
Evaluating Performance and Scalability of Advanced Accelerator Simulations

Jungmin Lee1, Zhiling Lan1, J. Amundson2, and P.Spentzouris2

Department of Computer Science
Illinois Institute of Technology1

Fermi National Accelerator Laboratory2

{leejung6, lan}1@iit.edu

{amundson, spentz}2@fnal.gov

Abstract

Advanced accelerator simulations have played a
prominent role in the design and analysis of modern
accelerators. Given that accelerator simulations are
computational intensive and various high-end clusters are
available for such simulations, it is imperative to study the
performance and scalability of accelerator simulations on
different production systems. In this paper, we examine
the performance and scaling behavior of a DOE SciDAC
funded accelerator simulation package called Synergia on
three different TOP500 clusters including an IA32 Linux
Cluster, an IA64 Linux Cluster, and a SGI Altix 3700
system. The main objective is to understand the impact of
different high-end architectures and message layers on the
performance of accelerator simulations. Experiments
show that IA32 using single-CPU can provide the best
performance and scalability, while SGI Altix and IA32
using dual-CPU do not scale past 128 and 256 CPUs
respectively. Our analysis also indicates that the existing
accelerator simulations have several performance
bottlenecks which prevent accelerator simulations to take
full advantage of the capabilities provided by teraflop and
beyond systems.

1. Introduction
Particle accelerators constitute one of the most useful

and complex research instruments available to scientists
today. Over the past decade, advanced accelerator
simulations have played a prominent role in the design
and analysis of modern accelerators. The design of the
next generation accelerators such as the International
Linear Collider [ILC], as well as the optimization of
existing accelerators such as the Fermilab Booster
[DOE03], will benefit from three-dimensional high-
fidelity modeling. Accelerator simulations are
computational intensive, requiring massively parallel
systems. In the past decades, computing capacity has been
increased dramatically and various clusters with hundreds

to thousands of processors have been deployed. Teraflop
computers, capable of executing one trillion (1012)
floating point operations per second (TFlops), have
emerged. Petaflop systems (1015) are expected by the end
of the decade. Given that the existence of powerful large-
scale clusters for accelerator simulations, it is critical to
study the performance and scalability of accelerator
simulations on various high-end clusters, and further to
identify the performance bottlenecks associated with
accelerator simulations so as to take full advantage of the
capabilities of teraflop and beyond systems.

This paper presents a detailed performance and
scalability analysis of advanced accelerator simulations
on various TOP500 clusters [T500]. In particular, we
study the performance of Synergia, a state-of-the-art
accelerator modeling code funded by the DOE SciDAC
program [SYNE, AS02, AS03], on three different
TOP500 clusters at NCSA (IA32 Linux cluster, IA64
Linux cluster, and SGI Altix 3700 system). We start with
examining the low-level machine characteristics of these
clusters through microbenchmarks. We then describe the
porting details of Synergia on these clusters, followed by
analyzing the performance of accelerator simulations
from three aspects: overall performance, computational
kernels, and communication calls. The goal of this paper
is to understand the performance and scaling behavior of
accelerator simulations on different high-end architectures
and message layers and further to investigate the
performance bottlenecks associated with the existing
accelerator simulations.

The rest of the paper is organized as below. In Section 2,
we give an overview of accelerator simulations and the
Synergia package. Section 3 describes the TOP500
clusters used in this work and compares their low-level
performance through microbenchmarks. Section 4
describes our porting experiences of accelerator
simulations on these systems. In Section 5, we present the
performance and scalability results. Finally, Section 6
summarizes the paper.

 1

2. Background
In this section, we give an overview of advanced

accelerator simulations and the Synergia package [SYNE].

2.1. Accelerator Simulations
In high-energy physics, experiments associated with

accelerators have led to important discoveries about the
fundamental forces of nature and the discovery of new
elementary particles [AS06].

