
Balancing Job Performance with System
Performance via Locality-Aware Scheduling on

Torus-Connected Systems

Xu Yang∗, Zhou Zhou∗, Wei Tang†, Xingwu Zheng‡, Jia Wang‡, Zhiling Lan∗
∗Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, USA 60616

{xyang56,zzhou1}@hawk.iit.edu, lan@iit.edu
‡Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA 60616

xzheng18@hawk.iit.edu, jwang@ece.iit.edu
†Argonne National Laboratory, Argonne, IL, USA 60439

wtang@anl.gov

Abstract—Torus-connected network is widely used in modern
supercomputers due to its linear per node cost scaling and its
competitive overall performance. Job scheduling system plays a
critical role for the efficient use of supercomputers. As supercom-
puters continue growing in size, a fundamental problem arises:
how to effectively balance job performance with system performance
on torus-connected machines? In this work, we will present a new
scheduling design named window-based locality-aware scheduling.
Our design contains three novel features. First, rather than one-
by-one job scheduling, our design takes a “window” of jobs,
i.e. multiple jobs, into consideration for job prioritizing and
resource allocation. Second, our design maintains a list of slots
to preserve node contiguity information for resource allocation.
Finally, we formulate our scheduling decision making into a 0-1
Multiple Knapsack Problem and present two algorithms to solve
the problem. A series of trace-based simulations using job logs
collected from production supercomputers indicate that this new
scheduling design has real potentials and can effectively balance
job performance and system performance.

I. INTRODUCTION

The insatiable demand in science and engineering has
driven the ever-growing supercomputing systems. As the scale
of supercomputers increases, so do their interconnected net-
works. Torus interconnection is widely used in HPC systems,
such as Cray XT/XE and IBM Blue Gene series systems [2][4],
due to their linear per node cost scaling and their competitive
overall performance. A growing network means an increasing
network diameter (i.e., the maximum distance between a pair
of nodes) and a decreasing bisection bandwidth relative to the
number of nodes. Consequently, applications running on torus-
connected systems suffer great performance variability caused
by the increasing network scale.

Job scheduling system plays a critical role for the efficient
use of supercomputers. Currently two scheduling strategies
are commonly used on torus-connected systems. One is so
called partition based systems, where the scheduler assigns
each user job a compact and contiguous set of computing
nodes. IBM Blue Gene series systems fall into this category
[2]. This strategy is in favor of application’s performance by
preserving locality of allocated nodes and reducing network

contention caused by concurrently running jobs sharing net-
work bandwidth. However, this strategy can cause internal
fragmentation (when more nodes are allocated to a job than
it requests) and external fragmentation(when sufficient nodes
are available for a request, but they can not be allocated
contiguously), therefore leading to poor system performance
(e.g., low system utilization and high job response time) [11].
The other is non-contiguous allocation system, where free
nodes are assigned to user job no matter whether they are
contiguous or not. Cray XT/XE series systems fall into this
category [4]. Non-contiguous allocation eliminates internal
and external fragmentation as seen in partition-based systems,
thereby leading to high system utilization. Nevertheless, it
introduces other problems such as scattering application pro-
cesses all over the system. The non-contiguous node allocation
can make inter-process communication less efficient and cause
network contention among concurrently running jobs [12],
thereby resulting in poor job performance especially for those
communication-intensive jobs.

Partition-based allocation achieves good job performance
by sacrificing system performance (e.g., poor system utiliza-
tion), whereas non-contiguous allocation can result in better
system performance but could severely degrade performance of
user jobs (e.g, prolonged wait-time and run-time). As systems
continue growing in size, a fundamental problem arises: how to
effectively balance job performance with system performance
on torus-connected machines? In this work, we will present a
new scheduling design combining the merits of partition based
scheduling and non-contiguous scheduling for torus-connected
machines.

Strictly speaking, a job scheduling system contains two
parts, namely job prioritizing and resource allocation. Job
prioritizing makes decision about the order in which jobs are
allowed to run. The decision making is based on many factors,
such as job size, job run-time, job priority, etc. Resource allo-
cation decides a set of nodes allocated to each incoming job.
Figure 1 illustrates a typical job scheduling system, where each
job is retrieved from the wait queue and computing nodes are
assigned one-by-one to this job. Many supercomputers use this
kind of First-Come First-Serve (FCFS) scheduling policy. As



we can see, every job gets out of the wait queue and free nodes
are assigned to the job according to node identifiers. Often the
topological characteristics and locality of system nodes are
ignored. Numerically sequential nodes may be separated from
each other in the space. A well-known approach to address
the problem is processor ordering. Processor ordering usually
uses space filling curve, such as Hilbert Curve, to map the
nodes of the torus onto a 1-dimensional list to preserve locality
information [23][22]. While processor ordering works well at
the beginning of scheduling, job allocation and deallocation
will eventually fragment this 1-dimensional list, making it less
efficient as time goes by.

Fig. 1 Typical job scheduling uses First-Come First-Serve
(FCFS) scheduling policy. Jobs are removed from the wait
queue and assigned with free nodes one by one. The grey
squares represent busy nodes occupied by running jobs.
The green squares represent free nodes.

