
Trade-off between Prediction Accuracy and
Underestimation Rate in Job Runtime Estimates

Yuping Fan, Zhiling Lan

Illinois Institute of Technology

Chicago, IL, USA

yfan22@hawk.iit.edu, lan@iit.edu

Paul Rich, William E. Allcock, Michael E. Papka

Argonne National Laboratory

Argonne, IL, USA

richp@anl.gov, allcock@anl.gov, papka@anl.gov

Abstract—Job runtime estimates provided by users are widely
acknowledged to be overestimated and runtime overestimation
can greatly degrade job scheduling performance. Previous studies
focus on improving accuracy of job runtime estimates by reducing
runtime overestimation, but fail to address the underestimation
problem (i.e., the underestimation of job runtimes). Using an
underestimated runtime is catastrophic to a job as the job will
be killed by the scheduler before completion. We argue that
both the improvement of runtime accuracy and the reduction
of underestimation rate are equally important. To address this
problem, we propose an online runtime adjustment framework
called TRIP. TRIP explores the data censoring capability of the
Tobit model to improve prediction accuracy while keeping a low
underestimation rate of job runtimes. TRIP can be used as a
plugin to job scheduler for improving job runtime estimates and
hence boosting job scheduling performance. Preliminary results
demonstrate that TRIP is capable of achieving high accuracy of
80% and low underestimation rate of 5%. This is significant
as compared to other well-known machine learning methods
such as SVM, Random Forest, and Last-2 which result in a
high underestimation rate (20%-50%). Our experiments further
quantify the amount of scheduling performance gain achieved by
the use of TRIP.

Keywords-job scheduling; runtime prediction; Blue Gene sys-
tems

I. INTRODUCTION

The insatiable demand for computing resources in science

and engineering has driven the development of ever-growing

supercomputers in the field of high-performance computing

(HPC). In order to harness the full potential of extreme

scale systems, effectively allocating parallel jobs to available

resources (i.e., batch scheduling) is of paramount importance.

Job scheduler periodically checks the status of job queues and

available resources, and determines the order in which the

jobs in the queues will be executed [34]. This is done by

maintaining job priority in accordance with a site policy. The

scheduler decides when and where to execute jobs [34]. In

order to improve system utilization, job scheduling commonly

adopts some backfilling strategies [13].

Typically, users submit their jobs to a queue managed by

job scheduler through scripts. A job script contains all the

information necessary to run the job such as job size, job

runtime estimate, and job name. Here, job runtime estimate is

a crucial information supplied by a user regarding the amount

of time needed for job execution. Job runtime estimate is used

by the scheduler for decision making including job prioritizing

and backfilling. Job prioritizing policies order jobs based on

job attributes, such as job arrival time, job runtime estimate

and/or job size. For instance, the shortest job first policy

(SJF) orders jobs by job runtime estimates in an increasing

order. The longest job first policy (LJF) orders jobs by job

runtime estimates in a decreasing order. The scheduling policy

deployed at ALCF1 uses job runtime estimates for job ordering

[26]. Moreover, job runtime estimate is crucial for backfilling

decision making. Backfilling allows lower-priority jobs to run

ahead of higher-priority jobs if the lower priority jobs do not

delay the higher-priority jobs. The selection of queued jobs for

backfilling requires the knowledge of job runtime estimates of

the running jobs and the queued jobs [24].

Unfortunately, job runtime estimates supplied by users are

widely acknowledged to be overestimated [10] [11] [17] [24].

For example, Cirne and Berman showed that 50% to 60% of

jobs use less than 20% of user-supplied job runtime estimates

[10]. There are two major reasons for exaggerating runtime es-

timates. One is the fear of jobs being killed if the user-supplied

job runtime estimate is less than the actual job runtime. The

other is the lack of knowledge of jobs and/or the potential

benefits of providing an accurate runtime estimates, such as

reducing job wait time and improving system utilization [15].

Considerable research has been conducted to improve the

accuracy of job runtime estimates. For instance, Tang et al.

presented a simple strategy to improve runtime estimates by

multiplying a user-supplied runtime estimate with an adjusting

parameter. They showed that the adjusted runtimes can achieve

up to 20% reduction in average wait time and slowdown

[25]. Gaussier et al. used a polynomial model to enhance the

accuracy of runtime estimates [19]. Tsafrir et al. improved

runtime estimates by using the average of two last actual

runtimes of the user as a prediction (Last-2) [17].

Although the existing studies are capable of improving run-
time prediction accuracy, they all overlook an important aspect
of job runtime estimate, that is, underestimation rate. A job is

underestimated if its runtime estimate is less than the actual

time. Using an underestimated runtime estimate is catastrophic
to a job as the job will be killed by the job scheduler when

the actual runtime exceeds the runtime estimation. We argue

1ALCF stands for Argonne Leadership Computing Facility.

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.11

530

that both the improvement of runtime accuracy and the reduc-
tion of underestimation rate are important to job scheduling.

Unfortunately, these two are conflicting goals. Improving the

accuracy of runtime estimates of overestimated jobs could

potentially increase the chance of underestimation. As we will

illustrate later, although Last-2 [17] could greatly improve

runtime prediction accuracy, the percentage of underestimated

jobs is as high as 47%, which means about half of the jobs exit

system abnormally and all those underestimated jobs needed

to be rerun.

To address this problem, in this work we explore the Tobit

model to make job runtime estimation. The Tobit model is a

censored regression model designed to estimate relationships

between variables when there is either left- or right-censoring

in the latent variable (i.e., data censoring) [28]. Contrary to

other machine learning techniques such as Support Vector

Machine (SVM) and Random Forest, censored regression

models are capable of censoring data without producing bias

estimation [29]. This salient feature enables us to set the

lower bound of runtime prediction and thus to alleviate the

problem of underestimation in job runtime prediction. Note

that the idea of data censoring cannot be adopted by other

machine learning techniques, such as SVM, and Random

Forest, because using censored data in these methods typically

yield biased estimation toward the values of data censoring

[30] [31], rather than the actual job runtime.

