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Abstract—Mean Time Between Failures (MTBF), now cal-
culated in days or hours, is expected to drop to minutes on
exascale machines. The advancement of resilience technologies
greatly depends on a deeper understanding of faults arising from
hardware and software components. This understanding has the
potential to help us build better fault tolerance technologies. For
instance, it has been proved that combining checkpointing and
failure prediction leads to longer checkpoint intervals, which in
turn leads to fewer total checkpoints. In this paper we present a
new approach for fault detection based on the Void Search (VS)
algorithm. VS is used primarily in astrophysics for finding areas
of space that have a very low density of galaxies. We evaluate
our algorithm using real environmental logs from Mira Blue
Gene/Q supercomputer at Argonne National Laboratory. Our
experiments show that our approach can detect almost all faults
(i.e., sensitivity close to 1) with a low false positive rate (i.e.,
specificity values above 0.7). We also compare our algorithm
with a number of existing detection algorithms, and find that
ours outperforms all of them.

Index Terms—Reliability, Void Search, Fault Detection, Blue
Gene/Q, Environmental Data

I. INTRODUCTION

Mean Time Between Failures (MTBF), now calculated in
days or hours, is expected to drop to minutes in exascale
machines [4] [2]. In the past, a number of technologies have
been presented to improve fault tolerance (FT) of large-scale
systems, and new resilience techniques are emerging to ad-
dress new challenges posed by extreme-scale computing [5],
[6], [7], [8], [9]. The advancement of resilience technologies,
however, greatly depends on a deeper understanding of faults
arising from hardware/software components. According to
literature [1], faults are defined as hardware defects or software
flaws. They can cause system components to change from a
normal state to an error state, and the use of components in
an error state can lead to failures. In this work, we define
the process of identifying when a fault has occurred and
pinpointing its location as fault detection. In particular, our
work focuses on detecting the faults that are likely to lead to
failures.

Fault detection is critical to confine faults, avoid or limit
their propagation, and recover quickly from them. For exam-
ple, failure prevention methods (e.g., preemptive process mi-
gration [19]) rely on good fault detection to avoid impending
failure; the checkpoint operation cost could be substantially

reduced when instructed as to when and where to perform
checkpoints.

Numerous works have been devoted to fault detection on
large-scale systems [10], [20], [21], [22]. However, the totality
of existing studies are based on RAS (Reliability, Availability
and Serviceability) logs1. These logs are simple and limited
since they are designed to be read and understood by hu-
mans (e.g. system administrators). RAS logs are composed of
messages generated by a centralized monitor process, which
queries the different components at a given frequency and may
raise a warning if some value is above a given threshold. For
example, the time to complete an I/O operation is too long
or CPU temperature is too high. Or, it may raise an error
if a component is not functioning correctly or not working
altogether. By looking at one value at a time, however, RAS
logs may miss important patterns hidden in the data.

Environmental logs, on the other hand, are numerical values
directly read from the hardware sensors spread all over the
system such as fan speed, CPU temperature, input voltage, and
so on. Since every new generation of supercomputing systems
come with better hardware sensors and profiling capabilities,
it is of great importance to understand environmental data
especially with respect to resilience. In this study, we show
that using environmental log data to detect hardware faults
(and hence predict potential failures) is not only possible, but
it can actually outperform RAS logs-based methods.

We present a new approach based on the Void Search (VS)
algorithm. VS has been studied extensively in the field of
astrophysics [15], [16], [17], [18], primarily in the context of
searching for regions of space with a low density of galaxies.
Unlike traditional data mining algorithms which are focused
on extracting patterns from existing data points, VS looks for
patterns of empty space – or low density regions – and uses
these patterns to detect anomalies in the data. Generally, VS
is very suitable for situations where faults, or outliers, are
scarce (or nonexistent) in the training data in comparison to
“normal” data (in other words, when outliers are very difficult
to characterize). We propose a VS algorithm for hardware fault
detection using environmental data.