In this paper, we present a window-based locality-aware
scheduling design. Our design is based on two key observa-
tions. First, as shown in Figure 1, existing scheduling system
makes decisions in a per-job manner. Each job is dispatched to
system resources without considering subsequent jobs. While
making isolating job decision may provide a good short-term
optimization, it is likely to result in poor performance in the
long term. Second, existing scheduling system maintains a list
of free nodes for resource allocation. While special processor
ordering (e.g., using a space filling curve) is often adopted
for preserving node locality in the list, the node list becomes
fragmented as time goes by and subsequent jobs inevitably get
dispersed nodes allocation due to the lack of contiguous node
list.

Rather than one-by-one job scheduling, our design takes
a “window” of jobs (i.e., multiple jobs) into consideration
for making prioritizing and allocation decision, to prevent the
short-term decision from obfuscating future optimization. Our
job prioritizing module maintains a “window” of jobs, and
these jobs are placed into the window to maintain job fairness
(e.g., through FCFS). Rather than allocating jobs one by one
from the head of the wait queue as existing schedulers do, we
make scheduling decision for a “window” of jobs at a time.
Our resource allocation module takes a contiguous set of nodes
as a slot and maintains a list of such slots. These slots have
different sizes and each may accommodate one or more jobs.
The allocation of the jobs in the window onto the slot list is
conducted in such a way as to maximize system utilization.
We formalize the allocation of a window of jobs to a list of
slots as a 0-1 Multiple Knapsack Problem (MKP) and present
two algorithms, namely Branch&Bound and Greedy, to solve
the MKP.

We evaluate our design via extensive trace-based simu-

lations. In this paper, we conduct a series of experiments
comparing our design against the commonly used FCFS/EASY
backfilling scheduling that is enhanced with processor order-
ing. Our preliminary results demonstrate that our design can
reduce average job wait time by up to 28% and average job
response time by 30%, with a slight improvement on overall
system utilization.

The structure of the paper is as follows. Section II gives
a detailed description of our window-based locality-aware
scheduling design. Section III describes the problem formaliza-
tion and two scheduling algorithms implemented in our design.
Section IV–V present our evaluation methodology, trace-based
simulations by comparing our design against the FCFS/EASY
backfilling scheduling scheme. In Section VI, we discuss the
existing work about job scheduling and allocation on HPC
systems. Our conclusion is presented in Section VII.

Fig. 2 Overview of our window-based locality-aware
scheduling design. The job prioritizing module maintains a
“window” of jobs retrieved from the wait queue, and the
resource management module keeps a list of slots. Each
slot represents a contiguous set of available nodes. Our
scheduling design allocates a “window” of jobs to a list of
slots at a time.

II. OVERVIEW

Figure 2 gives an overview of our window-based locality-
aware job scheduling design. Our design contains two key
parts. The job prioritizing module maintains a “window” of
jobs that are retrieved from the wait queue to insure job
fairness. Rather than dispatching jobs one by one as existing
schedulers do, we dispatch multiple jobs at a time. Unlike
existing scheduling design, the resource management module
is responsible for organizing the available nodes into a set of
slots. Each slot contains a contiguous set of free nodes. Here,
contiguity refers to the adjacency of nodes’ original positions
in torus-connected system. These slots may have different
sizes. A new slot appears when a job releases the nodes it
was assigned. The newly released nodes merge with other free
neighboring nodes to form up a new slot with growing size.
A slot disappears when it (or part of it) is assigned to a job. If
the job’s requirement only takes part of a slot, the remaining
part becomes a new slot. The slot list is updated when a job
is allocated or deallocated. The resource management module
needs to get feedback from the system right after a job being
allocated/deallocated to update the status of the slot list. The
allocation of the jobs in the window onto the slot list is
conducted in such a way as to maximize system utilization.



Using window-based design can balance job fairness and
system performance. In our design, rather than allocating jobs
one by one from the front of the wait queue, the scheduler takes
all the jobs in the window and make prioritizing decision for
them at a time. The selection of jobs from wait queue to the
window is based on certain scheduling rule (e.g., job arrival
time in case of using FCFS policy), thereby guaranteeing
job fairness. With the information of both jobs and slots,
the scheduler aims to make an optimal decision in terms of
allocating the jobs to the slots. In the following section, we
will present our detailed scheduling strategy.

III. SCHEDULING STRATEGY

Our scheduling strategy contains two parts. We first for-
malize the resource allocation problem into a 0-1 Multiple
Knapsack Problem (MKP), and then present two algorithms
to solve the MKP.