In accelerator simulation, the modeling of beam
dynamics is one of the key research areas. The dynamics
of charged particles in accelerators, in absence of
radiation, can be divided into two categories: (1) single-
particle optics, which are due to the interaction of the
beam particles with the electromagnetic fields produced
by the magnets and the RF cavities of the accelerator and
(2) collective beam effects, which are due to the
interaction of beam particles with fields produced by the
beam itself or by other beams in each vicinity [AS03].
Modeling of single-particle dynamics has been
extensively studied, while modeling of collective beam
effects is a less mature and much more computationally
intensive endeavor, especially in the case of very intense
charged beams. These collective effects often result in the
development of beam halo (particles falling outside the
desired beam phase space boundaries) that eventually
causes beam losses and irradiation of the accelerator
complex. In addition, such effects result in the dilution of
the beam phase pace causing a decrease in accelerator
intensity and collider luminosity. In order to accurately
modeling realistic conditions of accelerator operation, the
collective beam effects must be considered [AS06].

The most widely used method to model collective
beam effects is the Particle-In-Cell (PIC) method
[QR+00]. In this approach the beam distribution is
represented by a set of macro-particles that evolve
according to the single particle equations of motion; the
collective effects (beam-generated electromagnetic fields)
are calculated by solving the Poisson-Vlasov equation at
every simulation step. Three operations are performed
during the simulation at each step: first, the particles are
deposited on a spatial grid; second, the fields are
calculated on the grid; third and final, the fields are
interpolated back to the particles and used to push the
particles. A large number of macro-particles (order a few
million or more) are needed to obtain the required
simulation accuracy, thus the need of using of massively
parallel computers.

2.2. Synergia Code
Synergia, funded by the DOE SciDAC Accelerator

Science and Technology Project, provides state-of-the-art
simulations of linear and circular accelerators with a fully

three-dimensional treatment of space charge. It is a
parallel three dimensional modeling code for multi-
particle effects integrating existing beam dynamics
modeling tools. It has been used to model space charge
effects in the Fermilab Booster and the results are in good
agreement with Booster beam study experiments. The
implementation is fully parallelized.

Synergia uses IMPACT [QR+00] for its parallel
simulation of the propagation of particles, the modeling of
RF cavities and, most important, parallel calculations of
space-charge effects. IMPACT is a 3D parallel Particle-
In-Cell (PIC) code for modeling high-intensity beams in
RF accelerators. For the modeling of single-particle optics,
Synergia uses the mxyzptlk/beamline libraries [LM91],
which can perform a wide range of accelerator physics
computations. Synergia integrates the above packages
using a framework written in C++ and Python. Synergia
is designed to be a general-purpose framework with an
interface that is accessible to accelerator physicists who
are not experts in simulation. Figure1 gives an overview
of Synergia. Figure 1 gives an overview of Synergia.

Figure 1: Overview of Synergia

 3. TOP500 Clusters

In this section, we first describe main features of the
TOP500 clusters used in this work, and then evaluate their
low-level performance through two well-known
microbenchmarks.

3.1. Overview
Three different types of TOP500 clusters at NCSA are

used in this work: IA32 Linux cluster, IA64 Linux cluster,
which is a part of TeraGrid [TG], and SGI Altix 3700
system.

We choose these systems for several reasons. First,
they are widely used in the area of scientific computing.
Secondly, they represent different high performance

 2

computing environments. Lastly, they have different
configurations of hardware, compiler, operating systems,
MPI and other software environments. This can provide
us with a fair evaluation of accelerator simulations.

Table 1 summarizes the overall hardware and software
differences among IA32, IA64, and SGI Altix.

Component IA32 IA64 SGI Altix

TOP 500
ranking

(June 2005)
28th 49th 60th

Peak
Performance

15300 GFlops 10259 Gflops 6553 Gflops

Architecture Linux Cluster Linux Cluster
Distributed

Shared Memory
(ccNUMA)

Number of
nodes/CPUs

1450 887 1024

Processor

Intel Xeon 3.2
GHz (32-bit)

8 KB L1
512 KB L2
1 MB L3

Intel®
Itanium® 2, 1.3

GHz
32 KB L1

256 KB L2
Integrated 3

MB L3

Intel®
Itanium® 2, 1.5

GHz
32 KB L1

256 KB L2
 6MB L3 cache

Network
Interconnect

Giga Ethernet
 &

Myrinet 2000

Giga. Ethernet
&

Myrinet2000

SGI

NUMAlink3

Compiler

Intel:
Fortran77/90/95

C C++
&

GNU:
Fortran77 C

C++

Intel:
Fortran77/90/95

C C++
&

GNU:
Fortran77 C

C++

Intel 8.1:
Fortran77/90/95

C C++
&

GNU :
Fortran77 C

C++

Operating
System

Linux 2.4.20
(Red Hat 9.0)

