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Abstract 
As the scale of cluster computing grows, it is 

becoming hard for long-running applications to 

complete without facing failures on large-scale clusters.  

To address this issue, checkpointing/restart is widely 

used to provide the basic fault-tolerant functionality, yet 

it suffers from high overhead and its reactive 

characteriristic. In this work, we propose FT-Pro, an 

adaptive fault management mechanism that optimally 

chooses migration, checkpointing or no action to reduce 

the application execution time in the presence of failures 

based on the failure prediction. A cost-based evaluation 

model is presented for dynamic decision at run-time.  

Using the actual failure log from a production cluster at 

NCSA, we demonstrate that even with modest failure 

prediction accuracy, FT-Pro outperforms the traditional 

checkpointing/restart strategy by 13%-30% in terms of 

reducing the application execution time despite failures, 

which is a significant performance improvement for 

long-running applications. 

   

1. Introduction 
 

To meet the increasing computational demand in 

science and engineering, computing capacity of clusters 

has been increased dramatically in the past decades and 

various systems with hundreds to thousands of processors 

have been deployed. According to [3], one third of the 

TOP500 systems have more than 500 processors.  

Increasing number of processors improves the overall 

performance; however, it also increases the probability of 

hardware and software failures of the system.  

Furthermore, the present trends in denser integration of 

semiconductor circuits, lower power consumption, and 

utilization of COTS components also lead to increasing 

occurrence of system failures [20]. In the meantime, many 

scientific applications are designed to run for days, weeks, 

or longer until completion. Therefore, it becomes difficult 

or impossible for long-running simulations to complete 

without facing failures on large-scale clusters, and this is 

becoming a major performance impediment for cluster 

computing due to the work loss.  

Checkpoint/recovery (CPR) is a commonly used 

technique for fault management in cluster computing, and 

a wealth of literatures is available covering a wide range 

of issues related to checkpointing/recovery 

[6][7][11][14][16][17][25]. Among them, how to reduce 

the cost associated with checkpointing has been studied 

extensively. Much work has been done on selecting the 

optimal checkpointing intervals or reducing the overhead 

per checkpointing action so as to reduce the 

checkpointing overhead.  In fact, a major issue with CPR 

is that it only deals with failures after their occurrence 

through the rollback approach. When one of the parallel 

processes experiences a failure, other processes have to 

restart from the most recently saved state prior to the 

failure. Thus, significant performance loss can be incurred 

due to the non-trivial failure downtime and recovery cost.  

In the past decades, much progress has been made in 

the field of failure prediction.  For instance, modern 

hardware devices are designed with various features (e.g. 

hardware sensors) that can monitor the degradation of an 

attribute over time for early failure detection [1][2][5], 

and a number of statistical and machine learning based 

prediction techniques have been presented with up to a 

considerable accuracy [8][9][18][19][20][22][23][24]. 

Proactive fault tolerance techniques based on failure 

prediction have been adopted to achieve high availability 

for safety-critical applications [4][15], but not well 

studied for cluster computing [5].  

This paper fills this gap by investigating and 

evaluating FT-Pro, an adaptive fault management 

approach that exploits failure prediction. Here, the 

“adaptive” means that the proposed scheme dynamically 

chooses a preventive action, e.g. proactive process 

migration or reactive checkpointing, during the execution 

of parallel applications.  A cost-based evaluation 

algorithm is proposed to adaptively select different 

preventive actions based on the accuracy of failure 

prediction. Further, a skip-window strategy is employed 

to prevent severe impact brought by the false-negative 

error of failure prediction. In FT-Pro, the primary goal is 

to reduce unnecessary checkpoints and avoid failures so 
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as to minimize the completion times of parallel 

applications.  

