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Abstract 
 

Advanced accelerator simulations have played a 
prominent role in the design and analysis of modern 
accelerators. Given that accelerator simulations are 
computational intensive and various high-end clusters are 
available for such simulations, it is imperative to study the 
performance and scalability of accelerator simulations on 
different production systems. In this paper, we examine 
the performance and scaling behavior of a DOE SciDAC 
funded accelerator simulation package called Synergia on 
three different TOP500 clusters including an IA32 Linux 
Cluster, an IA64 Linux Cluster, and a SGI Altix 3700 
system.  The main objective is to understand the impact of 
different high-end architectures and message layers on the 
performance of accelerator simulations. Experiments 
show that IA32 using single-CPU can provide the best 
performance and scalability, while SGI Altix and IA32 
using dual-CPU do not scale past 128 and 256 CPUs 
respectively. Our analysis also indicates that the existing 
accelerator simulations have several performance 
bottlenecks which prevent accelerator simulations to take 
full advantage of the capabilities provided by teraflop and 
beyond systems.  

1. Introduction 
Particle accelerators constitute one of the most useful 

and complex research instruments available to scientists 
today. Over the past decade, advanced accelerator 
simulations have played a prominent role in the design 
and analysis of modern accelerators. The design of the 
next generation accelerators such as the International 
Linear Collider [ILC], as well as the optimization of 
existing accelerators such as the Fermilab Booster 
[DOE03], will benefit from three-dimensional high-
fidelity modeling. Accelerator simulations are 
computational intensive, requiring massively parallel 
systems. In the past decades, computing capacity has been 
increased dramatically and various clusters with hundreds 

to thousands of processors have been deployed. Teraflop 
computers, capable of executing one trillion (1012) 
floating point operations per second (TFlops), have 
emerged. Petaflop systems (1015) are expected by the end 
of the decade. Given that the existence of powerful large-
scale clusters for accelerator simulations, it is critical to 
study the performance and scalability of accelerator 
simulations on various high-end clusters, and further to 
identify the performance bottlenecks associated with 
accelerator simulations so as to take full advantage of the 
capabilities of teraflop and beyond systems. 

This paper presents a detailed performance and 
scalability analysis of advanced accelerator simulations 
on various TOP500 clusters [T500]. In particular, we 
study the performance of Synergia, a state-of-the-art 
accelerator modeling code funded by the DOE SciDAC 
program [SYNE, AS02, AS03], on three different 
TOP500 clusters at NCSA (IA32 Linux cluster, IA64 
Linux cluster, and SGI Altix 3700 system).  We start with 
examining the low-level machine characteristics of these 
clusters through microbenchmarks. We then describe the 
porting details of Synergia on these clusters, followed by 
analyzing the performance of accelerator simulations 
from three aspects: overall performance, computational 
kernels, and communication calls. The goal of this paper 
is to understand the performance and scaling behavior of 
accelerator simulations on different high-end architectures 
and message layers and further to investigate the 
performance bottlenecks associated with the existing 
accelerator simulations.   

The rest of the paper is organized as below. In Section 2, 
we give an overview of accelerator simulations and the 
Synergia package. Section 3 describes the TOP500 
clusters used in this work and compares their low-level 
performance through microbenchmarks. Section 4 
describes our porting experiences of accelerator 
simulations on these systems. In Section 5, we present the 
performance and scalability results. Finally, Section 6 
summarizes the paper. 
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2.  Background 
In this section, we give an overview of advanced 

accelerator simulations and the Synergia package [SYNE]. 
 

2.1. Accelerator Simulations 
In high-energy physics, experiments associated with 

accelerators have led to important discoveries about the 
fundamental forces of nature and the discovery of new 
elementary particles [AS06].  

In accelerator simulation, the modeling of beam 
dynamics is one of the key research areas. The dynamics 
of charged particles in accelerators, in absence of 
radiation, can be divided into two categories: (1) single-
particle optics, which are due to the interaction of the 
beam particles with the electromagnetic fields produced 
by the magnets and the RF cavities of the accelerator and 
(2) collective beam effects, which are due to the 
interaction of beam particles with fields produced by the 
beam itself or by other beams in each vicinity [AS03]. 
Modeling of single-particle dynamics has been 
extensively studied, while modeling of collective beam 
effects is a less mature and much more computationally 
intensive endeavor, especially in the case of very intense 
charged beams. These collective effects often result in the 
development of beam halo (particles falling outside the 
desired beam phase space boundaries) that eventually 
causes beam losses and irradiation of the accelerator 
complex.  In addition, such effects result in the dilution of 
the beam phase pace causing a decrease in accelerator 
intensity and collider luminosity.  In order to accurately 
modeling realistic conditions of accelerator operation, the 
collective beam effects must be considered [AS06].  