SUSE Linux
SLES8 / 2.4 MP

SGI ProPack
3.4

Kernel : 2.4.21-
sgi304

MPI
MPICH-GM,
MPICH-G2,
MPICH-VMI

MPICH-GM,
MPICH-G2,
MPICH-VMI

SHMEM

Table 1: Architectural Specifications on IA32/64
and SGI Altix at NCSA

As shown in the table, these clusters are different in

terms of architecture, processor type, and network
connections. Both IA32 and IA64 are distributed address
space machines, while SGI Altix is a ccNUMA (Cache
Coherent Non-Uniform Memory Access) machine. Both
IA64 and SGI Altix use Intel Itanium2 processors that are
Intel’s 64-bit processors, while IA32 uses 32-bit Intel
Xeon processors. The major difference between Xeon
processors and Itanium processors is the bitness of integer
registers. Also, Xeon processors have extremely high
clock rates, while Itanium processors have very high
floating-point speed at relatively lower clock rates. Both
Gigabit Ethernet and Myrinet interconnections are
supported in IA32 and IA64, SGI Altix uses SGI NUMA
link3 as its network interconnection.

3.2. Microbenchmark Performance Results
We first evaluate the low-level machine characteristics

of these clusters through the microbenchmark STREAM
[STREAM] and Pallas MPI Benchmark (PMB) [PMB].

The STREAM benchmark is a synthetic benchmark
program that measures sustainable memory bandwidth (in
MB/s) and the corresponding computation rate for simple
vector kernels. PMB is a widely used MPI benchmark that
is used to compare the performance of various MPI
functions.

P IA32 IA64 SGI Altix
2 1845.5902 652.5984 767.5930
4 1836.9757 651.3316 768.5776
8 1835.0065 652.0573 765.6838

16 1833.5297 653.3014 766.2724
32 1835.7693 654.7270 768.1963
64 1858.8730 651.9432 765.8440
128 1836.5511 652.2094 766.1733
256 1854.5013 653.7023 768.9856
512 1849.7094 652.3087 -----

Table 2: Per-processor STREAM triad performance
(in MB/s) for unit stride.

Table 2 presents the performance results comparing

these clusters using STREAM. Here, the data represent
the asymptotic unit-stride memory bandwidth behaviour
of the triad summation:)()()(icsibia ×+= . The number of
processors is varying from 2 to 512 processors. Note that
we were not able to use 512 processors on SGI Altix due
to the limitation of maximum number of nodes allocated
to us. As shown in the table, IA32 cluster has better
memory bandwidth as compared to IA64 and SGI Altix.
The average bandwidth of IA32 is about 2.8 (2.4) times
larger than that of IA64 (SGI Altix). The memory
bandwidth of SGI Altix is about 1.2 times better than
IA64.

Now we move to examine the message passing
performance of these clusters. According to our analysis,
four MPI calls are frequently used in Synergia
(MPI_Send/Recv, MPI_Barrier, MPI_Allreduce and
MPI_Reduce). Therefore, we study the performance of
these MPI calls by using PMB.

8192 Bytes 2097152 Bytes P
IA32 IA64 Altix IA32 IA64 SGI Altix

2 269.73 1207.12 3868.48 457.61 1176.13 11416.75
4 258.27 337.54 1283.72 443.99 399.71 6527.79
8 242.06 337.28 1612.81 413.01 394.36 7215.23

16 212.47 335.06 1507.43 325.50 351.12 7092.17
32 224.39 215.90 1483.63 317.24 218.08 3659.94
64 230.73 227.86 1419.69 289.51 192.36 6509.73
128 189.83 141.80 1373.77 297.43 150.61 6122.13
256 212.58 112.36 1165.95 197.44 119.13 2741.87
512 170.02 114.11 ---- 182.66 116.05 ----

Table 3: MPI Send/Recv Performance (in MB/s)

Table 3 shows the bandwidth results of MPI Send/Recv

with varying message sizes (from 8192 bytes to 2097152
bytes) and varying numbers of processors (from 2 to 512).