A. MKP Formalization

We consider each slot as a knapsack and the jobs in the
window are the items waiting to be put into the knapsacks.
Suppose J = {J1, J2, J3, ..., Jn} is a set of n jobs in the
window. Each job Jj has weight wj , with profit pj . And K =
{K1,K2,K3, ...,Km} is a set of m knapsacks; each knapsack
Ki with the capacity of Ci. So, we want to select m disjoint
subsets of jobs so that the total profit of the selected jobs is a
maximum, and each subset can be put into different knapsack
whose capacity is no less than the total weight of jobs in the
subset. Formally,

Max z =

m∑
i=1

n∑
j=1

pj · xij (1)

which is subject to the following constraints:
n∑
j=1

xij · wj ≤ Ci, i ∈ {1, 2, ...,m} (2)

m∑
i=1

xij ≤ 1, j ∈ {1, 2, ..., n} (3)

xij ∈ {0, 1}, i ∈ {1, 2, ...,m}; j ∈ {1, 2, ..., n} (4)

where

xij =

{
1 if job j is put into knapsack i;
0 otherwise (5)

When m=1, Multiple Knapsack problem reduces to the 0-1
knapsack problem. In our model, we can assume that

pj and Ci are positive integers, (6)

wj ≤ maxi∈ICi, ∀j ∈ {1, 2, ..., n}, (7)

Ci ≥ minj∈Jwj , ∀i ∈ {1, 2, ...,m}, (8)

n∑
j=1

wj > Ci, ∀i ∈ {1, 2, ...,m}, (9)

In our model, it is guaranteed that assumption 6 can’t be
violated since the definitions of job’s profit and weight in our
maximization problem are both its size. And the capacity of
knapsack is the size of the slots, which can never be negative. If
there is a job j violating assumption 7, which means it requires
too many nodes to be accommodated in any knapsack, it will
be hold until a slot appears which contains enough free nodes.
In our experiments, we found that this would only prolong
the big jobs’ wait time less than 10%. If a knapsack violates
assumption 8, then it will be taken as system fragmentation.
Finally, observe that if m > n then the (m− n) knapsacks of
smallest capacity will not be included in this formalization.

The window size should be set based on the system’s work-
load such that a large window is preferred when job arrival rate
is high. For typical workload at production supercomputers,
we find a window of size 5 makes a good tradeoff between
scheduling quality and scheduling overhead.

B. Algorithms

1) Branch and Bound Algorithm: Branch and Bound
(B&B) is a general algorithm for finding optimal solutions
of discrete and combinatorial optimization problems [24]. In
our model, we can control the size of window to limit the
number of jobs in the MKP model so that the overhead of the
B&B algorithm can be acceptable in terms of time and space
complexity. In our experiment, we set window size to 5, which
means only the first 5 jobs in the wait queue are considered
in our MKP model. The computation time for solving the
MKP problem with 5 jobs is affordable for the scheduler.
(The scheduler makes scheduling decision periodically with
a interval from 10 to 30 seconds.)

In this algorithm, successive levels of the branch-decision
tree are constructed by selecting a job and put it into each
knapsack in turn. Once the job has been selected for branching,
it being put to knapsacks according to the increasing order
of knapsacks’ indices. After all the knapsacks have been
considered, the job is excluded from the current solution. In
Figure 3, we give an example of how the optimal solution is
found by useing B&B. Each circle represents a state with two
arrays indicating the current jobs J and knapsacks K. Here
j1 = 2 means job1 requires 2 nodes and k1 = 5 means the
capacity of knapsack k1 is 5. These two arrays are updated
after each decision is made, which generates the searching
tree as shown in Figure 3. The circle on the top is the initial
state with three jobs and two knapsacks. The B&B algorithm
systematically enumerates all candidate solutions by using the
upper and lower estimated bounds of quantity being optimized.



Here we use the depth-first search method in B&B. As we can
see, two candidate solutions are found in the left bottom of
the search tree when at first we put job j1 to knapsack k1.
Obviously, the solution circled by red line is better where all
jobs get allocated and no space in the knapsack is left idle.
Also the upper bound of the space left in all knapsacks is set
to 0. Based on the upper bound, we can discard other possible
decisions such as allocating j1 to knapsack k2 or not selecting
job j2. Algorithm 1-2 show the pseudo code of this Branch
and Bound algorithm.

Algorithm 1 Branch & Bound

E = new (node), this is the dummy start node
H = new (Heap), this is a max-heap for our maximization
problem
while true do

if E is a final leaf then
E is an optimal solution;
print out the path from E to the root;
return;

end if
Branch(E);
if H is empty then

No solution;
return;

end if
E = delete-top(H);

end while

Algorithm 2 Branch

Generate all the children of E;
Compute the approximate cost value C̄i of each child;
Insert each child into the heap H;

Branch and Bound algorithm guarantee an optimal solution
with an exponential computational complexity of O(nm). This
is feasible due to the small window size. For example, in case
of a window size of 5, the algorithm invokes 3,125 solutions
which can be solved within a few seconds.