We evaluate our design using real logs from the Mira super-

1RAS logs are also called event logs.



computer, a 48-rack IBM Blue Gene/Q at Argonne National
Laboratory [25]. Our experiments show that VS can detect
almost all faults (i.e., sensitivity close to 1) with a low false
positive rate (i.e., specificity values above 0.7). The result is
better than those obtained by existing detection studies based
on RAS logs [10], [21], [22], indicating that the combined
use of environmental log and our VS algorithm has real
potential to improve fault detection. Furthermore, we analyze
and compare our design with other outlier detection algorithms
based on classifiers such as Naive Bayes (NB), Support Vector
Machines (SVMs) and Artificial Neural Networks (ANNs) as
well as K-means, a clustering based method. We find that our
VS based design outperforms all other detection algorithms in
terms of detection accuracy. The proposed work is the first of
its kind and therefore will open a new research direction in
the area of fault detection on extreme scale systems.

The rest of this paper is organized as follows. Section II
gives an overview of VS algorithms, the Mira supercomputer,
and information related to its environmental logs. Section III
presents the design of our VS-based algorithm. The results
for all the experiments can be found in Section IV. Section
V presents a discussion about our findings. Finally, Sections
VI and VII conclude with related work and a summary,
respectively.

II. BACKGROUND

A. Void Search Algorithms

Void Search (VS) algorithms are a family of methods aimed
at finding regions of empty – or low density – space for a given
set of data points. These empty regions are known as voids,
and in astrophysics they are essential for studying galaxy
formation and the structure of the cosmic web [15]. For us,
voids are essentially patterns of feature space for low density
data regions. This contrasts sharply with traditional algorithms
which search for patterns of feature space for existing data
points. Voids can be of great interest in the case where one
of the data classes in a two-class learning problem is hard to
characterize.

Formulation of the problem is quite simple: given a space
of N dimensions, the mission of a VS algorithm is to find
regions with a very low density of points2. Figure 1 shows
an example of voids for a given set of randomly generated
points in a 2-dimensional space. In this particular example,
only voids with zero density are shown.

The definition of a void, however, can change depending
on the nature of the data. For example in [16], the authors
partition the space into a grid of cells of equal size and
declare every cell that meets the density criteria as a starting
void. Furthermore, they merge voids only if its centers are
closer to each other than they are to any existing data point.
This definition avoids the creation of tunnels between voids,
which in turn helps approximate voids by large spherical
or elliptical shapes. This makes sense when working with
the structure of the universe, since it has been observed

2Definition of low density depends on the particular algorithm.

Fig. 1: Three voids in a given set of randomly generated points.

that voids tend to become more spherical over time due to
gravitational instabilities causing the collapse of high density
regions [26]. Another definition can be found in [17] and [15],
where void centers are defined as very low density points,
and “walls” between voids are defined as regions surpassing
a density threshold relative to its surrounding voids’ centers.
This definition tends to fit very well for data that spreads like a
web of walls fencing low density regions (similar in structure
to a Voronoi tessellation).

Independently of how we build voids, outliers can simply be
discovered by checking whether they fall into one of the voids.
It is clear that the more stable a void is3, the more accurate
the algorithm will be as time progresses. Our observations
indicate that environmental data tends to be very stable under
normal conditions. For illustration, consider Figure 2, where
we show temperature readings for a period of one month in a
fault-free node board. As the figure shows, temperatures stay
fairly stable between 25 and 35 degrees Celsius throughout
the period. Nevertheless, it is possible to imagine a scenario
where voids are adapted over time given major changes in the
data.

B. Mira Supercomputer

Mira has a theoretical peak of 10,066.3 TFlop/s, and a
Linpack performance of 8,586.6 TFlop/s. Each of the 48 racks
has two midplanes. Each midplane is composed of 16 node
boards each having 32 compute cards. The compute card is
composed of one chip module and 16 GB of DDR3 memory.
Finally, the computing chip has a single 18-core PowerPC A2
processor [24]. Out of these 18 cores, 16 are for applications,
one is for system software, and one core is left inactive. Each
core has four hardware threads. Thus, BlueGene/Q has a total
of 1,024 nodes per rack, or 16,384 cores per rack.