Specifically, in this work we develop a new runtime adjust-

ment framework named TRIP (Tobit RuntIme Prediction) for

improving prediction accuracy and reducing underestimation

rate of job runtime estimates. TRIP consists of a repository for

archiving historical job information and a runtime adjuster for

predicting job runtime. It can be easily incorporated in existing

job schedulers to make online job runtime prediction. For

each incoming job, TRIP first retrieves related historical jobs

from the repository and determines whether to adjust the user-

supplied runtime of the incoming job. If TRIP decides to make

an adjustment, it estimates job runtime by using an enhanced

Tobit model on the extracted historical jobs. The overhead of

TRIP is very lower (less than 1.0 second in our experiments).

In TRIP, we enhance the standard Tobit model by adding

elastic net regularization. The standard Tobit model requires

independent features; however, here we only have a limited

number of features and these features are not independent.

The enhanced Tobit model is capable of automating feature

selection and making prediction even in the presence of highly

correlated features.

We evaluate TRIP by means of production workload traces.

We first evaluate TRIP in terms of prediction accuracy and un-

derestimation rate. As compared to other well-known machine

learning methods such as SVM, Random Forest, and Last-2,

TRIP is the only one that is capable of reducing underestima-

tion rate while improving prediction accuracy. While all other

methods are able to improve runtime prediction, they achieve

this at the cost of high underestimation rate. Specifically,

although Random Forest could improve an accuracy of 80%,

the underestimation rate is as high as 32% (meaning one-third

of the jobs will be killed and rerun). On the other hand, TRIP

can achieve an accuracy of over 80% with underestimation

rate of less than 5%.

We further perform trace-based simulations to quantify the

scheduling performance gain by using TRIP. We assess the

impact of improved runtime estimates with two scheduling

policies, namely the widely used FCFS (First Come First

Serve) with EASY backfilling [33] and the scheduling policy

deployed at ALCF that favors large and old jobs [26]. Our

results clearly show that TRIP is capable of greatly improving

scheduling performance by up to 45%. While other machine

learning methods such as SVM, Random Forest, and Last-2

improve some scheduling metrics (e.g., average job wait time

and average bounded slowdown), they fail to improve system

utilization due to the high underestimation rate.

The rest of this paper is organized as follows. We start by in-

troducing background in Section II, including the Tobit model

and job scheduling on HPC. Section III presents our analysis

of two production workload traces. Section IV describes our

TRIP design. The experimental results are presented in Section

V. We discuss the related studies in Section VI. Finally, we

conclude the paper in Section VII.

II. BACKGROUND

A. Tobit Model

The Tobit model was first proposed by James Tobin in 1958

[28]. The standard Tobit model was created to analyze house-

hold expenditure on durable goods with the constraint that

the expenditure cannot be negative. The Tobit model differs

from other regression models in several ways. One of the

most important features of the Tobit model is data censoring.

The household expenditure can be equal to or higher than

the threshold (zero). In the case that prediction of household

expenditure is below the threshold, the values are censored,

which means the values are set to the threshold. Another

feature is that instead of using the least square approach

to estimate parameters, the Tobit model utilizes maximum

likelihood estimator. Amemiya has proved that maximum

likelihood method can avoid bias estimation compared with

the least square method [29].

Variations of the Tobit model were developed and they

change where and when data censoring occurs. Amemiya

classifies the variations into five categories (Tobit type I to

Tobit type V) [29]. We explore Tobit type I in this study. Figure

1 gives the meanings of notations that will be used for the rest

of the paper. X is a m ∗ n matrix, where m is the number

of features and n is the number of instances. For each feature

j, there is a corresponding parameter βj . Parameters of all m
features form a parameter vector �β =< β1, ..., βj , ..., βm >.

Similarly, we use Xi(i = 1, ..., n) to represent an instance.

For each instance i, the latent variable y∗i linearly depends on

Xi with an error term ui. The latent variable y∗i can be written

as:

y∗i = β1x1
i + ...+ βjxj

i + βmxm
i︸ ︷︷ ︸

Xi
�β

+ui (1)

531

The latent variable y∗i is observed if y∗i > yL and is not

observed if y∗i �yL. Then the observed variable yi is defined

as:

yi =

{
y∗i if y∗i > yL

yL if y∗i �yL
(2)

yL is a threshold. Equation (2) is called data censoring. If

the latent variable y∗i is less than this threshold, the observed

variable yi is set to yL.

Fig. 1: Notations used to present the Tobit model. There

are in total n instances and m features. Take instance i
for example. A latent variable y∗i depends on a vector of

features Xi =< x1
i , ..., x

j
i , ..x

m
i > with the error term ui.

�β =< β1, ...βj , ...βm > is a paramter vector corresponding

to m features.

The Tobit model utilizes maximum likelihood estimation to

learn parameter �β and σ. By converting to logarithm likelihood

function, the objective function to learn �β and σ becomes:

argmax
�β,σ

∑
yi>yL

log(
1

σ
φ(

yi −Xi
�β

σ
))+

∑
yi=yL

log(1−Φ(Xi
�β − yL
σ

))

(3)

Once �β and σ are learned from Equation (3), prediction can

be made from Equation (1) and Equation (2).

B. Job Scheduling on HPC

Job scheduling is responsible for determining the order in

which jobs will be executed [34]. When submitting a job, the

user is required to provide two basic information about the

job:

• Number of compute nodes required by the job (i.e., job

size)

• Runtime estimate of the job

The number of compute nodes is usually a rigid requirement.