2) Greedy Algorithm: When the window size grows,
Branch and Bound algorithm become expensive, we can use
the polynomial-time approximate Greedy algorithm. It can
obtain a feasible solution by applying the greedy algorithm
for classic 0-1 knapsack problem to the first knapsack, then to
the second one by using the remaining jobs, and so on. This is
obtained by calling m times Algorithm 3. Given the capacity
C̄i = Ci of the current knapsack and the current solution, of
value z, stored, for j = 1, ..., n, in

yj =

{
1 if job j is currently unassigned;
index of the knapsack it is assigned to. (10)

The solution obtained by calling GREEDY m times can
not be optimal. Martello and Toth proposed local exchange
techniques that can improve this solution to be optimal [24].
To implement their techniques in our model, we need to do
the following things. First, we consider all pairs of jobs put to
different knapsacks and try to interchange them if the insertion

Algorithm 3 GREEDY

Input: n, (pj), (wj), z, (yj), i, C̄i
Output: z, (yj)
for j = 1 to n do

if yj = 0 and wj ≤ C̄i then
yj = i;
C̄i = C̄i − wj ;
z = z + pj ;

end if
end for

of a new job into the solution is allowed. When all pairs have
been considered, we try to exclude in turn each job currently
in the solution to replace it with one or more jobs not in the
solution so that the total profit is increased. Greedy algorithm
has a linear time complexity, i.e., O(n). And the interchange
takes O(n) since it only happens when a new job enters the
solution. Hence, using GREEDY to find the optimal solution
will cost no more than O(n2) time.

C. An Example

We have the following example to illustrate the differ-
ence between our design and the default scheduler using
FCFS/EASY backfilling. Here we assume five jobs A, B, C, D,
E are submitted and waiting in the queue. The system consists
of 20 nodes in total, and the current available nodes are:
{1, 2, 3, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20}. The nodes do
not appear in this list (indexes are 4, 5, 12, 13, 14) are occupied
by jobs that are still running. The FCFS/EASY backfilling
scheme used by the default scheduler will cut a chunk of six
nodes from start of this list for job A, which means node
1, 2, 3, 6, 7, 8 are assigned to job A. And then sequentially,
nodes 9, 10, 11, 15 will be assigned to B; 16, 17, 18 to C; 19
to D.

Apparently, this scheme doesn’t deliver the best allocation.
First, job A and B get a non-contiguous node sets, which
means their allocation are fragmented. Node 20 is left idle, and
job E has not been satisfied since the available nodes is not
enough to satisfy its requirement. Under this default scheduling
scheme, the scheduling sequence will always be 〈A, B, C, D,
E〉, in spite of the current status of node list and each job’s
size.

Our design first puts these five jobs into the window
according to their arrival order, which is A, B, C, D, E. Then it
checks the status of the slot list (formed based on system nodes
contiguity) and find out how many slots is available. In our ex-
ample, there are three such slots, {1, 2, 3}, {6, 7, 8, 9, 10, 11},
{15, 16, 17, 18, 19, 20}. Then based on the size of these slots
and each job’s size, our design will use B&B or Greedy
algorithm to make the following scheduling decision. First, it
puts job C into the first slot(assign nodes 1, 2, 3 to C); then put
job A into the second slot (6, 7, 8, 9, 10, 11 to A); 15, 16, 17, 18
to B; 19, 20 to E. Apparently, our design can guarantee that
every job gets a compact allocation while maintain high system
utilization.

Figure 4 pictorially illustrates this example to highlight the
difference between our design and the default scheduler using
FCFS policy. As it shows, there are 20 nodes in the node



Fig. 3 Decision tree generated for finding the optimal solution by using Branch and Bound Algorithm. There are 2
knapsacks and 3 jobs (m = 2, n = 3).

list, the grey ones are been occupied by current running jobs.
The subfigure A in 4 is the scheduling result obtained by the
default scheduler. It fragments the allocation for job A(with
size 6) and job B (with size 4), leaving node No.20 idle and
job E (with size 2) unallocated. In subfigure B, our design can
guarantee that every job gets a compact allocation.

Fig. 4 Scheduling result comparison between the default
scheduler and our design. The default scheduler (Subfigure
A) makes job prioritizing sequence as 〈A,B,C,D〉, and the
allocation for job A and B are fragmented, node 20 is left
idle. Our design (Subfigure B) can make optimization so
that every job gets a compact allocation and no node is
left idle. The prioritizing sequence obtained by our design
is 〈C,A,B,E〉.

IV. EVALUATION METHODOLOGY

We conduct a series of experiments using the traces de-
scribed in Section IV-B to evaluate our design as against the
default scheduler using FCFS/EASY backfilling. FCFS/EASY
backfilling is the most commonly used scheduling policy on
production supercomputers [6][7]. In the rest of the paper, we
use B&B, Greedy, and Default to denote our algorithms and the
default one. This section describes our evaluation methodology
and the experimental results will be presented in the next
section.

A. CQSim: Trace-based Scheduling Simulator

Simulation is an integral part of our evaluation of vari-
ous allocation policies as well as their aggregate effects on
system utilization, job’s wait time and response time. We

have developed a simulator named CQSim to evaluate our
design at scale. The simulator is written in Python, and is
formed by several modules such as job module, node module,
scheduling policy module, etc. Each module is implemented as
a class. The design principles are reusability, extensibility, and
efficiency. The simulator takes job events from the trace, and
an event could be job submission, start, end, and other events.
Based on these events, the simulator emulates job submission,
allocation, and execution based on specific scheduling and
allocation policies. CQsim is open source, and is available to
the community [1].

