ma, Ricardo Vilalta, Anand Sivasubramaniam: Critical

event prediction for proactive management in large-scale computer

clusters. KDD 2003: 426-435

[21] Ann T. Tai, Kam S. Tso, William H. Sanders, Savio N. Chau: A

Performability-Oriented Software Rejuvenation Framework for

Distributed Applications. DSN 2005: 570-579.

[22] Ricardo Vilalta, Sheng Ma: Predicting Rare Events In Temporal

Domains. ICDM 2002: 474-481

[23] Gary M. Weiss, Haym Hirsh: Learning to Predict Rare Events in

Event Sequences. KDD 1998: 359-363

[24] Gary M. Weiss，Haym Hirsh，Learning to Predict Rare Events

in Categorical Time-Series Data，AAAI Workshop，1998

[25] John W. Young, “A First Order Approximation to the Optimal

Checkpoint Interval”, Comm. ACM 17(9): 530-531(1974)