 3

Due to the space limit, we only show two message sizes
in the table. As is shown in the table, SGI Altix has much
better MPI Send/Rend performance, achieving more than
16.8 (11.5) times better bandwidth than that on IA64
(IA32). IA64 has better performance as compared to IA32
when the number of processors is small, otherwise IA32
has better performance.

Table 4 summarizes the overhead of MPI_Barrier on
these clusters with varying numbers of processors (from 2
to 128). As shown in the table, SGI Altix introduces the
minimal overhead among three clusters, achieving more
than 12.9 (12.6) times better performance than that on
IA32 (IA64). In general, IA64 has better performance as
compared to IA32.

P IA32 IA64 SGI Altix
2 9.41 2.71 1.07
4 19.77 25.04 2.21
8 32.74 46.40 3.30

16 70.47 69.61 4.80
32 136.75 128.34 6.52
64 81.35 122.97 8.32
128 222.76 143.42 12.82

Table 4: MPI Synchronization Overhead (in μsec)

Table 5 summarizes the performance of MPI_Allreduce
on these systems with varying number of message sizes
and varying numbers of processors. There is no big
difference between IA32 and IA64, but the performance
on SGI Altix is 4.3 (1.9) times worse than that on IA32
(IA64).

8192 Bytes 2097152 Bytes P IA32 IA64 Altix IA32 IA64 Altix

2 73.3 46.6 33.6 21631.1 17455.1 6311.0
4 134.7 149.5 89.6 32694.3 59509.5 18016.7
8 225.0 256.1 120.5 64882.6 92230.0 25296.7
16 410.7 374.9 171.7 116397.1 103570.3 35624.6
32 550.1 605.8 222.4 158201.5 210120.4 46536.5
64 931.2 828.3 292.2 245818.3 244520.2 61750.3
128 1700.9 2045.6 340.9 469400.0 422024.4 64533.9
256 2803.7 1621.2 646.0 717508.6 474271.0 75333.3
512 3087.1 2029.2 ---- 673317.4 613863.4 ----

Table 5: MPI_Allreduce Performance (in MB/s)

8192 Bytes 2097152 Bytes P IA32 IA64 Altix IA32 IA64 SGI Altix
2 56.4 14.7 23.5 20288.4 8946.6 5426.2
4 120.5 105.4 57.6 32230.67 27753.1 13703.3
8 187.8 173.5 89.8 44671.9 41479.4 21171.7

16 274.4 244.4 119.5 60280.5 54001.6 27675.9
32 335.1 321.4 152.9 69317.3 69950.1 35667.1
64 396.3 384.3 185.1 79270.5 82474.2 40725.7
128 476.2 457.3 213.8 92427.6 101971.5 47014.6
256 553.5 528.7 414.1 107838.6 109422.9 54155.5
512 695.6 633.8 ---- 114945.0 120904.5 ----

Table 6: MPI_Reduce Performance (in MB/s)

Table 6 shows the performance data of MPI_Reduce on
these systems. In general, IA32 achieves the best

performance, with 2.4 (1.1) times better than SGI Altix
(IA64).

4. Porting Details
Synergia is a hybrid code integrating several existing

packages written in multiple programming languages.
While using multiple components provides a powerful
accelerator simulation package, it also creates a
configuration problem. Multiple language issues are
particularly problematic because calling conventions vary
from platform to platform [AS06]. Porting a hybrid code
can be a complicated task, which is further complicated
by the diverse set of programming environments provided
on these systems.

We first installed Synergia on IA32 Linux Cluster and
did not encounter any problems. To link with MPI
libraries, we used MPICH-GM (version 1.2.5.2). The
code was compiled with Intel compilers.

We then installed Synergia on IA64 Linux Cluster.
The major problem we had is that Synergia was initially
designed for 32-bit systems and IA64 uses different
length of integer. To solve this problem, we deleted the
“long” data type from all the files in Synergia. We also
tried the GNU compiler, but it did not work with Synergia
on IA64.

On SGI Altix, initially we planned to use MPICH-GM,
the same version as on the other two clusters, but it did
not work with Synergia. Hence, we decided to use SGI
SHMEM MPI version with the specific SGI MPI library,
libmpi.a.