The machine is built with a number of hardware sensors
placed on multiple components all over the machine. De-
pending on the sensor, the type of the data collected can be
temperature, coolant flow and pressure, fan speed, voltage,
or current. Sensor data is gathered and stored in IBM DB2

3A stable void is a void whose density value does not change drastically
when new data is used to build voids.



TABLE I: An example of environmental information

location time inletFlowRate outletFlowRate coolantPressure inletCoolantTemp ambientHumidity diffPressure . . .

R1A-L 2012-09-01 00:03:03 2680 2681 3949 1779 3144 1582 . . .
R0F-L 2012-09-01 00:03:03 2417 2414 4049 1786 4718 1369 . . .
R10-L 2012-09-01 00:38:10 2673 2668 3985 1784 3329 1406 . . .
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Fig. 2: Temperature readings for a period of one month in a
non-faulty node board.

relational database with a given periodicity of about 4 minutes
on average (although it can be configured to be anywhere
between 1 and 30 minutes).

Table I shows an example of sensor data for the coolant
system in Mira. Location is a human readable unique identifier,
and all sensor data are strictly numerical. Since the coolant
system is installed with at a rack granularity, locations here
only represent racks (R10-L is the coolant system for rack
number 10). In general, sensors can be located in a variety of
components such as service cards, node boards, I/O boards,
coolant systems, bulk power modules, and optical modules.
The Midplane Monitor and Control System (MMCS) organizes
sensor information in different tables based on the component
which the sensor applies to. There are tables for the service
card, the node board, the I/O board, the coolant monitor (as
shown in table I), and so on. More information about location
IDs and environmental data in Blue Gene/Q can be found in
[41].

Since components in the system already form a natural
hierarchy, it is possible to think about sensors as forming a
hierarchy too. This is useful when trying to consider which
sensors can provide pragmatic information for potential faults
in a particular component. For instance, in the case of the Blue
Gene/Q, if the power to a rack fails, all 1,024 nodes in that
rack are going to go down, inevitably experiencing a failure.

Hardware faults are extracted from the RAS logs, which
in Blue Gene/Q are categorized into informational (INFO),
warnings (WARN) and fatals (FATAL). Only FATAL events
are severe faults that presumably lead to failures [41]. For the

purpose of this study, only FATAL events affecting nodes are
considered as faults.

III. DETECTION ALGORITHM

A. Overview

The first step in the design of our algorithm is to determine
an appropriate granularity for data analysis. For example,
we considered analyzing the whole machine at once trying
to make our algorithm detect faults for the entire system.
However, this approach proved infeasible as the number of
features became unmanageable. If we think of sensors as
the features for learning, the whole machine has hundreds of
thousands of features. Another problem with this centralized
method is the difficulty of locating faults. Predicting fault
location is key in order to make preventive actions (such as
migrating processes or doing local checkpoints) effective in
extreme scale systems.

Instead, we analyze each hardware component indepen-
dently using only sensors that are relevant to that component.
Since detection is performed per component, it is possible to
know the locations of the detected faults, (which can lead
to future failures) immediately. Furthermore, our algorithm is
node card4 centric, caring only about faults that can affect
node cards directly or indirectly. For example, in this study a
link card fault is only relevant if it makes a node (or a group
of nodes) unable to communicate with other nodes. In other
words, if node faults happens as a result of a link card fault.

Sensors relevant to each node are selected based on the
hierarchy of components inside the system. Sensors from the
rack’s bulk power and coolant environment, the link card
connected to the node, the node board where the node is
inserted, and the actual sensors in the node card are compiled,
making a total of 180 sensors. Although this is much better
than hundreds of thousands, a reduction of dimensionality is
still needed since void search’s runtime is hardly impacted by
the number of dimensions (see Section IV-C).

The first pre-processing task needed for our analysis is to
define the periodicity of the data (how often we examine the
data for fault detection). In our case, periodicity is set to 40
minutes, which ensures that we are getting data from all the
sensors (the maximum sensor periodicity is 30 minutes in Blue
Gene/Q) in each reading; sensors with a higher frequency get
all their values throughout the 40 minutes period averaged.