The most widely used method to model collective 
beam effects is the Particle-In-Cell (PIC) method 
[QR+00]. In this approach the beam distribution is 
represented by a set of macro-particles that evolve 
according to the single particle equations of motion; the 
collective effects (beam-generated electromagnetic fields) 
are calculated by solving the Poisson-Vlasov equation at 
every simulation step. Three operations are performed 
during the simulation at each step: first, the particles are 
deposited on a spatial grid; second, the fields are 
calculated on the grid; third and final, the fields are 
interpolated back to the particles and used to push the 
particles. A large number of macro-particles (order a few 
million or more) are needed to obtain the required 
simulation accuracy, thus the need of using of massively 
parallel computers. 

2.2. Synergia Code 
Synergia, funded by the DOE SciDAC Accelerator 

Science and Technology Project, provides state-of-the-art 
simulations of linear and circular accelerators with a fully 

three-dimensional treatment of space charge. It is a 
parallel three dimensional modeling code for multi-
particle effects integrating existing beam dynamics 
modeling tools. It has been used to model space charge 
effects in the Fermilab Booster and the results are in good 
agreement with Booster beam study experiments. The 
implementation is fully parallelized.  

Synergia uses IMPACT [QR+00] for its parallel 
simulation of the propagation of particles, the modeling of 
RF cavities and, most important, parallel calculations of 
space-charge effects. IMPACT is a 3D parallel Particle-
In-Cell (PIC) code for modeling high-intensity beams in 
RF accelerators. For the modeling of single-particle optics, 
Synergia uses the mxyzptlk/beamline libraries [LM91], 
which can perform a wide range of accelerator physics 
computations. Synergia integrates the above packages 
using a framework written in C++ and Python. Synergia 
is designed to be a general-purpose framework with an 
interface that is accessible to accelerator physicists who 
are not experts in simulation. Figure1 gives an overview 
of Synergia. Figure 1 gives an overview of Synergia. 

 

 
Figure 1: Overview of Synergia 

 

 3. TOP500 Clusters 

In this section, we first describe main features of the 
TOP500 clusters used in this work, and then evaluate their 
low-level performance through two well-known 
microbenchmarks. 

3.1. Overview  
Three different types of TOP500 clusters at NCSA are 

used in this work:  IA32 Linux cluster, IA64 Linux cluster, 
which is a part of TeraGrid [TG], and  SGI Altix 3700 
system.  

We choose these systems for several reasons. First, 
they are widely used in the area of scientific computing. 
Secondly, they represent different high performance 
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computing environments. Lastly, they have different 
configurations of hardware, compiler, operating systems, 
MPI and other software environments. This can provide 
us with a fair evaluation of accelerator simulations. 

Table 1 summarizes the overall hardware and software 
differences among IA32, IA64, and SGI Altix.  

 
Component IA32 IA64 SGI Altix 

TOP 500 
ranking 

(June 2005) 
28th  49th  60th  

Peak 
Performance 

15300 GFlops 10259 Gflops 6553 Gflops 

Architecture Linux Cluster Linux Cluster 
Distributed 

Shared Memory 
(ccNUMA) 

Number of 
nodes/CPUs 

1450  887 1024  

Processor 

Intel Xeon 3.2 
GHz (32-bit) 

8 KB L1 
512 KB L2  
1 MB L3  

 

Intel® 
Itanium® 2, 1.3 

GHz 
32 KB L1 

256 KB L2 
Integrated 3 

MB L3  

Intel® 
Itanium® 2, 1.5 

GHz  
32 KB L1 

256 KB L2 
 6MB L3 cache 

Network 
Interconnect 

Giga Ethernet  
 &  

Myrinet 2000 

Giga. Ethernet 
& 

Myrinet2000 

 
SGI 

NUMAlink3 

Compiler 

Intel: 
Fortran77/90/95 

C C++ 
& 

GNU: 
Fortran77 C 

C++ 

Intel: 
Fortran77/90/95 

C C++ 
& 

GNU: 
Fortran77 C 

C++ 

Intel 8.1: 
Fortran77/90/95 

C C++ 
& 

GNU : 
Fortran77 C 

C++ 

Operating 
System 

Linux 2.4.20 
(Red Hat 9.0) 