Table 7 summarizes the compilation details of Synergia
on IA32, IA64, and SGI Altix.

Compiler/MPI IA32/64 SGI Altix

Compiler icpc Icpc
Flags -cxxlib-icc –static -cxxlib-icc –static C++

Libraries -limf -lcprts -limf -lcprts
Compiler Ifort Ifort

Flags
-g -O2

-inline_debug_info
–cm -w95

-g -O2
-inline_debug_info -

cm -w95

FORTRAN
90

Libraries libifport.a libifcore.a libifport.a libifcore.a
Version
of MPI mpich-1252 SHMEM

MPI
Libraries

libfmpich.a,
libmpichf90.a,

libmpich.a,
libpmpich.a

libmpi.a

Table 7: Compiler Options on IA32, IA64, and Altix

5. Performance and Scalability Analysis
 Now we move to evaluate and analyze the

performance of Synergia on IA-32, IA-64, and SGI Altix.
The experimental data are divided into three categories:

 4

overall performance, computational kernels, and
communication calls. Since the nodes on IA32 and IA64
have dual CPUs, there are two different execution
environments: either using one CPU per node or using
both CPUs per node. On SGI Altix, only dual-CPU
configuration is allowed. Therefore, we investigate the
performance of Synergia under five different scenarios:
IA32 with single-CPU, IA32 with dual-CPU, IA64 with
single-CPU, IA64 with dual-CPU, and SGI Altix with
dual-CPU. We analyze the performance of Synergia with
number of processors ranging from 2 to 512, except for
SGI Altix on which we only have the access to 256
processors.

5.1. Execution Time
Table 8 and Figure 2 summarize the total execution

times on these systems. Here, the columns under “single
CPU” represent the performance data using a single CPU
per node, while the columns under “dual CPU” represent
the performance data using two CPUs per node. It is
shown that the total execution times on IA32 are, in
average, 2.5 (2.0) times faster than those on IA64 (SGI
Altix). In other words, IA32 achieves the best
performance, followed by SGI Altix and then IA64.

IA32

(single
CPU)

IA32
(dual
CPU)

IA64
(single
CPU)

IA64
(dual
CPU)

SGI Altix

2 7052 6703 16784 19064 12648
4 3495 3471 9633 8640 7105
8 2030 1832 4997 5020 3288

16 1045 969 2388 2378 2065
32 508 512 1208 1274 932
64 300 336 639 815 554
128 196 207 562 563 468
256 156 168 469 470 733
512 133 182 460 460 ----

Table 8: Execution Time on IA32, IA64, and Altix

By looking into the data shown in Table 8, we notice

that when the number of processors is smaller or equal to
16, the dual-CPU configuration is faster than the single-
CPU configuration. When the number of processors is
larger than 16, the single-CPU configuration general
provides better performance as compared to the dual-CPU
configuration.

We then study the speedup achieved on these systems
as it can provide us more clear information of the
scalability of Synergia on these systems. Figure 3
illustrates the speedup obtained on these systems. Here,
speedup is defined as ()

pT
T22× , where T2 and Tp denote the

total execution time on two and P processors respectively.
When the number of processors is larger than 128, we
notice very different scalability behavior on these

systems: (1) on IA64 with single- and dual-CPU, the
speedup lines keep increasing with much slower speed;
(2) on IA32 with single-CPU, the speedup line is the most
satisfying one even when the number of processors
reaches 512 processors; (3) on IA32 with dual-CPU, the
speedup line suddenly decreases when the number of
processors is increased from 256 to 512; (4) the worst
case is on SGI Altix, in which the speedup starts to
decrease when the number of processors reaches 128
processors.

Execution time

0

5000

10000

15000

20000

2 4 8 16 32 64 128 256 512

number of processors

to
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

IA-32 Single CPU IA-32 Dual CPU IA-64 Single CPU
IA-64 Dual CPU SGI Altix

Figure 2: Execution Time on IA32, IA64 and Altix

SpeedUp

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512

number of processors

sp
ee

du
p

IA-32 SingleCPU IA-32 DualCPU IA-64 SingleCPU
IA-64 DualCPU SGI Altix

Figure 3: Speedup on IA32, IA64, and SGI Altix

5.2. Computational Kernels
Our analysis shows that there are four major

computational kernels in Synergia, which are described in
Table 9.