To reduce dimensionality we use principal component anal-
ysis (PCA) [27], a well known and widely used tool in
data analysis. PCA transforms the features of a given data

4We use node card and node interchangeably.
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detection approach.

set to a new set of uncorrelated features called principal
components which are a linear combination of the original
ones. PCA quantifies the importance that each component has
in describing the variability of the data, allowing us to use
fewer dimensions by picking the most relevant components,
while still preserving all the important patterns in the data.
PCA, however, has some limitations, such as the impossibility
to project the patterns found in fewer dimensions (such as
voids) back to the original dimensions. Even so, this is really
not a problem for us because we are only interested in knowing
if a particular node is going to fail; it is not of concern as to
why that particular node is going to fail. Root cause analysis
can always be performed post-mortem with the untransformed
log data if necessary.

A high level overview of our approach is presented in Figure
3. Our approach is composed of three main steps: step 1 is
data pre-processing, particularly feature reduction; step 2 is
void construction to build voids for each node; step 3 is to
detect faults every 40 minutes.

B. Void Construction

Algorithm 1 shows how we create voids for a given training
set D in an n dimensional space, where the training data
corresponds to points in time with no faults. Here δ represents
the longitude of each cell’s side in the grid of cells C. Line 2
initializes V , which will be the returned set of voids. In line
3 the limits L of the grid of cells are calculated. The limits
are the minimum and maximum values of every dimension for
which we have a data point, adjusted so every side of the grid

has a natural number of cells. This is equivalent to drawing
an enclosing rectangle around a cloud of data points in a two
dimensional space.

Algorithm 1 Void creation algorithm

1: procedure CREATEVOIDS(D,n, δ)
2: V ← {}
3: L← calculateLimits(D,n)
4: C ← createCells(L, n, δ)
5: for i← 0, |C| do
6: I ← False
7: for j ← 0, |D| do
8: if datumInside(C[i], δ, n,D[j]) then
9: I ← True

10: break
11: end if
12: end for
13: if I = False then
14: V ← V ∪ C[i]
15: end if
16: end for
17: return V
18: end procedure

Line 4 creates the grid of cells, given L, n and δ. Realize
that this operation is not needed, since we can calculate the
cell’s coordinates given the cell number i, the limits L and the
longitude of each cell’s side δ, and we can compute the total
number of cells very easily too. However, we think it makes
the representation more clear if we show the creation of the
cells explicitly. To represent a cell in this case it is enough to
store its center’s coordinates.

From line 5 to 16, the algorithm iterates over all the cells.
For every cell C[i], we check if any point in D is inside the
cell (lines 7 to 12). If it is, we skip it and go to the next one.
If no points are inside the cell we add it to V as a void. It is
possible to see that our algorithm is an extreme case of VS
where density is zero. Finally, all the voids V are returned in
line 17.

The complexity of the algorithm depends on the number
of cells (which depends on n and δ) and the number of data
points. For simplicity, consider that all sides of the grid have
the same size M . The complexity, then, is Θ(dM/δen|D|),
which is exponential with respect to the number of dimensions
n (this is the reason why we reduce dimensionality through
PCA). Both the parameters δ and n control a trade-off between
runtime and accuracy of the algorithm. A smaller δ means
more cells (which also means higher accuracy), but at a larger
computational cost. However, choosing a very small δ may
produce overfitting (voids end up taking too much of the empty
space surrounding the training data) causing too many false
positives. Likewise, a larger n produces better results too, but
only up to a point. Recall that PCA sorts components by their
importance in describing the variability of the data. Hence,
every new dimension that we add has an ever decreasing value



at an exponentially increasing computational cost. In the end,
choosing appropriate values for n and δ depends on the nature
of the input data and should be set experimentally.

One thing that is worth noting about Algorithm 1 is its
simplicity with regard to parallelization as it is embarrassingly
parallel with respect to the outer loop. Although in distributed
memory (such as MPI) D still needs to be broadcasted to all
processes, it is usually a small amount of data. For our Blue
Gene/Q environmental logs, |D| is close to 4.5K points for a
node in a period of four months. Supposing 3 dimensions, |D|
is around 50KB (or 100KB for 64bits).

