
Performance Analysis of a Large-Scale Cosmology Application on Three Cluster
Systems �

Zhiling Lan and Prathibha Deshikachar
Department of Computer Science

Illinois Institute of Technology
�lan, deshpra�@iit.edu

Abstract

A typical cosmological simulation requires a large
amount of compute power, which is hard to satisfy with a
single machine. Cluster systems provide the opportunity to
execute such large-scale applications. In this paper, we in-
vestigate and analyze the performance of a large-scale
production cosmology application, the ENZO code, on dif-
ferent cluster environments. Three cluster systems, each
of them representing a widely-used cluster environ-
ment in the area of scientific computing, are used in this
work: an IBM SP2 system at SDSC, an IA-64 Linux clus-
ter at NCSA, and a SUN Cluster at IIT. The performance
is evaluated from three aspects: overall performance, com-
munication characteristics, and load balancing charac-
teristics. The experimental data shows that the cosmology
performance on these clusters depends on the system per-
formance and the application characteristics. The applica-
tion performance on these clusters does not totally match
the NPB measurement. Further, it seems that the IA-64
Linux cluster does not scale past �� CPUs for this applica-
tion.

1. Introduction

With the availability of powerful microprocessors and
high-speed networks as commodity components, the clus-
ter environment has rapidly emerged as a major platform for
scientific applications. The modeling of cosmological phe-
nomena entails simulation of the formation and evolution
of cosmic structures such as galaxies and clusters of galax-
ies from shortly after the big bang to the present day. A
typical cosmological simulation requires a large amount of

� Zhiling Lan is supported by a grant from the National Computational
Science Alliance (ACI-9619019) and ERIF grant from Illinois Insti-
tute of Technology.

compute power, which is hard to satisfy with a single ma-
chine. Cluster systems provide the opportunity to execute
such large-scale cosmology applications that require vast
compute power. In this work, we investigate and analyze
a large-scale production cosmology application, the ENZO
code, on different cluster systems. The purpose of this pa-
per is to demonstrate the great potential of using cluster en-
vironment for large-scale applications, such as cosmology
codes.

The cosmology application, ENZO, was developed by
Greg Bryan and Michael Norman[4] in the early 1990s.
ENZO is currently in use at seven sites. ENZO is based
on the Structured Adaptive Mesh Refinement (SAMR) al-
gorithm provided by M. Berger et al.[2] in the 1980s. Basi-
cally, SAMR is a type of multiscale algorithm that achieves
high spatial resolution in localized regions of dynamic and
multidimensional numerical simulations. ENZO is one of
the successful implementations of the SAMR algorithm in
astrophysics and cosmology.

Two ENZO datasets are analyzed in this work: AMR64
and ShockPool3D. They are chosen due to their different
adaptive characteristics as shown in [6]. Three cluster sys-
tems are evaluated in this work: the IBM SP2 system Blue
Horizon at the San Diego Supercomputing Center (SDSC),
the IA-64 Linux cluster Titan at the National Center for Su-
percomputing Applications (NCSA), and the SUN cluster
Sunwulf at the Scalable Computing Software Laboratory of
Illinois Institute of Technology. We choose these systems
due to their wide usage in the area of scientific computing
and their representative configurations in hardware and soft-
ware.

To evaluate and analyze the performance of ENZO on
these clusters, we instrument the ENZO code with per-
formance counters and timers. The performance data is
collected and analyzed from three aspects: overall perfor-
mance, communication characteristics, and load balancing
characteristics. Further, NPB2.4 [10] and NetPIPE[9, 11]
are used to measure the overall and message-passing per-
formance of these systems. These benchmarking results are

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

compared with the ENZO performance on the cluster sys-
tems.

Our experimental data shows that the cosmology perfor-
mance on these clusters depends on the system performance
and the application characteristics. For example, for most
cases, the best performance of the cosmology application is
achieved on the IBM SP2 system which is the fastest sys-
tem according to NPB benchmark; however, there are some
cases in which the best cosmology performance is obtained
on the IA-64 Linux cluster which is a slower system as com-
pared to the IBM SP2. It is also shown that the relative per-
formance according to the NPB measurement does not ex-
actly match the relative cosmology performance on these
clusters. Further, we notice that the underlying intercon-
nected network of Titan has scalability problems. Specifi-
cally, it is not efficient for small-sized messages when there
are more than �� processes.

The remainder of this paper is organized as follows.
Section 2 provides the background information, which in-
cludes a description of the SAMR algorithm and the cos-
mology code ENZO. Section 3 describes three cluster sys-
tems used in this work and compares their overall and
message-passing performance by using NPB2.4 and Net-
PIPE respectively. Section 4 presents and analyzes the per-
formance results. Section 5 summarizes the paper and dis-
cusses our future work with this project.