 We study the impact of failure prediction on the 

performance gain achieved by FT-Pro as compared to the 

traditional CPR. More specifically, we compare the 

performance of FT-Pro against periodic checkpointing 

under a wide range of prediction accuracies, problem 

sizes, and system parameters.  Experiments show that FT-

Pro outperforms periodic checkpointing by about 13% to 

30% with the false-negative error and false-positive error 

ranging from 0.1 to 0.9 respectively. The paper makes the 

following contributions:  

• Instead of solely relying on checkpointing for fault 

tolerance, the proposed FT-Pro utilizes a cost-based 

evaluation algorithm to innovatively integrates 

proactive process migration with reactive 

checkpointing; 

• Unlike most fault-tolerant research works that require 

the knowledge of global failure distribution 

[6][7][14][25], the proposed FT-Pro makes use of 

local failure event prediction at each node; 

• Instead of optimizing the system availability, FT-Pro 

targets on parallel applications running on large-scale 

clusters with the objective of reducing the execution 

times despite failures; 

• We demonstrate that the proposed adaptive fault 

management scheme can be effective even with 

modest prediction accuracy. 

 

The rest of the paper is organized as below. In Section 

2, we review the related research works. Next, in Section 

3, the main idea of FT-Pro is presented and the cost-based 

evaluation model is elaborated.  We show the experiments 

comparing FT-Pro against the traditional CPR under 

various conditions in Section 4, and conclude the paper in 

Section 5. 

 

2. Relate Work 

 

Failure Event Prediction. In recent years, literature 

indicates significant progresses in the area of failure event 

prediction that estimates the occurrence of failures in a 

short time ahead. The time weaver [23][24] adopts 

genetic algorithm to identify the predictive temporal 

failure pattern from time-series data and shows a 

capability to detect 63% telecommunication failure events. 

Instead of depending on equal spaced time-series data, in 

[19][20][22] the researchers propose a rule-based data 

mining method to predict failure events based on the 

frequent event set before the failure event with an 

accuracy up to 70%.  Hoffiman et al. [8] employ Markov 

chain and UBF function for failure forecasting. Their 

results show that they can achieve 82%-92% accuracy by 

using these methods in predicting rare failure events.  

 Prediction-based Fault Management. More and 

more works have been conducted to utilize the results 

obtained in failure prediction.  In OSCAR, the failure 

event prediction is used to schedule deliberate job 

checkpointing and migration in the Linux Beowulf cluster 

[9]. In [4], the authors present a scheme that first predicts 

the resource exhaustion failure and proactively conducts 

software rejuvenation. In [21], the failure event prediction 

is cooperated with software rejuvenation to improve the 

performability of the stateful distributed systems. In [13], 

a fault-tolerant job scheduling algorithm is proposed for 

BlueGene/L system. It considers the failure state of each 

node in the next a few seconds and allocates jobs to 

reduce the total failure loss across the system. Oliner et al. 

[12] propose a coordinative checkpointing strategy that 

optimistically skips a checkpoint when no failure 

prediction exists in the near future to maximize the 

system throughput. The MEAD system [16] predicts 

failure occurrences in distributed CORBA environment 

and switches the processing to the backup server by 

redirecting the client requests.   AMPI [5] provides a 

checkpointing and migration infrastructure so as to allow 

AMPI objects to migrate away from a node in case of an 

imminent failure.  

 

3. FT-Pro Description 

 
3.1   Nomenclatures 

 

First we illustrate a set of nomenclatures that are 

frequently used in the rest of the paper (see Table 1).  

 

3.2    Main Ideals 
 

In the design of FT-Pro, we make several 

assumptions. First, we assume that an event-based failure 

prediction mechanism is available on each node to 

forecast a failure event before the failure occurrence. 

Second, no failure occurs during the checkpointing, 

recovery, or process migration. Lastly, failure events are 

independent. These assumptions are widely used in both 

the literatures and realistic systems 

[4][12][13][19][20][22][23][24].  

The performance of an event-based failure predictor 

is generally measured by two errors: the false-positive and 

false-negative error, which depends on the prediction 

window.  Here, the false-positive error fp reflects the 

precision of the failure predictor, which is defined 

as
 

    

false positive
fp

false positive true positive+
= . A smaller fp indicates that 

the predictor reports fewer false alarms. The false-

negative error fn reflects the accuracy of the predictor, 

which is defined as
 

    

false negative
fn

false negative true positive+
= . A 
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smaller fn indicates that the predictor can recognize more 

failures.  