Another interesting observation, since our algorithm treats
each node as independent, is that it is able to scale linearly
with the size of the supercomputer. We will show in Section
IV that it is feasible to make every node compute its own voids
while having a centralized approach to perform detection using
Algorithm 2.

Algorithm 2 Outlier detection algorithm

1: procedure DETECT(d, V, n, δ)
2: for i← 0, |V | do
3: if datumInside(V [i], δ, n, d) then
4: return True
5: end if
6: end for
7: return False
8: end procedure

C. Detection

Once the void set V is calculated, we can detect faults using
Algorithm 2. Here d represents a given environmental data,
which is expected to be previously projected to the new n
principal components. If we find that d fits into any of the
voids, then True is returned indicating that a fault occurs. This
signifies that a failure is likely to happen in the next 40 minutes
and that proactive measures are needed for this node. The
runtime of Algorithm 2 is linear in the number of voids, which
in turn is bounded by the number of cells O(dM/δen). In
practice we find that, for n ≤ 3, the algorithm using Blue
Gene/Q environmental data always runs under 4 seconds in
any average modern CPU (see Section IV-C).

IV. EXPERIMENTAL RESULTS

We evaluate our detection design by using a four-month
RAS and environmental log collected from the Mira super-
computer from September 1st to December 31st of 2012. Since
we wanted to have nodes with enough faults to produce results
that could help us understand the potentiality of environmental
logs with respect to fault detection, only the nodes with four
or more faults are used. In total, we evaluate 4325 hardware
faults from 362 nodes during a period of 4 months.

We have conducted three sets of experiments: first, we
assessed the detection accuracy of our design, second, we
evaluated runtime, and finally, we compared VS with other
outlier detection algortihms.

All of the evaluations, with the exception of the clustering
algorithm (discussed later), are done using 10-fold cross
validation, which is a widely used technique to evaluate a
particular algorithm with a given set of labeled data (data from
which we know the class). It first randomizes the order of the
data. Then, it runs the algorithm 10 times, splitting the data
into 10 (almost) identical folds, using nine different folds for
training and one for testing in every run. When the 10 runs
are completed, it calculates the average of ten runs to compute
the desired metrics.

A. Metrics

We use three metrics for evaluation: sensitivity, specificity,
and S-measure. Sensitivity represents the rate of total faults
that were predicted among all faults in the data. This metric
is also commonly known as recall, and it can be computed as
follows:

sensitivity =
Tp

Tp+ Fn
,

where Tp and Fn are the true positives (real faults that were
detected) and false negatives (real faults that were missed)
respectively. Specificity, on the other hand, represents the rate
of total non-faults that were predicted among all non-faults in
the data. This metric can also be called negative recall, and it
is computed this way:

specificity =
Tn

Tn+ Fp
,

where Tn and Fp are the true negatives (real non-faults that
were predicted as such) and false positives (real non-faults that
were detected as faults incorrectly) respectively.

In addition, we introduce a new metric called S-measure
(inspired by the existing F-measure) to compare the results of
our VS with that of other algorithms. This metric combines
sensitivity and specificity given they have an equal weight in
the analysis. It is defined as follows:

S-measure = 2× Sensitivity × specificity
Sensitivity + specificity

B. Detection Accuracy of our VS Algorithm

In the first set of experiments, we assess our VS based
algorithm under various parameter settings. The results are
presented in Figure 4. The two graphs presented correspond
to the same experiments using different numbers of dimensions
– 2 dimensions for (a) and 3 dimensions for (b). Both graphs
evaluate VS by changing the δ parameter from 0.1 to 0.5.
In both cases sensitivity increases as δ decreases, reaching
values greater than 0.9 for δ <= 0.1 in (a) and for δ <= 0.2
in (b). However, we also see that specificity tends to decrease
as cell sides decrease. This is expected since smaller cells
do ultimately produce some overfitting as number of voids
increases. This results in more “normal data” falling into voids
than it would do with a bigger δ.
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Fig. 4: Results for our VS based algorithm using 10-fold cross validation over a period of four months. The results shown
are averaged across the 361 faultiest nodes. Two plots are presented, representing the cases after feature reduction to two and
three dimensions, respectively.