SUSE Linux 
SLES8 / 2.4 MP 

SGI ProPack 
3.4  

Kernel : 2.4.21-
sgi304 

MPI 
MPICH-GM, 
MPICH-G2, 
MPICH-VMI 

MPICH-GM, 
MPICH-G2, 
MPICH-VMI 

SHMEM 

Table 1: Architectural Specifications on IA32/64 
and SGI Altix at NCSA 

 
As shown in the table, these clusters are different in 

terms of architecture, processor type, and network 
connections. Both IA32 and IA64 are distributed address 
space machines, while SGI Altix is a ccNUMA (Cache 
Coherent Non-Uniform Memory Access) machine. Both 
IA64 and SGI Altix use Intel Itanium2 processors that are 
Intel’s 64-bit processors, while IA32 uses 32-bit Intel 
Xeon processors.  The major difference between Xeon 
processors and Itanium processors is the bitness of integer 
registers. Also, Xeon processors have extremely high 
clock rates, while Itanium processors have very high 
floating-point speed at relatively lower clock rates. Both 
Gigabit Ethernet and Myrinet interconnections are 
supported in IA32 and IA64, SGI Altix uses SGI NUMA 
link3 as its network interconnection.  

3.2. Microbenchmark Performance Results 
We first evaluate the low-level machine characteristics 

of these clusters through the microbenchmark STREAM 
[STREAM] and Pallas MPI Benchmark (PMB) [PMB]. 

The STREAM benchmark is a synthetic benchmark 
program that measures sustainable memory bandwidth (in 
MB/s) and the corresponding computation rate for simple 
vector kernels. PMB is a widely used MPI benchmark that 
is used to compare the performance of various MPI 
functions. 
 

P IA32 IA64 SGI Altix 
2 1845.5902 652.5984 767.5930 
4 1836.9757 651.3316 768.5776 
8 1835.0065 652.0573 765.6838 

16 1833.5297 653.3014 766.2724 
32 1835.7693 654.7270 768.1963 
64 1858.8730 651.9432 765.8440 
128 1836.5511 652.2094 766.1733 
256 1854.5013 653.7023 768.9856 
512 1849.7094 652.3087 ----- 

Table 2: Per-processor STREAM triad performance 
(in MB/s) for unit stride. 

 
Table 2 presents the performance results comparing 

these clusters using STREAM. Here, the data represent 
the asymptotic unit-stride memory bandwidth behaviour 
of the triad summation: )()()( icsibia ×+= . The number of 
processors is varying from 2 to 512 processors. Note that 
we were not able to use 512 processors on SGI Altix due 
to the limitation of maximum number of nodes allocated 
to us. As shown in the table, IA32 cluster has better 
memory bandwidth as compared to IA64 and SGI Altix. 
The average bandwidth of IA32 is about 2.8 (2.4) times 
larger than that of IA64 (SGI Altix). The memory 
bandwidth of SGI Altix is about 1.2 times better than 
IA64.  

Now we move to examine the message passing 
performance of these clusters. According to our analysis, 
four MPI calls are frequently used in Synergia 
(MPI_Send/Recv, MPI_Barrier, MPI_Allreduce and 
MPI_Reduce). Therefore, we study the performance of 
these MPI calls by using PMB. 