Job runtime estimate is the upper limit of the job runtime,

which means the job will be killed if its actual runtime is

greater than the estimate. The job scheduler determines where

and when to execute the jobs. Once a job is submitted, the

underlying job scheduler sorts all the jobs in the wait queue

based on a job prioritizing policy. In the past, a number of job

prioritizing policies have been proposed, and one of the widely

used policy is FCFS (first come first served), which sorts jobs

in the order of job arrivals [13]. At Argonne, a scheduling pol-

icy named WFP is adopted [25]. WFP determines job priority

according to (
tqueue

tsupplied
)3 ∗ ni, where tqueue, tsupplied, and ni

denote job wait time, user-supplied job runtime estimate, and

job size, respectively. Upon a job completion, the scheduler

typically records the job along with a number of its attributes

(e.g., user name, project name, job name, job submission

time, job start and end time, etc.) in a workload log. Table

I illustrates an example of a workload trace.

Despite of different types of job prioritizing policies, job

scheduling often suffers from fragmentation, where free re-

sources cannot meet the requirement of the next queued job

and therefore remain idle until additional resources become

available. Backfilling is a commonly used approach to enhance

job scheduling by improving system utilization, where sub-

sequent jobs are moved ahead to utilize free resources [13].

EASY backfilling is a widely used strategy, which allows short

jobs to skip ahead under the condition that they do not delay

the job at the head of the queue [33]. For both job prioritizing

and backfilling, job runtime estimate plays a critical role.

III. ANALYSIS OF JOB RUNTIME ESTIMATES

We analyze workload traces from two supercomputers at

ALCF [3]. One is the 48-rack IBM Blue Gene/Q machine

named Mira [1] [4]. This system comprises 786,432 pro-

cessors, and 768 terabytes of memory and features with

5D torus interconnect. The other is the 40-rack IBM Blue

Gene/P system named Intrepid [2]. This system comprises

40,960 quad-core nodes, with 163,849 cores and uses 3D torus

interconnect. Table II summarizes both logs.

We make two important observations from the trace analy-

sis. First, many users tend to submit jobs frequently on these

supercomputers. On average, each user on Mira submits 162

jobs in one year and each user on Intrepid submits 292 jobs

in the nine-month period. Figure 2 summarizes the top 30

users on Mira and Intrepid. The top user on Mira submits

6500+ jobs in one year, while the top user on Intrepid submits

7500+ jobs in nine months. At a supercomputing center like

XSEDE [6] or DOE [7] leadership computing facilities like

ALCF, HPC resources access is provided through allocation.

Each allocation is associated with a group of users working

on a common project, typically in a specific field such as

computation fluid dynamics, cosmology, molecular dynamics,

etc. As such, HPC jobs are repetitious and have distinct

characteristics in terms of their resource requirements. For

example, one project aims to test the effectiveness of a newly

developed model for weather forecasting. This requires the

user(s) to submit the application repetitively with different

input climate data [5]. Such a repetitive nature of HPC jobs

enables us to leverage machine learning methods to make

runtime prediction.

Second, user-supplied runtime estimates are highly inaccu-

rate. Here, inaccurate runtime estimation either means overes-

timation or underestimation. Figure 3 shows the distributions

of the runtime estimation accuracy (R) on Mira and Intrepid.

Most of the jobs are overestimated with an R value less than

1. On Mira, 25% of the jobs have an R value under 0.25 and

40% of the jobs use less than 50% of their requested time.

532

TABLE I: Example of a workload trace

Job Num-
ber

Submit
Time

Start Time End Time Requested
number of
nodes

User-
supplied
runtime
estimates

Used
number of
nodes

User name Project
name

Job Name Exit
Status

1 1/1/2014,
0:00:00

1/1/2014,
14:00:09

1/2/2014,
1:13:42

49152 64800 49152 userA projectA a 0

2 1/1/2014,
0:20:00

1/1/2014,
14:00:17

1/2/2014,
00:34:52

512 38000 512 userB projectA b 1

TABLE II: Workload traces from Mira and Intrepid

Traces Jobs Users Time Period

Mira 78,915 487 Jan/2014 - Dec/2014

Intrepid 68,936 236 Jan/2009 - Sep/2009

(a) Mira (b) Intrepid

Fig. 2: Number of jobs of the top 30 users on Mira and

Intrepid.

(a) CDF of R on Mira (b) CDF of R on Intrepid

Fig. 3: Cumulative Distribution Function (CDF) of R on Mira

and Intrepid. R is defined as tactual

tsupplied
.

The user-supplied job runtime estimates on Intrepid are even

worse. On Intrepid, 25% of the jobs have an R value under

0.2216 and 50% of jobs use less than 61% of their requested

time. Both Mira and Intrepid logs have approximately 15%

of jobs are underestimated with an R value over 1. Typically,

underestimated jobs would be killed by the scheduler. The

recording of these underestimated jobs was caused by the fact

that the systems took some time to release the resources.

We further analyze the user-supplied runtime estimates

per user. We find that although jobs, in general, are highly

inaccurate, not all users have the same level of inaccuracy.

Broadly speaking, users can be classified into three groups

based on the accuracy of their supplied runtimes: highly
accurate, moderately accurate, highly inaccurate. Figure 4

depicts three typical users from these groups. The user shown

in Figure 4a provides highly accurate estimates of his/her jobs.

On the other hand, the users shown in Figure 4b and 4c were

not able to provide a good estimate of their job runtimes. The

user depicted in Figure 4b tried to give a good estimate of

his/her jobs by varying runtime estimates, whereas the user

shown in Figure 4c always gave a fixed runtime estimate for

all jobs. While we desire more users like the one shown in

Figure 4a, we find that the majority of HPC users are like

the ones shown in Figure 4b and 4c. Specifically, we find that

more than 80% of the users at ALCF behave like the users

shown in Figure 4b or 4c.