  
Table 1 Nomenclature 

P Number of nodes allocated to the application  

T The fault-free running time of the application 

I The fault-tolerance interval requested by 

users 

Lckp The index of the last checkpointing  

S Number of spare nodes 

fp False positive error of the failure predictor 

fn False negative error of the failure predictor 

pf The failure probability of the application 

during the next decision interval  

f Failure type 

Nf Number of predicted failure in the next 

interval 

Cf The failure downtime for a specific failure 

type f  

Cd The estimated failure downtime of the 

application in the next interval 

Ccp Cost per checkpoint 

Cpm Cost per process migration 

LW Length of skip-window  

Efp Expected application execution time under 

FT-Pro 

Ecp Expected application execution time under 

periodic checkpointing 

 
FT-Pro adopts a cooperative approach, that is, the 

application programmer or user can insert fault tolerance 

requests denoted as decision points in the application and 

FT-Pro makes run-time decision on what type of 

preventive action should be taken at each decision point. 

More specifically, at each decision point, the predictor at 

each node is consulted to provide a failure forecasting 

between the current and the next decision points.  Based 

on this information and the application status, FT-Pro 

estimates the costs for different preventive actions and 

invokes an appropriate action that introduces the minimal 

cost. The cost models will be presented in the next 

subsection. Currently, FT-Pro supports three different 

preventive actions:  

� Process Migration: all the processes first conduct a 

coordinated checkpointing; and the processes running 

on suspicious nodes are migrated to other healthy 

nodes. 

� Checkpointing: all the processes are stopped to 

conduct a coordinated checkpointing. 

� No action: the application continues its execution 

without being interrupted. 

 

Figure 1 illustrates the main ideal used in FT-Pro. 

Suppose a parallel application composed of P processes. 

At each decision point (denoted as DP), FT-Pro 

adaptively determines which action should be taken. For 

example, at the decision point DP1 and DP3, the 

checkpointing action is taken; at DP2 and DP5, “no 

action” is taken to skip unnecessary overhead; and at DP4, 

to avoid a predicted failure, process Pn is migrated to the 

spare node Ps.    

 

 
 

Figure 1. The FT-Pro Adaptive Fault Management  

 

3.3   Cost-Based Evaluation Models 
 

The primary objective in high performance cluster 

computing is to reduce the execution time. Hence, FT-Pro 

uses the execution time as the primary performance 

metric for the adaptive decision making. Without 

assuming failure distributions as done in most related 

work, FT-Pro adopts a greedy-style algorithm to make 

runtime decisions. At each decision point, FT-Pro selects 

the action which results in the minimum Enext, the 

expected execution time for the application from the 

current decision point to the next one.  Through such a 

greedy strategy, FT-Pro aims to reduce the overall 

execution time of the application despites failures. In 

other words, the problem statement of the adaptive 

decision making used in FT-Pro is given as below: 

  

Suppose the parallel application is executing on P 

processors with a fault-free execution time of T and  

S spare nodes are available, at each decision point, 

FT-Pro adaptively choose an action(e.g. process 

migration, checkpointing, or no action) with the 

objective to minimize  Enext.  

 

Here, the number of spare nodes determines the 

maximal number of processes that can be migrated at a 

specific decision point simultaneously. The value of S can 

be designated by the user or through the negotiation with 

the scheduler. In case that the number of predict-to-failure 

nodes exceeds that of spare nodes, FT-Pro migrates the 

processes with more severe failures, i.e. whose predicted 

failures have longer downtime. 
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To evaluate Enext, FT-Pro first estimates the failure 

probability of the application in the next interval based on 

the failure prediction of each node.  Suppose Nf out of P 

nodes have predicted failures and each has a failure type fi 

(1<i<Nf). Thus pf, the failure probability of the 

application in the next interval, can be calculated as 

follows:  

� Process migration: suppose this action is selected and 

S (out of Nf) processes are migrated to the spare 

nodes.  Thus We have : 

1

1     
    (1)

0    

fN S

f

if

f

fp if N S
P

if N S

−

=


− >

= 
 ≤

∏
 

� Checkpointing: suppose this action is selected.  The 

probability of no failure for a node in the next 

interval is fp according to the definition of false-

positive error. Therefore, we have: 

1

1     0
    (2)

0    0

fN

f

if

f

fp if N
p

if N

=


− >

= 
 =

∏
. 

� No action: suppose this action is selected. The failure 

probability of the application is the same as the case 

when checkpointing is chosen.  