 

8192 Bytes 2097152 Bytes P 
IA32 IA64 Altix IA32 IA64 SGI Altix 

2 269.73 1207.12 3868.48 457.61 1176.13 11416.75 
4 258.27 337.54 1283.72 443.99 399.71 6527.79 
8 242.06 337.28 1612.81 413.01 394.36 7215.23 

16 212.47 335.06 1507.43 325.50 351.12 7092.17 
32 224.39 215.90 1483.63 317.24 218.08 3659.94 
64 230.73 227.86 1419.69 289.51 192.36 6509.73 
128 189.83 141.80 1373.77 297.43 150.61 6122.13 
256 212.58 112.36 1165.95 197.44 119.13 2741.87 
512 170.02 114.11 ---- 182.66 116.05 ---- 

Table 3: MPI Send/Recv Performance (in MB/s) 
 
Table 3 shows the bandwidth results of MPI Send/Recv 

with varying message sizes (from 8192 bytes to 2097152 
bytes) and varying numbers of processors (from 2 to 512).  
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Due to the space limit, we only show two message sizes 
in the table. As is shown in the table, SGI Altix has much 
better MPI Send/Rend performance, achieving more than 
16.8 (11.5) times better bandwidth than that on IA64 
(IA32). IA64 has better performance as compared to IA32 
when the number of processors is small, otherwise IA32 
has better performance. 

Table 4 summarizes the overhead of MPI_Barrier on 
these clusters with varying numbers of processors (from 2 
to 128). As shown in the table, SGI Altix introduces the 
minimal overhead among three clusters, achieving more 
than 12.9 (12.6) times better performance than that on 
IA32 (IA64). In general, IA64 has better performance as 
compared to IA32.  

 
P IA32 IA64 SGI Altix 
2 9.41 2.71 1.07 
4 19.77 25.04 2.21 
8 32.74 46.40 3.30 

16 70.47 69.61 4.80 
32 136.75 128.34 6.52 
64 81.35 122.97 8.32 
128 222.76 143.42 12.82 

Table 4: MPI Synchronization Overhead (in μsec) 
 

Table 5 summarizes the performance of MPI_Allreduce 
on these systems with varying number of message sizes 
and varying numbers of processors. There is no big 
difference between IA32 and IA64, but the performance 
on SGI Altix is 4.3 (1.9) times worse than that on IA32 
(IA64). 

 
8192 Bytes 2097152 Bytes P IA32 IA64 Altix IA32 IA64 Altix 

2 73.3 46.6 33.6 21631.1 17455.1 6311.0 
4 134.7 149.5 89.6 32694.3 59509.5 18016.7
8 225.0 256.1 120.5 64882.6 92230.0 25296.7
16 410.7 374.9 171.7 116397.1 103570.3 35624.6
32 550.1 605.8 222.4 158201.5 210120.4 46536.5
64 931.2 828.3 292.2 245818.3 244520.2 61750.3
128 1700.9 2045.6 340.9 469400.0 422024.4 64533.9
256 2803.7 1621.2 646.0 717508.6 474271.0 75333.3
512 3087.1 2029.2 ---- 673317.4 613863.4 ---- 

Table 5: MPI_Allreduce Performance (in MB/s) 
 

8192 Bytes 2097152 Bytes P IA32 IA64 Altix IA32 IA64 SGI Altix 
2 56.4 14.7 23.5 20288.4 8946.6 5426.2 
4 120.5 105.4 57.6 32230.67 27753.1 13703.3 
8 187.8 173.5 89.8 44671.9 41479.4 21171.7 

16 274.4 244.4 119.5 60280.5 54001.6 27675.9 
32 335.1 321.4 152.9 69317.3 69950.1 35667.1 
64 396.3 384.3 185.1 79270.5 82474.2 40725.7 
128 476.2 457.3 213.8 92427.6 101971.5 47014.6 
256 553.5 528.7 414.1 107838.6 109422.9 54155.5 
512 695.6 633.8 ---- 114945.0 120904.5 ---- 

Table 6: MPI_Reduce Performance (in MB/s) 
 

Table 6 shows the performance data of MPI_Reduce on 
these systems. In general, IA32 achieves the best 

performance, with 2.4 (1.1) times better than SGI Altix 
(IA64). 

4. Porting Details 
Synergia is a hybrid code integrating several existing 

packages written in multiple programming languages.  
While using multiple components provides a powerful 
accelerator simulation package, it also creates a 
configuration problem. Multiple language issues are 
particularly problematic because calling conventions vary 
from platform to platform [AS06].  Porting a hybrid code 
can be a complicated task, which is further complicated 
by the diverse set of programming environments provided 
on these systems.  

We first installed Synergia on  IA32 Linux Cluster and 
did not encounter any problems. To link with MPI 
libraries, we used MPICH-GM (version 1.2.5.2). The 
code was compiled with Intel compilers. 