Fortunately, specificity never gets below 0.7 in the case of 3
dimensions and 0.79 in the case of 2 dimensions, which means
that, at most, preventative actions are performed 30% of the
time they should not have. Although this may seem like a lot
at first, these predictions are done for every node separately.
Under a hierarchical checkpointing scheme, for example,
checkpoints to the local SSD disk – or even to a neighboring
node’s SSD disk – can be done in seconds. Nevertheless,
[14] and [29] prove that, when combining checkpointing and
prediction, checkpointing algorithms benefit the most when the
salient characteristic of a predictor is its sensitivity (recall).
Missing a failure is much more expensive than having some
false alarms. In other words, it is better to be safe than sorry
[14]!

C. Runtime of Our VS Algorithm

We evaluate the run time of our C implementation of VS
for different values of n and δ in the learning and prediction
phases of the algorithm. Figure 5 presents execution times for
the learning (void construction) phase for one node, running
on a single thread on a common CPU (Intel i7 at 3.20GHz).
Note that time is presented in a logarithmic scale.

Figure 5 makes clear the huge impact that dimensionality
has in the performance of VS. In our case, n = 3 is almost
two orders of magnitude slower than n = 2. If we take the
prediction results from Figure 4, we can see that results
for (δ = 0.1, n = 2) are similar to those for (δ = 0.1, n = 3)
and (δ = 0.2, n = 3), even though the former takes around
20 seconds to build the voids while the latter take 40 and
5 minutes respectively. Nevertheless, and considering that
learning only takes place every few months, even minutes can
not be considered a huge impact. It is possible to think of a
scenario where every node computes its voids independently
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Fig. 5: Run time (in seconds) for the sequential VS algorithm
under different values of n and δ on a 3.20Ghz CPU.

in minutes and send them over to a central repository for future
predictions.

It is worth noting that the detection process is fast as men-
tioned in Section III-C, less than 4 seconds for this 4-month
log using the parameter combination (δ = 0.1, n = 3). Con-
sidering that nodes’ predictions are independent from one an-
other, using a good high throughput computing (HTC) engine
in a modest “data analysis cluster” running 1024 processes
5, it would be possible to detect faults for all the nodes in a
48K node machine (such as Mira) in under 3 minutes. Again,
this is considering that we use the most expensive parameter

564 nodes in the case of nodes with 16 sockets.



combination. For (δ = 0.1, n = 2), prediction time per node
is always below 100 ms.

D. Comparison with Other Algorithms

We conducted another set of experiments in order to eval-
uate how other popular outlier detection algorithms could
perform using environmental data for fault detection. More
specifically, we evaluate two classes of algorithms: classifier
based and cluster based. For classifier based, we run Naive
Bayes (NB), Support Vector Machines (SVMs) and Artificial
Neural Networks (ANNs). For a representation of clustering
methods, we use the simple K-means algorithm.

NB is a very simple probabilistic classifier based on the
Bayes’ theorem. It assumes that all features are completely in-
dependent from one another given the class variable Y . More-
over, NB calculates the posterior probabilities P (Xj |Y = yi)
of features Xj given the training data for each class yi. New
data can be classified computing the probability for each class
and picking the biggest among them.

SVMs are classification algorithms that aim to find linear
decision boundaries which maximize the distance to the closest
points from each class. This linear boundary can be extended
to a non-linear one with the so called “kernel trick”, which
uses kernels to compare data points in a different feature
space where linear boundaries correspond to non-linear ones in
the original feature space [35]. In outlier detection problems,
SVMs are used with just one class, in such a way that a
boundary is constructed for “normal data” only. When a new
point is evaluated, it is considered an outlier if it falls outside
of this created boundary. Different kernels can be used to build
this boundary. The kernel we use in these experiments is the
radial basis function (RBF) kernel, which allows SVMs to
learn complex regions of feature space [34]. We set the kernel
parameters µ and γ experimentally, trying different values and
picking the ones that produced the best prediction.