2. Cosmology Application

2.1. Structured Adaptive Mesh Refinement Algo-
rithm

Many numerical simulations of multiscale physical phe-
nomena require enormous compute resources, in both mem-
ory storage and computing time, because their domains are
discretized into high-resolution meshes. However, these re-
sources are often under utilized on subdomains where high
resolution is not required. Structured Adaptive Mesh Re-
finement (SAMR), developed by Marsha Berger et al. in the
early 1980’s [2], is a class of adaptive strategies that address
this problem by performing high spatial resolution only in
those required regions. SAMR employs a nested hierarchy
of overlapping grids of increasingly fine resolution (in both
space and time) permitting high resolution computation in
some areas and low resolution in others. The underlying
premise of this strategy is that all grids of any given res-
olution are equivalent in the sense that, given proper bound-
ary information, they can be solved independently by iden-
tical means[7].

SAMR represents the grid hierarchy as a tree of grids at
any instant of time. The number of levels, the number of
grids, and the locations of the grids change with each adap-
tation. Initially, a uniform mesh covers the entire compu-

tational volume, and in regions that require higher resolu-
tion, a fine subgrid is added. If the region needs more reso-
lution, an even finer subgrid can be added. This process re-
peats recursively with each adaptation resulting in a tree of
grids like that shown in Figure 1. The top graph in this figure
shows the overall structure after several adaptations. The re-
mainder of the figure shows the grid hierarchy for the over-
all structure with the dotted region identifying the regions
requiring further refinement. In this grid hierarchy, there are
four levels of grids from level 0 to level 3, and the refine-
ment factor is ���.

Overall
Structure

H
i
e
r
a
r
c
h
y

Level 1

Level 0

Level 2

Level 3

Figure 1. SAMR Grid Hierarchy

2.2. Cosmology Code ENZO

ENZO [3] is one of the successful, parallel implementa-
tions of SAMR; ENZO is primarily intended for use in as-
trophysics and cosmology. This application entails the de-
tailed computations that simulate the formation and evolu-
tion of cosmic structures such as galaxies and clusters of
galaxies from shortly after the big bang to the present day.
Such modeling offers the only practical means to test the-
ory against observations and to rule out incorrect hypothe-
ses. ENZO includes solving the coupled equations of gas
dynamics, collisionless dark matter dynamics, self-gravity,
and cosmic expansion in three dimensions and at high spa-
tial resolution. The code is written in C++ with FORTRAN
routines for computationally-intensive sections and MPI
functions for message passing among processors.

The ENZO implementation manages the grid hierarchy
globally; that is, each processor stores the grid information

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

of all other processors. In order to save space and reduce
communication time, the notation of “real” grid and “fake”
grid is used for sharing grid information among processors.
Each subgrid in the grid hierarchy resides on one processor
and this processor holds the “real” subgrid. All other pro-
cessors have replicates of this “real” subgrid, called “fake”
grids. Usually, the “fake” grid contains the information such
as dimensional size of the “real” grid and the processor
where the “real” grid resides. The data associated with a
“fake” grid is small (usually a few hundred bytes), while the
amount of data associated with a “real” grid is large (rang-
ing from several hundred kilobytes to dozens of megabytes).

3. Three Cluster Systems

Three cluster systems are used in this work: the IBM
SP2 system Blue Horizon at the San Diego Supercomput-
ing Center (SDSC), the IA-64 Linux cluster Titan at the
National Center for Supercomputing Applications (NCSA),
and the SUN cluster Sunwulf at the Scalable Computing
Software Laboratory of Illinois Institute of Technology.
They are chosen due to two reasons. First of all, these
systems are widely used in the area of scientific com-
puting. Secondly, they represent different cluster environ-
ments. For example, the IBM SP2 system represents a rela-
tively tightly-coupled cluster environment and the underly-
ing hardware and software are optimized for this architec-
ture. Titan represents a Linux-based cluster with Myrinet in-
terconnect while Sunwulf represents an NOW (Network of
Workstations) with fast Ethernet connection.

We have just recently been able to execute ENZO on an
IA-32 system, but do not have enough time to fully test the
performance of ENZO on it and include the results in this
paper. We will include our experimental data on the IA-32
system in our future work.

3.1. IBM SP2 System at SDSC

The first system is an IBM SP2 system called Blue Hori-
zon which is located at the San Diego Supercomputing Cen-
ter (SDSC). With a theoretical peak performance of 1.7 ter-
aflops, Blue Horizon is ranked ���� on the current TOP 500
list (June 2003).

Blue Horizon[8] is a teraflop-scale Power3-based clus-
tered SMP system from IBM. The machine contains
1,152 processors and 576 GBytes of main memory, ar-
ranged as 144 Symmetric Multiprocessing (SMP) com-
pute nodes. Nodes are connected by the Colony switch,
a proprietary IBM interconnect. The application proces-
sors run at 375 MHz and are capable of a peak perfor-
mance of 1.5 GFLOPS. Each Power3 CPU has an L1 (64
KB) cache which is 128-way set associative and L2 (8 MB)

cache which is four-way set associative with its own pri-
vate cache bus.