Kernel Description

Integ

Start looping through beam line elements and
numerical segments in each beam element using
two-step simplistic integrations, and run advancing
particles applying the space charge.

Map1
Drift beam half step using linear map for external
field, nonlinear Lorenz integrator, and nonlinear
Lorenz integrator for halo study.

Diag x,y, and z emittances
Init Initialize objects and parameters

Table 9: Kernel Description

 5

IA-32 Single CPU

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256 512

number of processors

pe
rc

en
ta

ge
s

integ map1 diag init

IA-32 Dual CPU

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256 512

number of processors

pe
rc

en
ta

ge
s

integ map1 diag init

IA-64 Single CPU

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256

number of processors

pe
rc

en
ta

ge
s

integ map1 diag init

IA-64 Dual CPU

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256 512

number of processors

pe
rc

en
ta

ge
s

integ map1 diag init

SGI Altix

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256

number of processors

pe
rc

en
ta

ge
s

integ map1 diag init

Figure 4: Percentages of Computational Kernels

Figure 4 illustrates the relative percentages of these
kernels with varying numbers of processors on IA32,
IA64, and SGI Altix.

The figure also shows that on IA32 with dual-CPU, the
percentage of “init” is increasing dramatically between
256 and 512 processors. By looking into the code, we find
out that the “init” kernel three MPI_Barrier calls. We
believe it is a major performance bottleneck on IA32 with
dual-CPU.

5.3. Communication Calls
To analyze the communication behavior of Synergia,

two performance tools (FPMPI and mpiP) are used in our
work. FPMPI provides a detailed summary of MPI calls
used in a parallel program [FPMPI]. We were able to use
this tool with Synergia on IA32, but failed on IA64 and
SGI Altix due to the MPI_FINALIZE problem on these
systems. Hence, we decided to use mpiP on IA64 and SGI
Altix. Similar to FPMPI, mpiP provides profiling
information of various MPI calls used in MPI applications
[mpiP].

P
IA32

(single
CPU)

IA32
(dual
CPU)

IA64
(single
CPU)

IA64
(dual
CPU)

SGI Altix

2 0 0 88.87% 78.02% 89.29%
4 0 0 80.81% 80.69% 96.34%
8 0 0 81.83% 82.51% 82.64%
16 0 0 81.54% 82.09% 92.83%
32 0 0 85.54% 82.07% 94.45%
64 0 0.05% 76.18% 87.29% 94.12%
128 0 0.13% 85.90% 85.78% 89.63%
256 0.1% 0.20% 86.34% 85.72% 76.25%
512 0 0.62% ---- 79.10% ----

Table 10: MPI_Allreduce Percentage

P
IA32

(single
CPU)

IA32
(dual
CPU)

IA64
(single
CPU)

IA64
(dual
CPU)

SGI Altix

2 99.7% 99.8% 0.35% 0.47% 1.36%
4 98.9% 99.4% 2.44% 6.55% 0.77%
8 97.1% 97.9% 3.34% 4.02% 8.27%
16 93.8% 96.3% 5.01% 5.19% 3.17%
32 91.2% 93.7% 1.73% 5.86% 1.03%
64 84.3% 79.6% 1.78% 1.03% 0.91%
128 77.45 74.8% 0.77% 0.76% 0.84%
256 62% 63.2% 0.61% 0.54% 12.56%
512 58.7% 48.3% ---- 0.33% ----

Table 11: MPI_Reduce Percentage

Table 10 and Table 11 show the relative percentage of

MPI_Allreduce and MPI_Reduce on these clusters. Here
is the cost percentage. As we can see, MPI_Allreduce is
the most dominant call on IA64 and SGI Altix, while
MPI_Reduce is the most dominant call on IA32.
MPI_Allreduce is mainly called in the code for the beam
and particle distribution. Hence, we suspect that the poor
performance on IA64 and SGI Altix is caused by load
imbalance. MPI_Reduce is mianly called to print out

 6

particle information. The large amount of MPI_Reduce
cost on IA32 suggests that there is a parallel I/O problem
on this system.