IV. TRIP DESIGN

In HPC, highly overestimation of job runtime estimates

is observed by many research works. Existing work mainly

focused on reducing the runtime overestimation, while over-

looking a critical feature of job runtime estimates, that is, the

catastrophic consequence of underestimated job runtimes. A

job will be killed by the scheduler when its actual runtime

exceeds its runtime estimate. The design of TRIP is to reduce

overestimation as well as to minimize underestimation. A high

level overview of TRIP is presented in Figure 5.

Our design consists of two main components: a runtime

adjuster and a job repository. Upon each incoming job, the

adjuster first retrieves jobs with the same user name, project
name, and job name from the repository. The information of

these historical jobs is used to predict the runtime of the

incoming job. The repository records jobs executed in the

system. For each job, the repository records not only job

submission attributes (e.g., job number, user name, project

name, job name, job size, user-supplied runtime estimate, etc.),

but also the attributes listed in Table III.

Figure 6 presents the flow of TRIP runtime adjustment

method. For each incoming job, TRIP first extracts job at-

tributes: user name, project name, and job name. It then

retrieves historical jobs matching these job attributes from the

repository. If the number of the retrieved historical jobs is less

than a threshold, user-supplied runtime estimate is directly for-

warded to the job scheduler. Otherwise, TRIP checks whether

the average accuracy of the historical jobs is satisfactory (e.g.,

greater than a threshold). If yes, user-supplied runtime estimate

is directly forwarded to the scheduler. If the historical jobs do

not satisfy the threshold of the average accuracy, the enhanced

Tobit model described in Section IV-A is invoked to make an

adjustment of user-supplied runtime, denoted as tadjust, which

will be fed to the scheduler.

533

(a) Highly accurate estimates (b) Moderately accurate estimates (c) Highly inaccurate estimates

Fig. 4: Three typical user submission behaviors. In each plot, we show user-supplied runtimes and actual runtimes of one user.

Fig. 5: Overview of our TRIP design.

TABLE III: The features used for runtime prediction. Here,

a class contains jobs with the same user name, project name,

and job name.

Feature Description
tlast1 the actual runtime of the last job of the same

class
tlast2 the actual runtime of the second-to-last job of

the same class
tsupplied user-supplied job runtime estimate
nsupplied the number of nodes requested by the user
Aaverage the average accuracy of the historical jobs of

the same class
Amax the maximum accuracy of the historical jobs

of the same class
tlongest the longest actual runtime of the historical jobs

of the same class
tlongest10 the longest actual runtime of the ten last jobs

of the same class
taverage the average actual runtime of the historical jobs

of the same class
taverage10 the average actual runtime of ten last jobs of

the same class
tpercentile25 the actual runtime of the 25th percentile his-

torical jobs of the same class

A. Enhanced Tobit Model

TRIP explores the data censoring capability of the Tobit

model to improve prediction accuracy as well as to reduce

underestimation rate. The standard Tobit model described in

Section II-A assumes that all features are independent. This

Fig. 6: TRIP runtime adjustment method.

requirement is impossible to achieve in practice due to the fact

534

that limited features can be extracted from job logs.

To overcome this limitation, we make two enhancements.

First, rather than purely based on the job attributes retrieved

from job submission script, we include a number of other job

attributes as listed in Table III. Second, in order to address

the dependency of job features, we enhance the standard

Tobit model by adding an elastic net regularization [36].

Elastic net regularization is a linear combination of L1 and

L2 regularization, where L1 regularization performs feature

selection and L2 regularization delivers stable results even

when training a group of highly correlated features [37] [38].

Specifically, we replace the Equation (3) by the following

formula to learn the parameter �β and σ:

argmax
�β,σ

∑
yi>yL

log(
1

σ
φ(

yi −Xi
�β

σ
)) (4)

+
∑

yi=yL

log(1− Φ(
Xi

�β − yL
σ

))−λ1||�β||1︸ ︷︷ ︸
L1

−λ2||�β||2︸ ︷︷ ︸
L2︸ ︷︷ ︸

ElasticNet

Here, yL is set to the minimal of the actual job runtimes

among all the retrieved historical jobs. Xi denotes the vector

of attributes described in Table III and yi is the actual runtime

of historical job i.
We adopt stochastic gradient ascent to calculate the parame-

ters (i.e., �β and σ). Stochastic gradient ascent approximates the

maximum iteratively [39]. It is considered as an efficient and

fast converging method, because it approximates the maximum

rather than computes the maximum. In our experiments, it

usually takes less than 1.0 second to converge on a laptop.

Note that regularization parameters (i.e., λ1 and λ2) in

Equation (4) is determined off-line through cross validation

on a training dataset. For each incoming job being fed to

the enhanced Tobit model, �β and σ are learned online. Then,

Equation (1) and (2) are used to make online job runtime

prediction.

V. EXPERIMENTS

To comprehensively assess the gain associated with using

TRIP, we conduct two sets of experiments. Recall that, in

section III, our design intends to alleviate overestimation

and underestimation, whereas existing methods only focus

on overestimation. Hence, in the first set of experiments, we

focus on answering the question: can our design outperform
existing methods in terms improving accuracy and lowering
the underestimation rate? In particular, we compare TRIP

with existing methods in terms of prediction accuracy and

underestimation rate.

The ultimate purpose of improving job runtime estimates

is to boost the performance of job scheduling. Therefore, we

conduct the second set of experiments to answer the question:

to what extend could the improvement of job runtime estimates
boost job scheduling? To answer this question, we perform a

series of trace-based simulations using the predictions made by

our method and existing methods. We then compare the results

in terms of job wait time, bounded slowdown, and system

utilization.