B. Job Traces

In this work, we use two real workload traces collected
from production supercomputers to evaluate our design. The
objective of using multiple traces is to quantify the perfor-
mance of our design when dealing jobs and systems with
different characteristics. The first trace we used is from a
machine named Blue Horizon at the San Diego Supercomputer
Center (denoted as SDSC-BLUE in the paper), which contains
4,830 jobs. The second trace we used is from a IBM Blue
Gene/P system named Intrepid at Argonne National Laboratory
(denoted as ANL-Intrepid in the paper) [3]. This trace contains
2,612 jobs. Figure 5 summarizes job size distribution of these
traces. ANL-Intrepid is used to represent capability computing
where jobs require a large amount of computing nodes for
solving large-scale problems, whereas SDSC-BLUE is used to
represent capacity computing where the system is utilized to
solve a large number of small-sized problems.

C. Evaluation Metrics

We use three scheduling metrics for evaluation.

• System Utilization Rate. This metric denotes the ratio
of the node-hours used by jobs to the total elapsed
system node-hours. Specifically, let T be the total
elapsed time for J jobs, ci be the completion time
for job i and si be its the start time, and ni be the
size of job i, then system utilization rate is calculated
as ∑

0≤i≤J (ci − si) · ni
N · T

(11)



Fig. 5 Job size distribution of ANL-Intrepid and SDSC-
BLUE

• Average Job Wait Time. For each job, its wait time
refers to the time elapsed between the moment it is
submitted and the moment it is allocated to run. This
metric is calculated as the average across all the jobs
submitted to the system. This metric is a user-centric
metric, measuring scheduling performance from user’s
perspective.

• Average Job Response time. Response time refers to
the amount of time it take when each job is submitted
until it ends, which equals to its wait time plus its run
time.

V. EXPERIMENT RESULTS

We conduct a series of experiments on the traces described
in Section IV-B to evaluate our design as against the default
scheduler which uses FCFS/EASY backfilling policy.

In our experiments, the scheduler makes scheduling de-
cisions every 30 seconds. To make the scheduler responsive,
the window size is set to 5 so that the time cost for B&B
algorithm to solve the MKP is affordable (e.g., in seconds).
We assume there are β percentage jobs in each trace are
sensitive to the contiguity of allocation. Existing studies show
that job runtime is influenced by resource allocation, and
the variability introduced by different allocations could be
as high as 70% [21][15] [17]. In our experiments, we use a
parameter α to denote this impact. For a job that is sensitive
to the contiguity of resource allocation, we assume its runtime
on a contiguous allocation is about α percentage shorter
than on a non-contiguous allocation. We conduct a series of
sensitivity study to evaluate our design under a variety of
configurations. In the following experiments, both β and α
are set to 10%, 20%, 30%, 40%, 50%.

A. Evaluation with SDSC-BLUE Trace

The evaluation results for SDSC-BLUE trace are presented
in Table I, II, III. Table I shows the system utilization im-
provement obtained by our design using B&B and Greedy as
against the default scheduler using FCFS/EASY backfilling.
In general, our design can outperform the default scheduler by
about 1% to 3%. As the impact parameter α and job percentage
β increase, this improvement grows slowly. Apparently, the
system’s throughput is not sensitive to the growth of jobs’

running time since those jobs only required a very small
portion of system nodes.

TABLE I System utilization improvement obtained by our
design using B&B and Greedy as against the Default
scheduler. In each cell, the number on top is the improve-
ment achieved by using B&B, the bottom number is the
improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 0.98% 1.37% 1.69% 1.66% 1.92%
1.15% 1.42% 1.52% 1.68% 1.84%

20% 1.28% 1.09% 1.46% 1.50% 1.77%
1.11% 1.12% 1.54% 1.63% 1.69%

30% 2.23% 2.23% 2.35% 2.48% 2.54%
2.18% 2.21% 2.35% 2.43% 2.67%

40% 2.36% 2.49% 2.64% 2.84% 3.03%
2.28% 2.49% 2.47% 2.84% 2.92%

50% 3.10% 3.14% 3.31% 3.72% 3.83%
3.07% 3.20% 3.48% 3.68% 3.83%

Table II shows job average wait time improvement obtained
by our design using B&B and Greedy as against the default
scheduler. As the impact parameter α and job percentage β
increase, the improvement can be as much as 27%. This result
indicates when large portion of jobs suffer from adverse impact
introduced by inappropriate node allocation, our design using
B&B and Greedy can greatly outperform the default scheduler.

TABLE II Average job wait time improvement obtained
by our design using B&B and Greedy as against the
Default scheduler. In each cell, the number on top is the
improvement achieved by using B&B, the bottom number
is the improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 11.27% 11.71% 12.95% 14.57% 17.17%
11.52% 11.42% 12.62% 14.46% 18.31%

20% 11.36% 12.54% 13.99% 16.50% 18.20%
12.07% 12.44% 14.55% 16.22% 19.05%

30% 12.98% 13.87% 14.04% 16.16% 19.29%
12.55% 13.81% 12.98% 16.66% 20.31%

40% 14.61% 15.86% 16.22% 19.48% 22.36%
15.30% 15.57% 16.48% 19.31% 21.70%

50% 19.35% 21.98% 23.13% 25.29% 27.33%
18.52% 21.70% 23.84% 25.05% 26.86%

Table III shows the improvement of average job response
time obtained by our design using B&B and Greedy as against
the default scheduler. This metric has the same trend as
average job wait time and reaches even higher value. This is
because job’s run time is usually longer than its wait time in
SDSC-BLUE trace and most jobs have their runtime dominate
the total response time. Thus, the impact parameter α has much
greater influence to jobs’ response time than to wait time.