We then installed Synergia on  IA64 Linux Cluster. 
The major problem we had is that Synergia was initially 
designed for 32-bit systems and IA64 uses different 
length of integer. To solve this problem, we deleted the 
“long” data type from all the files in Synergia. We also 
tried the GNU compiler, but it did not work with Synergia 
on IA64. 

On SGI Altix, initially we planned to use MPICH-GM, 
the same version as on the other two clusters, but it did 
not work with Synergia. Hence, we decided to use SGI 
SHMEM MPI version with the specific SGI MPI library, 
libmpi.a.  

Table 7 summarizes the compilation details of Synergia 
on IA32, IA64, and SGI Altix. 
 

Compiler/MPI IA32/64 SGI Altix 

Compiler icpc Icpc 
Flags -cxxlib-icc –static -cxxlib-icc –static C++ 

Libraries -limf  -lcprts -limf  -lcprts 
Compiler Ifort Ifort 

Flags 
-g -O2 

-inline_debug_info 
–cm -w95 

-g -O2 
-inline_debug_info -

cm -w95 

FORTRAN 
90 

Libraries libifport.a libifcore.a libifport.a libifcore.a
Version 
of MPI mpich-1252 SHMEM 

MPI 
Libraries

libfmpich.a, 
libmpichf90.a, 

libmpich.a, 
libpmpich.a 

libmpi.a 

Table 7: Compiler Options on IA32, IA64, and Altix 

5. Performance and Scalability Analysis 
  Now we move to evaluate and analyze the 

performance of Synergia on IA-32, IA-64, and SGI Altix. 
The experimental data are divided into three categories: 
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overall performance, computational kernels, and 
communication calls. Since the nodes on IA32 and IA64 
have dual CPUs, there are two different execution 
environments: either using one CPU per node or using 
both CPUs per node. On SGI Altix, only dual-CPU 
configuration is allowed.   Therefore, we investigate the 
performance of Synergia under five different scenarios: 
IA32 with single-CPU, IA32 with dual-CPU, IA64 with 
single-CPU, IA64 with dual-CPU, and SGI Altix with 
dual-CPU. We analyze the performance of Synergia with 
number of processors ranging from 2 to 512, except for 
SGI Altix on which we only have the access to 256 
processors.  

5.1. Execution Time  
Table 8 and Figure 2 summarize the total execution 

times on these systems. Here, the columns under “single 
CPU” represent the performance data using a single CPU 
per node, while the columns under “dual CPU” represent 
the performance data using two CPUs per node.  It is 
shown that the total execution times on IA32 are, in 
average, 2.5 (2.0) times faster than those on IA64 (SGI 
Altix). In other words, IA32 achieves the best 
performance, followed by SGI Altix and then IA64. 

 

 
IA32 

(single 
CPU) 

IA32 
(dual 
CPU) 

IA64 
(single 
CPU) 

IA64 
(dual 
CPU) 

SGI Altix

2 7052 6703 16784 19064 12648 
4 3495 3471 9633 8640 7105 
8 2030 1832 4997 5020 3288 

16 1045 969 2388 2378 2065 
32 508 512 1208 1274 932 
64 300 336 639 815 554 
128 196 207 562 563 468 
256 156 168 469 470 733 
512 133 182 460 460 ---- 

Table 8: Execution Time on IA32, IA64, and Altix 
 
By looking into the data shown in Table 8, we notice 

that when the number of processors is smaller or equal to 
16, the dual-CPU configuration is faster than the single-
CPU configuration. When the number of processors is 
larger than 16, the single-CPU configuration general 
provides better performance as compared to the dual-CPU 
configuration. 

We then study the speedup achieved on these systems 
as it can provide us more clear information of the 
scalability of Synergia on these systems. Figure 3 
illustrates the speedup obtained on these systems. Here, 
speedup is defined as ( )

pT
T22× , where T2 and Tp denote the 

total execution time on two and P processors respectively. 
When the number of processors is larger than 128, we 
notice very different scalability behavior on these 

systems: (1) on IA64 with single- and dual-CPU, the 
speedup lines keep increasing with much slower speed; 
(2) on IA32 with single-CPU, the speedup line is the most 
satisfying one even when the number of processors 
reaches 512 processors; (3) on IA32 with dual-CPU, the 
speedup line suddenly decreases when the number of 
processors is increased from 256 to 512; (4) the worst 
case is on SGI Altix, in which the speedup starts to 
decrease when the number of processors reaches 128 
processors. 
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Figure 2: Execution Time on IA32, IA64 and Altix 
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Figure 3: Speedup on IA32, IA64, and SGI Altix 

5.2. Computational Kernels 
Our analysis shows that there are four major 

computational kernels in Synergia, which are described in 
Table 9.  
 