The production traces listed in Table II are used in our

experiments. To mimic an online operation, we select the
regularization strength (i.e. λ1 and λ2) by using 10-fold cross
validation on the first month of jobs from each log, and use
the rest of the log for online learning and prediction. Hence,

the results shown in the rest of the paper are calculated based

on all the jobs in a log except for the jobs in the first month.

A. Prediction Accuracy and Underestimation Rate

The first set of experiments is intended to answer the first

question, namely prediction accuracy and underestimation rate

of TRIP as compared to other methods. We compare five sets

of job runtime estimates:

1) The runtime estimates supplied by users.

2) The prediction results obtained by using the Last-2

method [17]. In this method, job runtime prediction is

the average of a user’s two last actual runtimes.

3) The prediction results obtained by applying Support Vec-

tor Machine (SVM) [40]. SVM is well-known supervised

learning method used for both classification and regres-

sion. Here, we use SVM for regression.

4) The prediction results obtained by applying Random

Forest [41]. A random forest is an ensemble learning

method which constructs a number of decision trees on

various sub-samples of the dataset and uses the average

to improve the prediction accuracy.

5) The prediction results obtained by our TRIP design.

Note that the prediction processes of SVM and Random

Forest are similar to TRIP, except that either SVM or Random

Forest model replaces the enhanced Tobit model in Figure 6.

Additionally, they all use the same features listed in Table III

to predict actual job runtimes.

As mentioned in Section I, our design goal is to improve

average accuracy as well as to reduce underestimation rate.

Hence, the following two metrics are used for evaluation:

• Underestimation rate: We define underestimation rate

(Runder) as the ratio of the number of underestimated

jobs (nunder) to the total number of jobs (ntotal) in a

trace. Obviously, the lower the rate is, the better the

runtime prediction is.

• Average Accuracy: Following the literature [17], we

define the accuracy of job runtime estimate as:

A =

⎧⎪⎨
⎪⎩
1 if tsupplied = tactual

tsupplied/tactual if tsupplied < tactual

tactual/tsupplied otherwise

(5)

Here, tactual and tsupplied denote actual job runtime

and user-supplied job runtime respectively. This formula

insures accuracy always lies between 0 and 1. The greater

A means the job runtime estimate is closer to the actual

job runtime. Average accuracy is calculated as an average

amount across all jobs in a log.

535

(a) Underestimation Rate Runder . Clearly, the lower the rate is,
the better the prediction is.

(b) Average Accuracy A

Fig. 7: Comparison of runtime estimates by applying different methods.

Figure 7 presents the prediction results, in terms of under-

estimation rate and average accuracy, obtained by different

methods on both workloads. Clearly, our method outperforms

the others in terms of both metrics. As shown in Figure 7a,

in comparison to 15%-18% underestimation rate of the user-

supplied runtime estimates, our method reduces the under-

estimation rate to 5%-8%, while Last-2, SVM and Random

Forest increase underestimation rate, up to 47%, 29% and

31% respectively. In Figure 7b, compared with the average

accuracy of user-supplied runtime estimates (55%-58%), all

methods have the significantly higher average accuracy (75%-

80%).

By combining the results presented in Figure 7a and 7b,

we observe that although Last-2, SVM and Random Forest

enhance prediction accuracy, their prediction accuracy im-

provement comes at the cost of increasing underestimation

rate. TRIP is the only method that can reduce underestimation

rate as well as improve runtime prediction accuracy. We

believe this is due to the unique feature of Tobit, that is, the

left data censoring capability (Equation(2)).

B. Impact on Job Scheduling

The second set of experiments is to answer the second

question, i.e., to quantify the impact of our design on job

scheduling. We conduct extensive trace-based simulations by

means of the workload traces using the open-source simulator

CQSim [9]. Both FCFS/EASY backfilling and WFP/EASY

backfilling (i.e., the scheduling policy adopted at ALCF) are

evaluated in this study. By using different scheduling policies

as well as different workload traces, we intend to quantify

the benefits of our design across different systems and across

different scheduling policies. Three metrics are used to assess

the impact of improved job estimates on job scheduling:

• Average Job Wait Time. Job wait time measures the time

period between job submission to job start on a system.

• Average Bounded Slowdown. The slowdown of a job

is the ratio of job response time to its actual runtime.

However, this metric overemphasizes the importance of

extremely short jobs. Feitlson et al. have proposed the

bounded slowdown [32]:

bounded slowdown = max(
twait + tactual
max(tactual, τ)

, 1) (6)

where twait, tactual denotes job wait time and actual

job runtime respectively. τ is a constant used to prevent

the impact of extremely short jobs. We set τ to 60

seconds in our experiments. Average bounded slowdown

is computed across all the jobs in a trace.

• System Utilization. It is the ratio of the node-hours used

for running jobs to the total elapsed node-hours of a

system.

Note that the first two metrics are from user’s point of view,

whereas system utilization is a metric from the system’s per-
spective. Together, these metrics are used to assess the impact

on scheduling from both user’s and system’s perspectives.

Similar to the results presented in the previous subsection,

we compare scheduling performance using five sets of job

runtime estimates. In the rest of the paper, we present the rel-
ative improvement over the baseline (i.e., the results obtained

by using user-supplied runtimes).

Figure 8 and 9 present scheduling results using different

runtime estimates where FCFS/EASY is adopted, and Figure

10 and 11 plot scheduling results using different runtime

estimates where WFP/EASY is used. We make four key

observations. First, our method outperforms Last-2, SVM and

Random Forest. While other methods are able to improve

some scheduling metrics, such as average job wait time and

average bounded slowdown, they deliver negative or minor

improvement in system utilization. Recall that our method is

the only method reduce the underestimation rate as shown in

Figure 7. Underestimated jobs are killed before completion,

and therefore the other methods decrease the total used core

hours. The more underestimated jobs the greater chance of

empty job queue, which reduces system utilization. This also

explains why the Last-2 method makes a greater reduction in

job wait time. Due to the high underestimation rate of the

Last-2 method, running jobs, on average, need fewer core

hours to complete, and thus jobs in the wait queue need to

wait less time. On the other hand, TRIP increases the total

used hours, because fewer jobs are underestimated. Therefore,

536

(a) Average Job Wait Time (b) Average Bounded Slowdown (c) System Utilization

Fig. 8: Scheduling performance on Mira by using different runtime estimates, and the baseline is obtained by using the original

user-supplied runtime estimates. Here FCFS with EASY backfilling is used.