TABLE III Average job response time improvement ob-
tained by our design using B&B and Greedy as against
the Default scheduler. In each cell, the number on top
is the improvement achieved by using B&B, the bottom
number is the improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 10.47% 10.14% 10.28% 11.11% 12.62%
9.27% 10.29% 10.74% 11.20% 12.32%

20% 11.12% 12.29% 12.93% 13.33% 14.93%
11.07% 12.23% 13.10% 13.37% 14.78%

30% 12.63% 13.73% 15.01% 16.20% 17.79%
12.56% 13.68% 15.25% 16.12% 17.32%

40% 16.17% 16.81% 17.09% 17.90% 18.90%
16.03% 16.98% 17.26% 17.93% 18.76%

50% 18.81% 22.11% 23.39% 25.56% 28.83%
18.17% 22.00% 23.45% 24.98% 28.41%

B. Evaluation with ANL-Intrepid Trace

The evaluation results for ANL-Intrepid trace are presented
in Table IV, V and VI. Table IV shows that the system
utilization improvement obtained by our design from ANL-
Intrepid trace can be as much as 4.8%, which is slightly higher
than that from SDSC-BLUE. This is because two traces have
different job size distribution, as shown in IV-B. The variation
of job size in ANL-Intrepid trace is greater than SDSC-BLUE.
The smallest jobs in ANL-Intrepid require 256-node, while the
biggest jobs require 8K nodes. When a big job released from
the system, it vacates a very big slot with great potential for
our design to make optimization. Hence, the system utilization
improvement obtained from ANL-Intrepid trace is higher than
from SDSC-BLUE trace.

TABLE IV System utilization improvement obtained by
our design using B&B and Greedy as against the Default
scheduler. In each cell, the number on top is the improve-
ment achieved by using B&B, the bottom number is the
improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 0.42% 0.53% 0.61% 0.89% 1.04%
0.54% 0.56% 0.63% 0.84% 1.12%

20% 1.02% 1.28% 1.47% 1.78% 2.20%
1.18% 1.24% 1.32% 1.83% 2.28%

30% 3.11% 3.21% 3.35% 3.35% 3.34%
3.20% 3.20% 3.32% 3.30% 3.35%

40% 3.00% 3.14% 3.23% 3.23% 3.24%
3.02% 3.10% 3.23% 3.25% 3.31%

50% 4.12% 4.35% 4.38% 4.42% 4.84%
4.12% 3.35% 4.23% 4.57% 4.69%

Both average job wait time and response time improvement
obtained by our design from ANL-Intrepid trace is not as
prominent as from SDSC-BLUE. As shown in Figure 5, more
than 50% jobs in the ANL-Intrepid trace are of size 1K,
2K, 4K, which means job size variation within these jobs

are relatively small. And these jobs have much more longer
running time than those small jobs in SDSC-BLUE, which
makes their wait time not as sensitive to the impact parameter
α as jobs in SDSC-BLUE trace. The average wait time and
response time got by our design from ANL-Intrepid trace is
about 10%, shown in Table V and VI.

TABLE V Average job wait time improvement obtained
by our design using B&B and Greedy as against the
Default scheduler. In each cell, the number on top is the
improvement achieved by using B&B, the bottom number
is the improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 6.32% 7.12% 7.39% 7.54% 8.84%
6.10% 7.18% 7.60% 7.51% 7.92%

20% 6.20% 7.87% 8.87% 8.10% 9.12%
6.16% 7.37% 8.59% 8.60% 8.94%

30% 7.04% 7.89% 8.33% 9.58% 10.69%
6.97% 7.60% 8.46% 9.73% 10.77%

40% 8.27% 8.81% 9.62% 10.06% 10.89%
8.34% 8.86% 9.60% 9.98% 10.76%

50% 8.45% 9.09% 10.13% 10.65% 11.68%
8.62% 9.15% 10.16% 10.62% 11.54%

TABLE VI Average job response time improvement ob-
tained by our design using B&B and Greedy as against
the Default scheduler. In each cell, the number on top
is the improvement achieved by using B&B, the bottom
number is the improvement achieved by using Greedy.

Impact Parameter α

Job Percentage β 10% 20% 30% 40% 50%

10% 3.81% 4.09% 4.87% 5.05% 5.76%
4.00% 4.26% 4.76% 4.93% 5.81%

20% 5.16% 5.53% 5.89% 6.76% 8.91%
4.03% 4.46% 5.76% 6.76% 8.80%

30% 5.03% 5.52% 6.76% 7.90% 8.93%
5.16% 5.81% 6.86% 7.67% 9.00%

40% 6.08% 7.52% 7.73% 8.89% 9.54%
5.70% 7.35% 7.58% 8.74% 9.26%

50% 6.16% 7.09% 9.12% 9.90% 10.85%
6.05% 7.10% 9.23% 9.85% 10.68%

C. Result Summary

In summary, our trace-based experiments have shown the
following:

• Our window-based locality-aware scheduling design
can guarantee compact job allocation while maintain-
ing high system utilization. The experimental results
also demonstrate that our design is capable of reducing
average job wait time and job response time.