Table 12 shows the relative percentage of
MPI_Send/Recv on these clusters. On IA32 with both
single-CPU and dual-CPU, the percentage of
MPI_Send/Recv keeps increasing. On IA64 with both
single-CPU and dual-CPU, the percentage is more
consistent no matter how many processors are used. The
percentage on SGI Altix is the smallest, which only costs
about 3%-8%. According to our PMB analysis, SGI Altix
has significantly better performance on point-to-point
MPI calls. In other words, the result shown in Table 12
matches the PMB result.

P
IA32

(single
CPU)

IA32
(dual
CPU)

IA64
(single
CPU)

IA64
(dual
CPU)

SGI Altix

2 0.4% 0.3% 7.85% 13.38% 6.57%
4 1.4% 1.4% 12.77% 9.71% 2.48%
8 3.1% 4.7% 12.73% 11.56% 8.25%
16 6.5% 8.3% 12.35% 11.66% 2.59%
32 12.0% 12.1% 12.09% 11.45% 4.16%
64 24.8% 30.3% 21.12% 11.19% 4.71%
128 36.5% 37.1% 12.81% 13.01% 4.33%
256 48.2% 46.3% 12.49% 13.03% 3.55%
512 53.5% 46.4% ---- 11.72% ----

Table 12: MPI_Send/Recv Percentage

Table 13 lists the relative percentage of MPI_Barrier on
these clusters. It shows that with accelerator simulation
running on IA32, more time is spent on MPI_Barrier as
compared to that on IA64 and SGI Altix. The smallest
cost is obtained on SGI Altix. Again, this matches our
PMB results shown in Section 3, that is, in terms of
MPI_Barrier, IA32 has the worst performance while SGI
Altix has the best performance.

P
IA32

(single
CPU)

IA32
(dual
CPU)

IA64
(single
CPU)

IA64
(dual
CPU)

SGI Altix

2 0.002% 0.001% 0.06% 0.05% 0.04%
4 0.01% 0.01% 0.09% 0.08% 0.02%
8 0.03% 0.04% 0.11% 0.11% 0.07%
16 0.06% 0.07% 0.12% 0.11% 0.16%
32 0.18% 0.12% 0.14% 0.12% 0.04%
64 0.27% 0.32% 0.33% 0.14% 0.05%
128 0.41% 0.40% 0.27% 0.15% 0.08%
256 0.53% 0.49% 0.27% 0.27% 0.09%
512 1.28% 0.91% ---- 0.21% ----

Table 13: MPI_Barrier Percentage

5.4. Analysis Results
Based on the results presented above, we conclude that:
• In terms of the overall execution time, IA32 has

the best performance followed by SGI Altix and
IA64 has the worst performance. Also, with
accelerator simulations on IA32 and IA64, when
the number of processors is larger than 16, the

single-CPU configuration outperforms the dual-
CPU configuration (see Figure 2).

• In terms of scalability, accelerator simulations
achieve the best scalability on IA32 with single-
CPU, while the worst scalability is given on SGI
Altix (see Figure 3).

• The distribution of particles among the processing
nodes may become unbalanced, which is a major
performance bottleneck.

• Global communication, e.g. MPI_Allreduce and
MPI_Reduce, is another major performance
bottleneck.

• MPI synchronization, e.g. MPI_Barrier, is one of
the major performance bottlenecks on IA32 with
dual-CPU.

6. Conclusion
In this paper, we studied the performance and scaling

behavior advanced accelerator simulations on three
TOP500 clusters (IA32, IA64, and SGI Altix). More
specifically, we investigated the performance of
accelerator simulations from three aspects: the overall
execution time, the computational kernels, and the
communication calls. Our analysis show that different
scaling patterns are achieved on these systems and there
are several performance bottlenecks associated with the
existing accelerator simulations. In summary, the paper
makes the following contributions:
• Present our experience of porting Synergia on

three TOP500 clusters with different architectures
and configurations;

• Study the low-level performance of these clusters
through microbenchmarks;

• Investigate the performance and scalability of
Synergia on three different TOP500 clusters which
are widely used in scientific computing.

Acknowledgement

We would like to acknowledge the National Center for
Supercomputing Applications (NCSA) and the TeraGrid
for the use of their machines.