(a) Average Job Wait Time (b) Average Bounded Slowdown (c) System Utilization

Fig. 9: Scheduling performance on Intrepid by using different runtime estimates, and the baseline is obtained by using the

original user-supplied runtime estimates. Here FCFS with EASY backfilling is used.

(a) Average Job Wait Time (b) Average Bounded Slowdown (c) System Utilization

Fig. 10: Scheduling performance on Mira by using different runtime estimates, and the baseline is obtained by using the

original user-supplied runtime estimates. Here WFP with EASY backfilling is used.

(a) Average Job Wait Time (b) Average Bounded Slowdown (c) System Utilization

Fig. 11: Scheduling performance on Intrepid by using different runtime estimates, and the baseline is obtained by using the

original user-supplied runtime estimates. Here WFP with EASY backfilling is used.

537

(a) Average Job Wait Time (b) Average Bounded Slowdown (c) System Utilization

Fig. 12: Comparison of scheduling performance metrics by using selected methods shown in Table IV. Here, WFP with EASY

backfilling is used.

TRIP is capable of improving system utilization by increasing

used core hours.

Second, using improved runtime prediction on the Intrepid

trace has a more obvious effect compared with that on Mira.

This is due to the trace characteristic. 77% of the jobs on

Intrepid are adjusted, whereas 67% of the jobs on Mira are

adjusted. Therefore, the more percentage of jobs on Intrepid

can be predicted. Additionally, using our method and Last-2,

SVM, Random Forest on Intrepid makes the greater improve-

ment in average accuracy compared with Mira. This result

suggests that we can enhance job scheduling performance by

improving runtime estimation as much as possible.

Third, all four methods need less than one month to reach

their best performance. Initially, the repository has very limited

job information. Last-2 need two historical jobs of a user to

make runtime prediction, while other methods need ten. That

is why we can see that Last-2 method has good performance

in terms of job wait time and bounded slowdown in the first

month. Other methods quickly catch up after the first month

and keep relatively higher improvement in bounded slowdown.

Forth, WFP/EASY benefits more from the use of accurate

runtime estimates than FCFS/EASY. TRIP reduces average

bounded slowdown by up to 45% using WFP/EASY, and

by less than 25% using FCFS/EASY. Using TRIP with

WFP/EASY can improve system utilization by up to 20%,

while the improvement is 16% for FCFS/ EASY. This is due to

the fact that WFP/EASY uses runtime estimates for both job

prioritizing and backfilling, whereas FCFS/EASY only uses

runtime estimates for backfilling. With respect to WFP/EASY,

an overestimated job could obtain a higher priority thus lead-

ing to less wait time and slowdown by improving prediction

accuracy. For FCFS/EASY, the adjusted runtime estimates

only affect backfilling. The job priority in FCFS/EASY is

determined by job arrival times, and therefore job prioritizing

remains the same for FCFS/EASY no matter whether we use

the original runtime estimates or improved runtime estimates.

Overestimated short jobs can benefit from more accurate

runtime estimates, because they obtain more opportunities to

be backfilled. TRIP offers more accurate runtime prediction

for short jobs, and therefore it achieves greater improvement

in bounded slowdown, while less improvement in job wait

time compared with other methods when using FCFS/EASY.

TABLE IV: Selective Methods

Name Backfilling Job Prioritizing

S00 tsupplied tsupplied

S01 tsupplied tadjust

S10 tadjust tsupplied

S11 tadjust tadjust

The results in Figure 8, 9, 10 and 11 suggest that both job

prioritizing and backfilling benefit from more accurate runtime

estimates. One interesting question is that which one benefits

more from the improved runtime estimation. To answer this

question, we evaluate the impact of adjusted runtime estimates

on different aspects of scheduling (i.e., job prioritizing and

backfilling) using TRIP. Toward this end, we design four

selective methods for WFP/EASY scheduling, each using

different runtime estimates for job prioritizing and backfilling

(see Table IV). For example, S00 means using user-supplied

job runtime estimates for both prioritizing and backfilling.

S10 means using adjusted runtime estimates for backfilling,

while S01 means using adjusted runtime estimates for job

prioritizing.
As shown in Figure 12, more accurate runtime estimates

have positive effects on both job prioritizing and backfilling.

S10 makes a greater improvement in bounded slowdown and

system utilization compared with S01, which implies back-

filling is the main reason for the performance enhancement.

Additionally, the improvement made by S11 compared with

S00 is not simply by adding the improvement from S01 and

S10. Both S01 and S11 prioritize jobs using our adjusted

runtime estimates, while S10 and S00 use the user-supplied

runtime estimates to prioritize jobs. Because the backfilling

decision is made after job prioritizing, job priorities influence

backfilling. Therefore, the jobs that can be backfilled in S10

and S11 may not be the same. S10 uses the user-supplied

runtime estimates for prioritizing and uses the adjusted runtime

estimates for backfilling potentially allowing more jobs to be

backfilled.

VI. RELATED WORK

A. Inaccuracy of Job Runtime Estimates
Users often overestimate their runtimes. Cirne and Berman

reported that in four different traces, 50% to 60% of jobs use

538

less than 20% of their supplied times [10]. Similarly, Ward,

Mahood, and West studied a workload trace from a Cray T3E

and found that on average the jobs only used 29% of their

supplied times [11]. Chiang et al. also found that 35% of the

jobs use less than 10% of their supplied times [12]. Other

workload analyses lead to the similar results [13] [14].