1

1     0
    (3)

0    0

fN

f

if

f

fp if N
p

if N

=


− >

= 
 =

∏
 

FT-Pro then evaluates Cd, the failure downtime of the 

application in the next interval, which is calculated as the 

average of Nf possible failures: 

� Process migration:  

( )

1

1
  

    (4)

0    

fN

ft i f

ifd

f

C if S N
N SC

if S N

=


∗ <

−= 


≥

∑
 

� Checkpointing:  all the nodes with a predicted failure 

contribute to the possible downtime. Thus we have: 

f(i)

1

1
C     (5)

fN

d

if

C
N =

= ∗∑  

� No action:, the failure downtime is the same as  the 

case of checkpointing:  

f(i)

1

1
C     (6)

fN

d

if

C
N =

= ∗∑  

Now we can move to calculate Enext that is used to 

make a decision at the current decision point. Due to the 

uncertainty of the exact failure time, we consider the 

pessimistic case in which the actual failure occurs 

immediate before the next decision point. Suppose that 

the index of the current decision point is L, then based on 

the failure probability pf and the corresponding failure 

Enext is calculated as follows: 

� Process migration:  (1) The failure occurs in the next 

interval with a probability pf. In this case, (Ccp+Cpm) 

is the cost of migration operation, Cd is the cost of  

the failure downtime,  and 2I is spent on the 

execution and the rollback during this interval. (2) 

There is no failure in the next interval with a 

probability of (1- pf). In this case, the application runs 

successfully to the next decision point with the 

execution cost of I and (Ccp+Cpm) for migration 

operation. By the law of total expectation we have:  

(2 )*

( )*(1 )    (7)

next d cp pm f

cp pm f

E I C C C p

I C C p

= + + +

+ + + −
 

� Checkpointing:  (1) The failure occurs in the next 

interval with a probability pf. In this case each 

process takes Ccp time on the checkpointing, Cd time 

to experience failure downtime, and 2I time for 

execution from the current decision point to the next 

one and then rollback.  (2) There is no failure in the 

next interval with a probability of (1- pf). In this case, 

each process takes Ccp time on the checkpointing and 

I time for the execution from the current decision 

point to the next one. Thus  we have: 

(2 )* ( )*(1 )   (8)
next d cp f cp f

E I C C p I C p= + + + + −  

� No action: (1) The failure occurs in the next interval 

with a probability pf. In this case, all the processes 

first spend I  time for the execution and then roll back 

from the next decision point to the last checkpoint, 

Lckp. (2) There is no failure in the next interval with a 

probability of (1- pf). In this case, application 

smoothly proceeds to the next decision point. Thus 

we have  

( 2)* * *(1 )    (9)next ckp d f fE L L I C p I p = − + + + −   

Due to the randomness of failures, currently it is 

impossible for a predictor to detect all the failures in 

advance. In general, the ratio of unpredicted failures is 

quantified by fn.  In FT-Pro, if we solely depend on the 

failure prediction, the work loss caused by the unexpected 

failures could be significant when a number of “no 

action” decisions are taken continuously before an 

unpredicted failure. As shown in Figure 2, solely based on 

Enext, FT-Pro selects “no action” decisions for the 

consecutive decision intervals from Ik1 to Ikj because no 

failure is alarmed during these intervals. If a false-

negative prediction occurs in the interval of (Ikj+1), the 

application would end up with a significant penalty and 

roll a long way back to where the last checkpointing is 

taken. To address this issue, we employ a skip-window 

mechanism such that FT-Pro enforces a checkpointing 

when the number of the consecutive “no-action” intervals 

increases to the window size. The main purpose is to limit 

the loss of any false-negative failure to a tolerable range, 
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i.e. the length of the skip-window. Currently FT-Pro 

heuristically calculates the skip-window size LW as: 

( / ) /  LW MTTF I fn= . The rationale here is to enforce a 

checkpointing approximately before an un-predicted 

failure. MTTF is the mean time to failure value of the 

system, so the term (MTTF/I) denotes the average number 

of intervals between two failures. Hence the above 

formula indicates the average number of intervals 

between un-predicted failures considering the false 

negative error. 

 
 
Figure 2. Adverse impact of false-negative error 

 

In summary, the pseudo-code of the adaptive fault 

management mechanism is shown in Figure 3.  