Kernel Description 

Integ 

Start looping through beam line elements and 
numerical segments in each beam element using 
two-step simplistic integrations, and run advancing 
particles applying the space charge. 

Map1 
Drift beam half step using linear map for external 
field, nonlinear Lorenz integrator, and nonlinear 
Lorenz integrator for halo study. 

Diag x,y, and z emittances 
Init Initialize objects and parameters 

Table 9: Kernel Description  
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Figure 4: Percentages of Computational Kernels   

Figure 4 illustrates the relative percentages of these 
kernels with varying numbers of processors on IA32, 
IA64, and SGI Altix.    

The figure also shows that on IA32 with dual-CPU, the 
percentage of “init” is increasing dramatically between 
256 and 512 processors. By looking into the code, we find 
out that the “init” kernel three MPI_Barrier calls. We 
believe it is a major performance bottleneck on IA32 with 
dual-CPU.  

5.3. Communication Calls 
To analyze the communication behavior of Synergia, 

two performance tools (FPMPI and mpiP) are used in our 
work. FPMPI provides a detailed summary of MPI calls 
used in a parallel program [FPMPI]. We were able to use 
this tool with Synergia on IA32, but failed on IA64 and 
SGI Altix due to the MPI_FINALIZE problem on these 
systems. Hence, we decided to use mpiP on IA64 and SGI 
Altix. Similar to FPMPI, mpiP provides profiling 
information of various MPI calls used in MPI applications 
[mpiP].   
 

P 
IA32 

(single 
CPU) 

IA32 
(dual 
CPU) 

IA64 
(single 
CPU) 

IA64 
(dual 
CPU) 

SGI Altix 

2 0 0 88.87% 78.02% 89.29% 
4 0 0 80.81% 80.69% 96.34% 
8 0 0 81.83% 82.51% 82.64% 
16 0 0 81.54% 82.09% 92.83% 
32 0 0 85.54% 82.07% 94.45% 
64 0 0.05% 76.18% 87.29% 94.12% 
128 0 0.13% 85.90% 85.78% 89.63% 
256 0.1% 0.20% 86.34% 85.72% 76.25% 
512 0 0.62% ---- 79.10% ---- 

Table 10: MPI_Allreduce Percentage  
 

P 
IA32 

(single 
CPU)

IA32 
(dual 
CPU)

IA64 
(single 
CPU) 

IA64 
(dual 
CPU) 

SGI Altix

2 99.7% 99.8% 0.35% 0.47% 1.36% 
4 98.9% 99.4% 2.44% 6.55% 0.77% 
8 97.1% 97.9% 3.34% 4.02% 8.27% 
16 93.8% 96.3% 5.01% 5.19% 3.17% 
32 91.2% 93.7% 1.73% 5.86% 1.03% 
64 84.3% 79.6% 1.78% 1.03% 0.91% 
128 77.45 74.8% 0.77% 0.76% 0.84% 
256 62% 63.2% 0.61% 0.54% 12.56% 
512 58.7% 48.3% ---- 0.33% ---- 

Table 11:  MPI_Reduce Percentage 
 
Table 10 and Table 11 show the relative percentage of 

MPI_Allreduce and MPI_Reduce on these clusters.  Here 
is the cost percentage. As we can see, MPI_Allreduce is 
the most dominant call on IA64 and SGI Altix, while 
MPI_Reduce is the most dominant call on IA32. 
MPI_Allreduce is mainly called in the code for the beam 
and particle distribution. Hence, we suspect that the poor 
performance on IA64 and SGI Altix is caused by load 
imbalance. MPI_Reduce is mianly called to print out 
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particle information. The large amount of MPI_Reduce 
cost on IA32 suggests that there is a parallel I/O problem 
on this system.  