B. Predicting Job Runtimes

Historical workload logs are considered especially useful for

improving the accuracy of job runtime estimates. A number

of efforts have been devoted to improving runtime accuracy

by utilizing historical information. The Last-2 scheme is one

of the simplest and widely used strategies [17]. It takes the

average of the latest two actual runtimes from the same

user as the prediction. While the method is simple, it is far

superior to runtime estimates supplied by users and is capable

of doubling accuracy [17]. Gibbons attempted to categorize

jobs by predefined job attributes and made predictions based

on different job categories [16]. Smith et al. improved the

categorization of jobs [20] [21] [22]. Jobs are no longer

categorized by predefined characteristics, rather templates are

used to categorize jobs. Templates, sets of job attributes, are

automatically generated by a genetic algorithm and then jobs

are assigned to a set of categories generated from templates.

This work takes advantage of job similarity in one group

and uses the mean of historical jobs runtimes in one group

for the job runtime prediction. Gaussier et al. applied the

polynomial model to predict runtimes, which was shown to

improve several workload traces from the Parallel Workloads

Archive [27] [19].

In contrast to existing studies which solely focus on high

prediction accuracy, our study aims at high prediction accuracy

as well as low underestimation rate. Lowering underestimation

rate is crucial for job scheduling as a job will be killed if its

actual runtime is greater than its estimated runtime. To the

best of our knowledge, this is the first study which targets at

both prediction accuracy and underestimation rate.

C. Impact of Adjusted Runtime Estimates on Job Scheduling

There are several studies attempting to improve scheduling

performance by adjusting job runtime estimates. Some studies

indicate that more accurate runtime estimates have minimal

impact on system performance [15] [22] [23]. However,

Chiang et al. have shown that significant improvement in

system performance can be achieved by using more accurate

runtimes [12]. In addition, Zhang et al. presented that although

the improvement in overall system performance may not be

obvious, more accurate runtime estimates can substantially

improve individual job performance [18]. In our prior study,

we found that more accurate runtime estimates could reduce

average slowdown time by up to 55% depending on scheduling

policy [25]. Gaussier et al. showed that the prediction made

by their approach improves the average bounded slowdown

by 28% [19]. In this study, we used the production workload

traces from different systems and provided in-depth analysis

of runtime impact on different aspects of scheduling (e.g., job

prioritizing and backfilling). We believe the results presented

in this work provide useful insights for the HPC community.

VII. CONCLUSION

In this work, we have presented TRIP to improve job run-

time estimates for HPC. In contrast to existing studies solely

emphasizing on improving prediction accuracy by reducing

runtime overestimation, our design stresses the importance

of both prediction accuracy and underestimation rate. Our

design is based on an in-depth analysis of the production

workload traces collected from two leadership computing

machines, namely the 40,960-node Intrepid machine and the

49,152-node Mira machine at ALCF. The analysis on both

logs has illustrated that user-supplied runtime estimates suffer

from overestimation and underestimation. In order to improve

prediction accuracy and decrease underestimation rate, TRIP

has explored the data censoring of the Tobit model, a unique

feature which cannot be adopted by other machine learning

methods, and have enhanced the Tobit model to address the

problem of feature dependence in predicting job runtimes. The

overhead of TRIP is very low and it takes, on average, less than

1 second to learn and predict job runtime of one incoming job.

The extensive trace-based experiments have clearly demon-

strated that TRIP is capable of improving an accuracy to over

80% as well as reducing an underestimation rate to about 5%,

whereas other machine learning methods, i.e. SVM, Random

Forest, and Last-2, improve their prediction accuracy at the

cost of increasing underestimation rate. Moreover, our in-depth

analysis of runtime impact on scheduling has indicated that the

use of our design can greatly improve scheduling performance.

TRIP enhances the system utilization by up to 20%, whereas

other methods make negative or minor improvement in this

metric. The amount of performance gain depends on the

workload as well as the underlying scheduling policy. For

instance, more accurate runtime estimates have a greater

impact on WFP/EASY in comparison with FCFS/EASY. A

key reason is that WFP/EASY uses runtime estimates for both

job prioritizing and backfilling, whereas FCFS/EASY only

uses runtime estimates for backfilling.

While the present work serves as a basis demonstration of

the value of using TRIP to improve job runtime estimates,

there are several avenues for taking these ideas further. A

natural direction to extend our current work is to deploy

the proposed framework as a software component for various

scheduling packages such as Cobalt and Slurm [8] [35].

Another interesting avenue is to include more features as

inputs to the predictive model.

ACKNOWLEDGMENT

The work at the Illinois Institute of Technology is sup-

ported in part by US National Science Foundation grants

CNS-1320125 and CCF-1422009. The work at the Argonne

Leadership Computing Facility is supported by the Office of

Science of the U.S. Department of Energy under contract DE-

AC02-06CH11357.

539

REFERENCES

[1] “Mira”. [Online]. Available: https://www.alcf.anl.gov/mira
[2] “Intrepid”. [Online]. Available: https://www.alcf.anl.gov/intrepid
[3] “Argonne Leadership Computing Facility (ALCF)”. [Online]. Available:

https://www.alcf.anl.gov
[4] “IBM Redbooks, IBM System Blue Gene Solution: Blue Gene/Q System

Administration”. Vervante, 2013.
[5] “Mira Early Science Program”. [Online]. Available:

https://www.alcf.anl.gov/programs/esp-mira
[6] “Extreme Science and Engineering Discovery Environment (XSEDE)”.