ANNs are graphical models inspired by the functionality of
the brain, where nodes are connected to other nodes analogous
to how neurons are connected in the brain. Nodes in ANNs
combine values from multiple inputs and produce an output by
a defined function (such as sigmoid or a step function). This
output can be transferred to other nodes in the next layer, or to
the output of the network [35]. An algorithm learns a neural
network by adjusting the weights of the inputs to the different
neurons in the graph so as to best fit the training data. In this
paper, we use a multi-layer preceptron (MLP) ANN with one
hidden layer.

The last algorithm we compare is simple K-means. In
simple K-means, cluster’s centers (the means) are first chosen
at random. Each point, then, belongs to the cluster whose
mean is the closest to the point. After this step, the means
of every cluster are re-calculated and points are re-assigned to
the cluster with the closest mean. This procedure is repeated
iteratively until the clusters no longer change [39]. We use
K-means with two clusters (k = 2), and evaluate it with
the classes to clusters evaluation. Under this evaluation, the
algorithm first creates clusters with unlabeled data, and then

each cluster is labeled with one of the classes based on the
greater number of instances of the class within each cluster.
Once clusters are labeled, we can compute metrics by counting
how many instances of each class fall in each different cluster.

The results for these experiments are shown in Table II.
For comparison purposes, VS is also shown for two different
combinations of parameters n and δ. These combinations
correspond to the best achieved accuracy from each value of
n. Our results indicate that VS outperforms all of the other
algorithms by having the highest S-measure values. Although
we find (δ = 0.2, n = 3) to be the winner given its very good
specificity, in the end it all boils down to how much overfitting
a system is willing to tolerate in order to have a little bit of
extra sensitivity, or a substantial reduction in execution time.

One interesting discovery is that both SVM and K-
means are able to effectively discover all faults in the data
(sensitivity = 1). In the case of K-means, this is an indication
that faults do cluster together in the feature space (since they
all fall in the same cluster), and that a pattern can actually be
learned. Both cases, however, produce too much overfitting.
SVM leaves too many non-faults outside the boundary while,
K-means, which tends to create clusters of approximately the
same size, produces too many false positives. This is due to the
fact that the number of instances of one class is much larger
than the number of instances of the other. Nevertheless, both
approaches can be used under a scenario where false positives
do not produce excess overhead.

Finally, we can see that both NB and ANN are not appro-
priate choices. In the case of NB, sensitivity is too low to
be considered a viable option. As for ANN, the algorithm is
unable to detect any hardware faults at all (it classifies all data
as non-fault).

V. DISCUSSION

We have already seen in Section IV-C that a VS based algo-
rithm can be quite expensive computationally if the parameters
are not chosen carefully. The good news – as we already know
– is that we do not need to always use the most expensive
combination of parameters in order to get the best results.
In fact, values of δ (i.e., cell size) too small may produce
overfitting, which affects algorithm accuracy significantly; or
values of n (i.e., grid dimensionality) too large may affect
performance substantially while adding little in return.

However, one may still make the case that 40 minutes
per node for void creation, or 4 seconds per node for fault
detection, is still very high if we consider that large-scale
systems have tens of thousands of nodes and are expected
to have hundreds of thousands in the next generations of ma-
chines. Although we have already proposed scenarios where
such times may be acceptable (i.e., learning is done every
few months and detection can be efficiently parallelized), our
implementation is by no means optimized as much as it could
be. For example, data can be indexed efficiently using point
coordinates. When we are checking if a cell should be a void,
we can query only for points whose coordinates are inside the
boundaries of the cell (instead of going through all the dataset).



TABLE II: Comparative study of our VS based algorithm with other detection algorithms

NB SVM-RBF (µ = 0.1, γ = 10−3) ANN K-MEANS (k = 2) VS (δ = 0.2, n = 3) VS (δ = 0.1, n = 2)

Sensitivity 0.493 1 0 1 0.935 0.959
Specificity 0.857 0.458 1 0.516 0.825 0.791

S-measure 0.625 0.628 0 0.681 0.877 0.867

Another possible optimization is to run both procedures on a
hardware accelerator, such as a GPU, parallelizing the outer
loop (i.e., the loop i). Changing the definition of what a void is
can also be explored. Joining and approximating voids by large
spherical or elliptical shapes could make detection a simple
and fast calculation.