The operating system on Blue Horizon is AIX 4.3.3,
which is IBM’s proprietary 64-bit version of the Unix OS.
IBM’s Parallel Operating Environment (POE) (Version 3
Release 2) provides the software that allows users to de-
velop applications which utilize the machine hardware and
operating system as a shared resource for effective paral-
lel computing. POE also includes numerical libraries opti-
mized for the Blue Horizon architecture.

3.2. IA-64 Linux Cluster at NCSA

The second system is an IA-64 Linux-based clus-
ter called Titan which is located at the National Cen-
ter for Supercomputing Applications (NCSA). It is ranked
����� on the current TOP 500 list (June 2003), show-
ing peak performance of 1.024 teraflops and sustained
performance of 677.9 gigaflops.

Titan[1] is comprised of 160 IBM IntelliStation Z Pro
6894 servers, each with two 800MHz Intel 64-bit Itanium
processors, running Red Hat Linux and Myricom’s Myrinet
cluster interconnect network. Each node is equipped with
2 GBytes of ECC SDRAM memory shared among its two
Itanium processors. Each Itanium CPU has three levels of
cache to reduce memory latency: 4 Mbytes L3 cache, 96
Kbytes L2 cache, and 32 Kbytes L1 cache.

The operating system on Titan is Linux 2.4.16(Red Hat
7.1). The machine is installed with MPICH 1.2.1 implemen-
tation of the MPI standard for message passing libraries
and VMI (Virtual Machine Interface) that supports multi-
ple underlying communication devices in a cluster environ-
ment. The layering of MPI on top of VMI is accomplished
by means of a ch vmi MPI device running on the MPICH
distribution. The other libraries required are the dl library
for dynamic loading, and the pthreads library for allowing
asynchronous activities within VMI or the various devices
to be performed in separate threads of activity.

3.3. SUN Cluster at IIT

The third system is a SUN UNIX-based cluster called
Sunwulf which is located at the Scalable Computing Soft-
ware Laboratory of Illinois Institute of Technology.

Sunwulf is composed of a four-processor E450 file server
and 63 high-end workstations, with total of 67 CPUs. The
Ultra Enterprise 450 server is designed around SUN high-
speed Ultra Port Architecture (UPA) cross-bar system inter-
connect and four modular UltraSPARC-II 480MHz CPUs
with clock frequency of 96 Mhz. Each of the 63 high-end
workstations is a SUN Blade workstation 100 with one
UltraSparc-IIe 500MHz CPU. Each of them comes with

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

256K L2 cache and 128MB main memory. The underly-
ing interconnect is fast Ethernet.

This system has been loaded with SUNOS 5.8 operating
system. The machine is installed with SUN HPC Cluster-
Tools 4.0 which includes a high-performance, thread-safe,
and multi-protocol implementation of the Message Passing
Interface (MPI).

3.4. NPB Comparison of Three Clusters

Different hardware and software configurations have
been used in these cluster systems, which results in dif-
ferent system performance. Therefore, before running
ENZO on these clusters, we use NAS Parallel Bench-
mark (NPB2.4)[10] to calculate the relative performance
of these machines. NPB2.4, written and distributed by
NAS, includes a set of eight MPI-based source-code pro-
grams designed to evaluate the performance of parallel
systems. It has gained wide acceptance as a standard in-
dicator for supercomputer performance. The relative
performance of these machines is shown in the Fig-
ure 2. Here, we use class B with 16 processes for each
run. Due to some bug with the BT benchmark, we can-
not collect BT performance for Titan and Sunwulf sys-
tem.

Figure 2. Comparison of Three Systems Us-
ing NPB2.4

The performance is measured in terms of Mop/s/proc
metric and the results are normalized to those of the IBM
SP2 system Blue Horizon. It is shown that the relative
performance of the Linux cluster Titan is in the range of
������ ����� and the relative performance of the SUN cluster
Sunwulf is in the range of ������ �����. By using the arith-
metic average, we calculate the relative performance of Blue
Horizon, Titan and Sunwulf as ���, ����, and ��	
 respec-
tively.

3.5. NetPIPE Comparison of Three Clusters

In a cluster environment, the inter-processor communi-
cation rate is crucial to its overall performance. Therefore,
we decide to use the tool NetPIPE (Network Protocol Inde-
pendent Performance Evaluator)[9, 11] to quantify point-to-
point latency, bandwidth, and cross-sectional bandwidth of
these cluster systems. NetPIPE performs simple ping-pong
tests, bouncing messages of increasing size between two
processes either across a network or within an SMP sys-
tem.