[Online]. Available: https://www.xsede.org/
[7] “Department of Energy (DOE)”. [Online]. https://energy.gov/
[8] “Cobalt Project”. [Online]. Available:

http://trac.mcs.anl.gov/projects/cobalt
[9] “CQSim: An Event-driven Simulator”. [Online]. Available:

http://bluesky.cs.iit.edu/cqsim.
[10] W. Cirne and F. Berman, “A Comprehensive Model of the Supercom-

puter Workload”, Proc. of IEEE International Workshop on Workload
Characterization, 2001.

[11] W. Ward, C. Mahood, and J. West, “Scheduling Jobs on Parallel Systems
using a Relaxed Backfill Strategy”, Proc. of Job Scheduling Strategies for
Parallel Processing, 2002.

[12] S.-H. Chiang, A. Arpaci-Dusseau, and M. Vernon, “The Impact of
More Accurate Requested Runtimes on Production Job Scheduling Per-
formance”, Proc. of Job Scheduling Strategies for Parallel Processing,
2002.

[13] A. Mu’alem and D. Feitelson, “Utilization, Predictability, Workloads,
and User Runtime Estimates in Scheduling the IBM SP2 with Back-
filling”, IEEE Transactions on Parallel and Distributed Systems 12(6),
529-543, 2001.

[14] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of Backfilling Strategies for Parallel Job Scheduling”, Proc.
of the International Conference on Parallel Processing Workshops, 2002.

[15] C. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User Runtime
Estimates Inherently Inaccurate?”, Proc. of Job Scheduling Strategies for
Parallel Processing, 2004.

[16] R. Gibbons. “A Historical Application Profiler for Use by Parallel
Schedulers”, in Job Scheduling Strategies for Parallel Processing. 1997.

[17] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling using System-
generated Predictions Rather Than User Runtime Estimates”, IEEE Trans-
actions on Parallel and Distributed Systems 18(6), 789-803, 2007.

[18] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “Improving
Parallel Job Scheduling by Combining Gang Scheduling and Backfilling
Techniques”, Proc. of IEEE International Parallel and Distributed Pro-
cessing Symposium, 2000.

[19] E. Gaussier, D. Glesser, V. Reis, D. Trystram. “Improving Backfilling
by using Machine Learning to Predict Running Times”, Proc. of IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015.

[20] W. Smith, “Prediction Services for Distributed Computing”, Proc. of
IEEE International Parallel and Distributed Processing Symposium, 2007.

[21] W. Smith, I. Foster, and V. Taylor, “Predicting Application Runtimes
with Historical Information”, Journal of Parallel and Distributed Com-
puting 64(9), 1007-1016, 2004.

[22] W. Smith, V. Taylor, and I. Foster, “Using Run-time Predictions to
Estimate Queue Wait Times and Improve Scheduler Performance”, Proc.
of Job Scheduling Strategies for Parallel Processing, 1999.

[23] D. Zotkin and P. Keleher, “Job-length Estimation and Performance in
Backfilling Schedulers, Proc. of IEEE International Symposium on High
Performance Distributed Computing, 1999.

[24] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, Utility-based
Job Scheduling on Blue Gene/P Systems”, Proc. of IEEE International
Conference on Cluster Computing, 2009.

[25] W. Tang, N. Desai, D. Buettner, Z. Lan, “Analyzing and Adjusting User
Runtime Estimates to Improve Job Scheduling on the Blue Gene/P”, Proc.
of IEEE International Parallel and Distributed Processing Symposium,
2010.

[26] W. Allcock, P. Rich, Y. Fan, and Z. Lan, “Experience and Practice of
Batch Scheduling on Leadership Supercomputers at Argonne”, Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP), 2017.

[27] “Parallel Workloads Archive”. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/

[28] J. Tobit, “Estimation of Relationships for Limited Dependent Variables”,
Econometrica 26 (1): 24-36, 1958.

[29] T. Amemiya, “Tobit Models”, Advanced Econometrics, pp. 360-411,
1985.

[30] W. Greene, “Censored Data and Truncated Distributions, In Mills, T.C.,
Patterson, K. (eds.), Palgrave Handbook of Econometrics, Volume 1:
Econometric Theory, Palgrave Macmillan, Hampshire, 2005.

[31] A. Henningsen, “Estimating Censored Regression Models
in R using the censReg Package, [Online] Available: cran.r
project.org/web/packages/censReg/vignettes/censReg.pdf.

[32] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P.
Wong, “Theory and Practice in Parallel Job Scheduling”, Job Scheduling
Strategies for Parallel Processing, pp. 1-34, 1997.

[33] D. Lifka, “The ANL/IBM SP Scheduling System”, In Job Scheduling
Strategies for Parallel Processing, pp. 295-303, Springer-Verlag, 1995.

[34] S. Iqbal, R. Gupta, and Y. Fang, “Planning Considerations for Job
Scheduling in HPC Clusters”, Dell Power Solutions, February 2005.

[35] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility
for Resource Management, in Job Scheduling Strategies for Parallel
Processing. Springer, 2003, pp. 44-60.

[36] H. Zou and T. Hastie, “Regularization and Variable Selection via the
Elastic Net”, Journal of the Royal Statistical Society, 2005.

[37] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso”,
Journal of the Royal Statistical Society, 1996.

[38] A. Y. Ng, “Feature Selection, L1 vs. L2 Regularization, and Rotational
Invariance”, Proc. of ICML, 2004.

[39] L. Bottou, “Stochastic Learning”, In Advanced lectures on machine
learning, Springer, pp. 146-168, 2004.

[40] C. Cortes, V. Vapnik, “Support-vector networks”, Machine Learning, Vo.
20, no. 3, pp 273-297, 1995.

[41] L. Breiman, “Random forests”, Machine Learning, vol. 45, no. 1, pp.5-
32, 2001.

540