 
Figure 3. Adaptive decision making algorithm  

 

4. Experiments 
 

In this section, we present the performance results 

comparing FT-Pro against the traditional periodic 

checkpointing strategy.  We use the mean execution time 

as our evaluation metric, which is calculated as the 

average of multiple runs. For the convenience of 

comparison, we also calculate the relative execution time 

reduction of FT-Pro over periodic checkpointing: 

 -  
  

cp fp

cp

E E
relative reducation

E
=  

4.1 Experiment Environments and Methodology 

 

Instead of replying on any special failure distribution, 

we use a real failure log of the eight-month period from 

the production supercomputer Platinum at NCSA [10].  

Platinum consists of 520 IA-32 nodes.  For every failure 

entry on each node, there are three associated properties: 

failure time, failure type and downtime. MTTF of the 

entire system is 0.79 hour and it is 14.2 day per node. 

There are three types of failures: software error, hardware 

error and scheduled maintenance. Table 2 summaries the 

failures in the system. 
Table 2 Failure summary of Platinum  

In our experiments, the failure simulator scans the 

failure log of each node in the time order and simulates a 

failure when a real failure entry is encountered. For an 

application running on P nodes, if one of the P nodes 

encounters a failure during the execution, the application 

is stopped for the downtime associated with the failure. 

Thus the timing and distribution of failures in our 

experiments reflect the real failure behavior of the 

Platinum system. 

The user application is a general MPI program, and the 

cost of checkpointing and migration is simulated by 

controllable cost. To model the behavior of failure 

predictor, the entire 8-month on each node is divided into 

multiple intervals by decision points. When inquired 

about the failure prediction in the next interval, the failure 

predictor scans the failure log of each working node and 

provides a failure prediction based on the false-negative 

error fn and the false-positive error fp as follows: 

(1) To simulate fn: for each time interval, if a failure 

entry exists, the predictor reports a failure of its type with 

the probability of (1-fn) 

(2) To simulate fp: suppose the predictor has totally 

reported x failures so far for those intervals with actual 

failure events. For all the other intervals without an actual 

failure occurrence, the predictor randomly chooses 

(x*fp/(1-fp)) intervals and predicts a false failure alarm 

for each of them. The corresponding failure type of each 

false-alarmed failure is randomly determined with the 

distribution percentage shown in Table 2. 

 

 

Failure type Distribution 

percentage 

Downtime (hour) 

Software error 83% 0.7 

Hardware error 1% 100.7 

Maintenance 16% 1.2 
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4.2 Execution Times 
 

First, we demonstrate the performance gain achieved 

by the proposed FT-Pro as compared to the traditional 

periodic checkpointing under various conditions. Based 

on real system scenario [10][11], we use the time unit and 

set the parameters as follows: Ccp = 0.05 and Cpm = 0.05. 

The default interval of the decision point, i.e. user 

requested checkpointing is set according to the well-

known equation 2 *cpI C MTTF= [25]. The accuracy of 

the predictor is controlled by: fp=0.2 and fn=0.3. Here, 

we conservatively choose S = 1, allowing only one 

process migration at each decision point. 

Figure 4 shows the execution times on two processors 

in which the fault-free application execution time T is 

ranging from 100 to 5000 time units. Figure 5 illustrates 

the relative improvement of FT-Pro against the periodic 

checkpointing mechanism. As seen from these figures, 

FT-Pro always maintains a steady performance gain 

(between 13.6% and 14.3%) for different values of T, 

which is a significant improvement for parallel 

applications, especially those long-running applications. 

We also evaluate FT-Pro against the periodic 

checkpointing under various numbers of processors. 

Figure 6 presents the relative improvement of FT-Pro 

with the number of processor ranging from 4 to 128.  The 

figure shows that FT-Pro has a good scalability: as the 

number of processors P increases and the fault-free 

application execution time T increases, the relative 

reduction steadily increases to a convergent point, nearly 

20%.  We also notice that in the case that T= 500 and 

P=64 or 128, the relative reduction has an abrupt increase. 

This is due to the fact that according to the failure log, 

several nodes suffer a long-time downtime for four 

consecutive days. When P increases, the probability that 

these nods are allocated to the application is increased and 

the consequent failure downtime makes the execution 

time under traditional checkpointing much longer as 

compared to its relative shorter T.  