• Our design can deliver up to 27% reduction on average
job wait time and response time, and 4% improvement
on system utilization. The amount of improvement



varies depending on workload features such as job size
and job running time.

• Both B&B and GREEDY algorithms can deliver com-
parable performance in our case studies. Considering
the computational overhead, we recommend the use
of GREEDY due to its low computational complexity.

VI. RELATED WORK

The most commonly used scheduling policies are FCFS
combined with EASY backfilling [5]. Under this policy, the
scheduler picks a job from the head of the wait queue and
dispatches it to the available system resources. Many studies
seek to improve the performance of this classic scheduling
paradigm. Tang et al. made refinement about user’s estimated
job runtime in order to make the backfilling more efficient
[6] [8]. They also designed a walltime-aware job allocation
strategy, which adjacently packs jobs that finish around the
same time, in order to minimize resource fragmentation caused
by job length discrepancy [7]. And there are some other
variation of FCFS/EASY backfilling proposed to optimize
system performance in terms of power consumption and energy
cost [9][10]. However, none of them ever take allocation
locality into consideration when making scheduling decisions.

There are several studies focusing on allocation algorithms
to minimize system fragmentation. Lo et al. presented a non-
contiguous allocation scheme named Multiple Buddy Strategy
(MBS) [14]. MBS preserves locality by allocating each job
a set of “blocks” to reduce interference between jobs, with
the advantage of eliminating both internal and external frag-
mentation. Each “block” consists of 2n nodes that adjacent
to each other (n with different value depends on the block
size). However, the distance between “blocks” could be too
long to make the communication between processes within the
same application less efficient. MBS also needs to partition the
system into fixed number of “blocks” in advance, which is time
consuming and low-efficient for big scale systems.

Leung et al. presented allocation strategies based on space
filling curves and one dimensional packing [22]. They im-
plemented these strategies using 2-dimensional Hilbert curves
and had an integer program for general networks. Their
preliminary experimental results show that processor locality
can be preserved in massively parallel supercomputers using
one-dimensional allocation strategies based on space filling
curve. However, space filling curve has the limitation that it
can only be applied to system with the scale of 2n nodes in
each dimension.

Albing et al. conducted study about the allocation strategies
that the Cray Application Level Placement Scheduler (ALPS)
used [23]. The job allocation in Cray Linux Environment
(CLE) operating system is managed by ALPS, which works
from a list of available nodes and assigns those nodes in
sequence from this list to jobs. However, ALPS does not make
changes or calculations when making allocation decisions. It
just simply works off the ordered list, however that is ordered.
They claimed that the ordered list can be obtained by using
either Hilbert curve or simply sorting the nodes based on their
spacial coordinates in the system.

There are other studies focusing on allocation algorithms to
improve the performance of user jobs. Pascual et al. proposed

an allocation strategy that aiming to assign a contiguous
allocation to each job, in order to improve communication
performance [12]. However, this strategy results in severe
scheduling inefficiency due to increased system fragmentation.
They reduced this adverse effect by using a relaxed version
called quasi-contiguous allocation strategy.

Another related work is online bin packing. In the bin
packing strategy, the objective is to pack a set of items with
given sizes into bins. Each bin has a fixed capacity and cannot
be assigned to items whose total size exceeds this capacity.
The goal is to minimize the number of bins used. The off-
line version is NP-hard [18] and bin packing was one of the
first problems to be studied in terms of both online and offline
approximability [19][20].

This work has two major difference as compared to the
above literatures. First, rather than one-by-one job scheduling
as most existing schedulers do [23][14][12], our design takes
a “window” of jobs (i.e.,multiple jobs) into consideration for
job prioritizing and resource allocation. Second, our resource
management module takes a contiguous set of nodes as a slot
and maintains a list of such slots. The slot list is updated dy-
namically when job being allocated/deallocated in the system.
The allocation of the jobs in the window onto the slot list is
conducted in such a way as to maximize system utilization.
This is different from the existing job allocation schemes that
work off a ordered list, which loses the spacial information of
the torus-connected system.

VII. CONCLUSIONS

In this paper, we have presented a window-based locality-
aware job scheduling design for torus-connected system. Our
goal is to balance job performance with system performance.
Our design has three novel features. First, rather than one-
by-one job scheduling, our design takes a “window” of jobs
(i.e.,multiple jobs) into consideration for job prioritizing and
resource allocation. Second, our design maintains a list of slots
to preserve node contiguity information for resource allocation.
Finally, we formulate a 0-1 Multiple Knapsack problem to
describe our scheduling decision making and present two
algorithms to solve the problem. Preliminary results based
on trace-based simulation demonstrate our design can reduce
average job wait time by up to 28% and average job response
time by 30%, with a slight improvement on overall system
utilization.