Another goal of this work, apart from exploring VS al-
gorithms, was to show the great potential of environmental
logs, as opposed to RAS logs, for fault detection. We find two
clear advantages: first, by using environmental logs, it is easier
to create a decentralized design where localizing failures is
straightforward. We do not need to learn complex relationships
between different events’ types, or combine algorithms with
topology information, in order to isolate a particular fault. The
second reason is the impressive results of three out of the five
outlier detection algorithms analyzed with respect to sensitivity
(recall). The state-of-the-art in RAS based failure prediction
provides a sensitivity of about 0.5 [12], while we can achieve
well above 0.9 using environmental logs.

VI. RELATED WORK

Numerous works have been devoted to the understanding
of failures in HPC systems based on log information. For
example, Sahoo et al. [20] explored three classes of algo-
rithms in a 350-node IBM cluster: time-series, rule-based,
and Bayesian networks; Zheng et al. [21] used a genetic
algorithm (GA) to learn rules that can predict failure times
as well as failure locations; in [22], rule-based, SVMs and
Nearest Neighbor based classifiers are explored for failure
prediction on a Blue Gene/L system; Lan et al. [10] proposed
a dynamic meta-learning prediction engine to combine the
benefit of multiple algorithms to boost accuracy; and Gainaru
et al. combines signal-processing concepts and data-mining
techniques to predict fault occurrences [12]. Although similar
in spirit, our work is different from these studies in that we use
environmental data while they focus on RAS logs exclusively.
Furthermore, we propose a new algorithm for fault detection
(Void Search) that, to the best of our knowledge, has not yet
been explored for fault detection in the literature.

In our previous work [43], we presented online data re-
duction techniques (instance and feature selection) to remove
redundant and noisy data in environmental logs. Under that
approach, all environmental data available from the whole sys-
tem is gathered in a centralized buffer and analyzed together.
The problem with this approach, however, is that it is not as
scalable as the number of hardware sensors (and hence features
in the data) grows linearly with the size of the machine. For

that reason, in this paper we follow a decentralized path,
where environmental logs get analyzed in a component per
component basis.

A vast amount of literature has also been devoted to outlier
detection algorithms. For instance, NB, and Bayesian networks
in general, have been used for outlier detection problems
such as network intrusion detection [30], [31], [32] and
disease outbreaks detection [33]. SVMs have been proposed
for anomaly detection in, among others areas, audio signal
data [36] and system call intrusion detection [37], [38]. Multi-
layer perceptrons has also been proposed for network intrusion
detection [40]. Finally, K-means can be found in outlier
detection problems like mammogram classification [44] as
well as network anomaly detection [45].

VII. SUMMARY

In this paper we have presented a new approach for fault
detection based on the VS algorithm. We evaluated it using 4
months of environmental logs from the Mira supercomputer,
a 48-rack IBM Blue Gene/Q at Argonne National Laboratory
[25]. Our results show that VS can detect almost all faults
(i.e., sensitivity close to 1) with a low false positive rate
(i.e., specificity values above 0.7). Furthermore, we compared
our design with other popular outlier detection algorithms,
and showed that VS outperforms all of them by having the
best combination of the evaluation metrics sensitivity and
specificity. We also evaluated the runtime of VS to show the
impact that different values of parameters can have on it. In
the case of void construction, which is run every few months,
the best combination of parameters only takes 5 minutes for
each node. Fault detection never goes above 4 seconds for any
combination of parameters.

Looking forward, we plan to continue exploring VS po-
tentiality by analyzing more logs from other new generation
petascale systems. Our future agenda also includes trying
different feature reduction approaches such as ICA [11],
specializing our algorithm to be able to accept voids of density
different from zero, and exploring hardware accelerators (such
as GPUs) to speed up runtimes by taking advantage of its easy
parallelization.
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