Application execution time
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Figure 4.  Application expected running time under 
FT-Pro and Checkpointing (P=2) 
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 Figure 5.  Relative performance improvement for P=2  
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Figure 6. Relative performance improvement on 
different number of processors 

 

4.3 Impact of Prediction Accuracy 
 

In this set of experiments, we study the sensitivity of FT-

Pro to the prediction accuracy. In Figure 7, we examine 

the performance of FT-Pro with different T values on 128 

nodes where the fp value varies from 0.1 to 0.9 with a 

fixed fn = 0.3.  It is observed that the performance 

variance incurred by the changes of fp is trivial. As fp 

increases to 0.9, the relative improvement of FT-Pro is 

always around 20%. This is because that the value of fp 

only increases the possibility of checkpointing and 

migration decision. Unnecessary checkpointing and 

migrations incurred by false-positive errors have lower 

overhead compared to the benefit of FT-Pro. 

   Under the same setting, we evaluate the impact of fn on 

performance of FT-Pro with a fixed fp = 0.2. The result is 

illustrated in Figure 8. As shown in the figure, the relative 

reduction for each T decreases for about 3%. This 

degradation is more apparent than that caused by fp.  The 

increasing value of fn indicates an increasing miss rate of 

predicted failures. Hence, the result shows that in general 

the work loss caused by unpredicted failures is larger than 

the overhead introduced by unnecessary checkpointing or 

migration actions. In the mean time, the impact of the 
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skip-window is investigated as shown in Figure 10. We 

notice that without skip-window, for each T, the 

performance of FT-Pro degrades quickly as the fn grows. 
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Figure 7. The impact of false-positive error 
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Figure 8. The impact of false-negative error  
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Figure 9 The impact of false-negative error without 
skip-window 

 

4.3 Impact of Preventive Actions 
 

In this set of experiments, we evaluate the sensitivity of 

FT-Pro to the costs of preventive actions. Using the same 

setting as in the previous experiment in figure 4.1, we 

vary the number of spare nodes, the cost ratio of 

/
cp pm

C C and the size of decision intervals respectively in 

Figure 12-14.  Figure 12 shows that even if there is only 

one spare node available, FT-Pro can still outperform 

merely checkpointing. The main reason is that failure 

events are essentially rare and the probability of two 

simultaneous failures is small. The results in Figure 13 

indicates that FT-Pro can maintain a stable performance 

gain when the ratio of /
cp pm

C C  varying from 1 to 32.  As 

described in Section 3, FT-Pro adaptively chooses a 

preventive action with the lowest expected execution time 

so as to avoid frequent migration when the migration cost 

is high.  In Figure 14 and 15, we change the decision 

intervals, i.e. user’s fault tolerance request interval, from 

I/8 to 8*I, where I is the default interval described in 4.2. 

Figure 14 shows that as the interval increases, the relative 

reduction of FT-Pro decreases. When the interval is small, 

the periodic checkpointing strategy introduces significant 

overhead by frequently interrupting the application, 

whereas FT-Pro can assist the application to ignore those 

unnecessary checkpointing requests. This again illustrates 

the advantage of FT-Pro: if the user unwisely posts too 

frequent checkpointing requests, FT-Pro can mitigate this 

adverse effect. Figure 15 shows the expected execution 

times of the same experiment, indicating when the 

interval becomes larger, and the execution times by using 

these strategies tend to increase. When the interval 

increases, FT-Pro has fewer chances to make adaptive 

decision so that the possibility of encountering failures 

increases.  
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Figure 12. The Impact of number of spare nodes  
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Figure 13. The impact of cost ratio  
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Figure 15. The impact of decision interval on 
application execution time 

 

6 Conclusions 
  

  In the paper, we proposed an innovative fault 

management mechanism which exploits the failure 

prediction to adaptively conduct checkpointing and 

migration for cluster computing. Through extensive 

experiments with the real failure log from a production 

supercomputer at NCSA, we demonstrated that FT-Pro 

can significantly reduce application execution time 

compared to the traditional checkpointing/restart strategy 

with even modest prediction accuracy. 

    Our future work includes integrating the proposed 

adaptive fault management mechanism with various 

failure prediction algorithms and providing an automatic 

fault tolerant tool for cluster computing. 
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