Table 12 shows the relative percentage of 
MPI_Send/Recv on these clusters. On IA32 with both 
single-CPU and dual-CPU, the percentage of 
MPI_Send/Recv keeps increasing.  On IA64 with both 
single-CPU and dual-CPU, the percentage is more 
consistent no matter how many processors are used.  The 
percentage on SGI Altix is the smallest, which only costs 
about 3%-8%. According to our PMB analysis, SGI Altix 
has significantly better performance on point-to-point 
MPI calls. In other words, the result shown in Table 12 
matches the PMB result.  

 

P 
IA32 

(single 
CPU) 

IA32 
(dual 
CPU) 

IA64 
(single 
CPU) 

IA64 
(dual 
CPU) 

SGI Altix 

2 0.4% 0.3% 7.85% 13.38% 6.57% 
4 1.4% 1.4% 12.77% 9.71% 2.48% 
8 3.1% 4.7% 12.73% 11.56% 8.25% 
16 6.5% 8.3% 12.35% 11.66% 2.59% 
32 12.0% 12.1% 12.09% 11.45% 4.16% 
64 24.8% 30.3% 21.12% 11.19% 4.71% 
128 36.5% 37.1% 12.81% 13.01% 4.33% 
256 48.2% 46.3% 12.49% 13.03% 3.55% 
512 53.5% 46.4% ---- 11.72% ---- 

Table 12:  MPI_Send/Recv Percentage 
 

Table 13 lists the relative percentage of MPI_Barrier on 
these clusters. It shows that with accelerator simulation 
running on IA32, more time is spent on MPI_Barrier as 
compared to that on IA64 and SGI Altix. The smallest 
cost is obtained on SGI Altix. Again, this matches our 
PMB results shown in Section 3, that is, in terms of 
MPI_Barrier, IA32 has the worst performance while SGI 
Altix has the best performance.  
 

P 
IA32 

(single 
CPU) 

IA32 
(dual 
CPU) 

IA64 
(single 
CPU) 

IA64 
(dual 
CPU) 

SGI Altix

2 0.002% 0.001% 0.06% 0.05% 0.04% 
4 0.01% 0.01% 0.09% 0.08% 0.02% 
8 0.03% 0.04% 0.11% 0.11% 0.07% 
16 0.06% 0.07% 0.12% 0.11% 0.16% 
32 0.18% 0.12% 0.14% 0.12% 0.04% 
64 0.27% 0.32% 0.33% 0.14% 0.05% 
128 0.41% 0.40% 0.27% 0.15% 0.08% 
256 0.53% 0.49% 0.27% 0.27% 0.09% 
512 1.28% 0.91% ---- 0.21% ---- 

Table 13:  MPI_Barrier Percentage 

5.4. Analysis Results 
Based on the results presented above, we conclude that:  
• In terms of the overall execution time, IA32 has 

the best performance followed by SGI Altix and 
IA64 has the worst performance. Also, with 
accelerator simulations on IA32 and IA64, when 
the number of processors is larger than 16, the 

single-CPU configuration outperforms the dual-
CPU configuration (see Figure 2). 

• In terms of scalability, accelerator simulations 
achieve the best scalability on IA32 with single-
CPU, while the worst scalability is given on SGI 
Altix (see Figure 3).  

• The distribution of particles among the processing 
nodes may become unbalanced, which is a major 
performance bottleneck. 

• Global communication, e.g. MPI_Allreduce and 
MPI_Reduce, is another major performance 
bottleneck. 

• MPI synchronization, e.g. MPI_Barrier, is one of 
the major performance bottlenecks on IA32 with 
dual-CPU. 

6. Conclusion  
In this paper, we studied the performance and scaling 

behavior advanced accelerator simulations on three 
TOP500 clusters (IA32, IA64, and SGI Altix). More 
specifically, we investigated the performance of 
accelerator simulations from three aspects: the overall 
execution time, the computational kernels, and the 
communication calls. Our analysis show that different 
scaling patterns are achieved on these systems and there 
are several performance bottlenecks associated with the 
existing accelerator simulations. In summary, the paper 
makes the following contributions: 
• Present our experience of porting Synergia on 

three TOP500 clusters with different architectures 
and configurations; 

• Study the low-level performance of  these clusters 
through microbenchmarks; 

• Investigate the performance and scalability of 
Synergia on three different TOP500 clusters which 
are widely used in scientific computing.  
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