References:
[AS02] J.Amundson and P.Spentzouris. “Synergia: A
hybrid, parallel 3d space charge code with circular
machine modeling capabilities”, Proc. of ICAP2002, 2002.
[AS03] J.Amundson and P.Spentzouris. “Synergia: a

hybrid, parallel beam dynamics code with
3D space charge”, FERMILAB-CONF-03-
126-E, Jul 2003. Presented at Particle
Accelerator Conference (PAC 03), Portland,
Oregon, 12-16 May 2003.

 7

[AS05] J. Amundson, P. Spentzouris. “Space charge
experiments and simulation in the Fermilab
Booster”, FERMILAB proceedings of
Particle Accelerator Conference (PAC 05),
May 2005.

[AS06] J. Amundson, P. Spentzouris. Synergia: An
Accelerator Modeling Tool with 3-D Space
Charge. Journal of Computational Physics,
Volume 211, Issue 1, 1 January 2006, Pages
229-248.

[DOE03] DoE Review 2003. http://www-
bd.fnal.gov/doereview03/

[FPMPI] FPMPI. http://www-
unix.mcs.anl.gov/fpmpi/WWW/

[IA32] IA32Architecture.
http://www.ncsa.uiuc.edu/UserInfo/Resourc
es/Hardware/XeonCluster/

[IA64] IA64 Architecture.
http://teragrid.ncsa.uiuc.edu/TechSummary/i
ndex.html

[ILC] International Linear Collider.
http://www.interactions.org/linearcollider/in
dex.html

[JM+90] F. Jones, G. H. Mackenzie, and H. Schonauer,
“Particle Accelerators”, vol. 31, 199 (1990).

[LD03] Z.Lan and P.Deshikachar. “Performance
analysis of a large-scale cosmology
application on three cluster systems”, Proc.
of IEEE Cluster 2003, 2003.

[LM91] L.Michelotti, FERMILAB-CONF-91-159 and
FERMILAB-FN-535-REV

[mpiP] mpiP. http://www.llnl.gov/CASC/mpip/
[PMB] Pallas MPI Benchmarks.

http://www.pallas.com/e/products/pmb
[QR+00] J. Qiang, R. D. Ryne, S. Habib and V. Decyk,

J. Comp. Phys. 163, 434 (2000).
[SA3000] SGI Altix 3000.

http://www.sgi.com/products/servers/altix/
[STREAM] STREAM: Sustainable memory bandwidth

in high performance computers.
http://www.cs.virginia.edu/stream/ref.html

[Sun02] X.H. Sun, ”Scalability Versus Execution
Time in Scalable Systems”, Journal of
Parallel and Distributed Computing, Vol.
62, No. 2, pp. 173-192, Feb 2002.

[SYNE] P.Spentzouris and J.AMundson. Synergia
Website.
http://cepa.fnal.gov/psm/aas/Synergia.html.

[T500] Top 500 ranking. http://www.top500.org
[TG] http://www.teragrid.org

 8

http://www-bd.fnal.gov/doereview03/
http://www-bd.fnal.gov/doereview03/
http://www-unix.mcs.anl.gov/fpmpi/WWW/
http://www-unix.mcs.anl.gov/fpmpi/WWW/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/XeonCluster/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/XeonCluster/
http://teragrid.ncsa.uiuc.edu/TechSummary/index.html
http://teragrid.ncsa.uiuc.edu/TechSummary/index.html
http://www.interactions.org/linearcollider/index.html
http://www.interactions.org/linearcollider/index.html
http://www.pallas.com/e/products/pmb
http://www.sgi.com/products/servers/altix/
http://www.cs.virginia.edu/stream/ref.html
http://www.top500.org/

	Abstract
	1. Introduction
	2. Background
	2.1. Accelerator Simulations
	2.2. Synergia Code
	 3. TOP500 Clusters
	3.1. Overview
	TOP 500 ranking (June 2005)
	3.2. Microbenchmark Performance Results
	IA32
	P

	4. Porting Details
	IA32/64
	Compiler

	5. Performance and Scalability Analysis
	5.1. Execution Time
	IA32 (single CPU)

	5.2. Computational Kernels
	5.3. Communication Calls
	5.4. Analysis Results
	6. Conclusion