Our future work includes experiments with various work-
load traces collected from production systems as well as
different network topologies in addition to torus (e.g., fat-tree,
dragonfly). We intend to conduct quantified analysis about dif-
ferent allocation schemes in terms of system performance and
user job’s performance so that the best allocation schemes can
be chosen for HPC systems with different network topologies.

ACKNOWLEDGMENT

We appreciate the valuable comments and suggestions
from the anonymous reviewers. The work at Illinois Institute
of Technology is supported in part by US National Science
Foundation grant CNS-1320125. The work at Argonne is
supported in part by the U.S. Department of Energy (DOE),
Office of Science, under Contract DE-AC02-06CH11357.



REFERENCES

[1] Cqsim: An event-driven simulator. http://bluesky.cs.iit.edu/cqsim
[2] IBM redbooks publication, IBM system Blue Gene solution: Blue

Gene/Q system administration.
[3] Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload
[4] Managing System Software for Cray XE and Cray XT Systems. Cray

Document. 2012.
[5] D. Feitelson and A. Weil. Utilization and predictability in scheduling

the IBM SP2 with backfilling. In International Parallel and Distributed
Processing Symposium, 1998.

[6] W. Tang, N. Desai, D. Buettner, and Z. Lan. Analyzing and adjusting
user runtime estimates to improve job scheduling on the Blue Gene/P.
In 2010 IEEE International Symposium on Parallel Distributed Pro-
cessing, 2010.

[7] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu. Reducing fragmen-
tation on torus-connected supercomputers. In 2011 IEEE International
Symposium on Parallel Distributed Processing Symposium, 2011.

[8] W. Tang, N. Desai, D. Buettner, and Z. Lan. Job Scheduling With
Adjusted Runtime Estimates on Production Supercomputers. Journal of
Parallel and Distributed Computing (JPDC), 73(7):926-938, 2013.

[9] Z. Zhou, Z. Lan, W. Tang, and N. Desai. Reducing energy costs for
IBM Blue Gene/P via Power-Aware job scheduling. In 17th Workshop
on Job Scheduling Strategies for Parallel Processing, 2013.

[10] X. Yang, Z. Zhou, S. Wallace Z. Lan, W. Tang, S. Coghlan and Mike.
Papka. Integrating Dynamic Pricing of Electricity into Energy Aware
Scheduling for HPC Systems. In 2013 ACM/IEEEE Supercomputing,
2013.

[11] P. Krueger, T. Lai, and V.A. Dixti-Radiya Job Scheduling Is More
Important than Processor Allocation for Hypercube Computers IEEE
Trans. Parallel and Distributed Systems, vol. 5, no. 5, page 488–497,
May 1994.

[12] JA. Pascual, J. Navaridas and J. Miguel-Alonso. Effects of Topology-
Aware Allocation Policies on Scheduling Performance. 14th Work-
shop on Job Scheduling Strategies for Parallel Processing. May 29,
2009.Rome, Italy.

[13] D.G. Feitelson, L. Rudolph and Schwiegelshohn, Parallel job scheduling
status report. In Job Scheduling Strategies for Parallel Processing,
Springer Verlag (2005) . pages 1–116

[14] V. Lo, K. Windisch, W. Liu, and Nitzberg. Noncontiguous processor
allocation algorithms for mesh-connected multicomputers. IEEE Trans-
actions on Parallel and Distributed Systems 8 (1997). pages 712–726

[15] A. Bhatele, L.V. Kale Application-specific topology-aware mapping for
three dimensional topologies. In Proceedings of Workshop on Large-
Scale Parallel Processing (held as part of IPDPS’ 08) 2008

[16] Y. Aridor, T. Domany, O. Goldshmidt and J.E. Moreira. Resource
allocation and utilization in the Blue Gene/L Supercomputer. IBM
Journal of Research and Development 49 (2-3) (2005) pages 425–436

[17] Ansaloni, R. The Cray XT4 Programming Environment.
http://www.csc.fi/ english/csc/courses/programming/

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[19] D. S. Johnson. Near-optimal Bin Packing Algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1973.

[20] D. S. Johnson. Fast Algorithms for bin Packing. J. Comput. Syst. Sci.,
8:272–314, 1974.

[21] Bhatele, Abhinav and Mohror, Kathryn and Langer, Steven H. and
Isaacs, Katherine E. There Goes the Neighborhood: Performance
Degradation Due to Nearby Jobs In Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2013

[22] Leung, V.J.; Arkin, E.M.; Bender, M.A.; Bunde, D.; Johnston, J.; Alok
Lal; Mitchell, J.S.B.; Phillips, C.; Seiden, S.S., Processor allocation
on Cplant: achieving general processor locality using one-dimensional
allocation strategies In Proceedings of 2002 IEEE International Con-
ference on Cluster Computing, 2002. pages 296–304, 2002

[23] Carl Albing and Mark Baker ALPS,Topology, and Performance: A
Comparison of Linear Orderings for Application Placement in a 3D
torus. Presented at the CUG 2010, Edinburgh, Scotland, UK, 2010.

[24] S. Martello, P. Toth. Heuristic algorithms for the multiple knapsack
problem. Computing 27, 93112. 1981.