Figure 3. Comparison of Three Systems Us-
ing NetPIPE

Figure 3(a) compares cross-sectional throughput of
these systems. As we can see, Bluehorizon and Sunwulf de-
liver similar message-passing performance. They provide
a throughput up to �� and �� Mbps respectively. Ti-
tan can provide a higher throughput, especially when
the message size is larger than ��� Bytes. The maxi-
mum throughput on Titan is about ���� Mbps.

While both Bluehorizon and Titan are clustered SMP
systems, so their throughput within node is illustrated in
Figure 3(b). It is shown that both machines deliver simi-
lar throughput when the message size is smaller than ����
Bytes. When the message size is between 4Kbytes and
0.7Mbytes, Titan provides higher performance. Once the
message size is larger than 0.7Mbytes, Bluehorizon can de-
liver higher throughput as compared to Titan. The maxi-
mum throughput is ���� Mbps and ���� Mbps respectively
for Bluehorizon and Titan.

Latencies for small messages (smaller than 64 Bytes) are
��ms, ��ms, and
�� ms respectively for Bluehorizon, Ti-

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

Dataset Initial Size Final Size # of Adaptations

AMR64 ��� ��� �� ���� � ����� ���� 2500
ShockPool3D ��� ��� �� ���� � ����� ���� 600

Table 1. ENZO Datasets

tan, and Sunwulf. On Bluehorizon, latency within node is
reduced to about ���ms, while it is about ���ms on Titan.

NetPIPE results show that in terms of interconnects
across nodes, Sunwulf has the slowest interconnection. Al-
though the overall message-passing performance across
nodes on Bluehorizon is slower than that on Titan, Blue-
horizon is a SMP with eight processors per node while
Titan consists of multiple dual-processor nodes, so we can-
not simply say that Titan delivers better message-passing
performance than Bluehorizon.

4. Experimental Data

To evaluate and analyze the performance of ENZO on
different clusters, the ENZO code was instrumented with
performance counters and timers. The instrumentation data
was aggregated during runtime, requiring only one I/O op-
eration to write the results to a file at the end of execution.

Two ENZO datasets (AMR64 and ShockPool3D) are
used in the experiment. These two datasets are chosen
because they have quite different adaptive characteristics,
which can be found in [6]. AMR64 is designed to simu-
late the formation of a cluster of galaxies. This run tends
to create lots of grids randomly distributed across the com-
putation domain. ShockPool3D simulates the movement of
a plane shock wave which is slightly tilted with respect to
the edges of the computational domain. When the shock
wave first starts, it enters from one corner of the computa-
tional domain; as it progresses, more and more of the shock
wave enters the region until at some point the plane spans
from one edge to the other. The ShockPool3D run creates
more and more grids along the moving shock wave plane.
ShockPool3D solves a purely hyperbolic equation, while
AMR64 uses hyperbolic (fluid) equation and elliptic (Pois-
son’s) equation as well as a set of ordinary differential equa-
tions for the particle trajectories. Table 1 shows the problem
sizes for both datasets.

In this paper, the performance of ENZO is analyzed by
the following features: overall performance, communica-
tion characteristics, and load balancing characteristics.

We found it problematic to collect performance data of
AMR64 on Sunwulf because more than available memory
is trying to be allocated by the application or an unavail-
able memory segment is being accessed. Therefore, we only
present the performance data of ShockPool3D on Sunwulf in
the following subsections.

4.1. Overall Performance

Figure 4 shows the total execution time for ShockPool3D
and AMR64 with varying number of processors on three
clusters. Each execution time is divided into two parts: com-
putation time and communication time. First of all, for both
datasets, the performance of ENZO on the Sunwulf clus-
ter is much worse than on the other two clusters. On Blue
Horizon and Titan, values of the total execution time on the
y-axis ranges from 0 to 12,000 seconds, while they range
from 0 to 60,000 seconds on Sunwulf.

Figure 4. Overall Performance

It is also shown that the overall performance of two
datasets is quite different on these systems. According to
NPB results shown in the previous section, Bluehorizon is
the fastest machine among these clusters, which matches
the results for the dataset of ShockPool3D. However, when
the number of processes is less than ��, Titan can actually
provide better performance for AMR64. This indicates that
the application performance on these clusters also depends
on input datasets. Further, by looking into the data, we no-
tice that the better performance achieved on Titan is due to
smaller communication cost.

For ShockPool3D, the execution time is decreasing as the
number of processes increases on all the clusters. However,
for AMR64, the execution time does not reduce when the
number of processes increases from �� to �� on both Blue
Horizon and Titan. In particular, the communication cost on
Titan is increasing dramatically when there are more than
�� processes. It seems that the code has some inherent scal-
ability problems with the AMR64 dataset.

In the previous section, we used NPB2.4 to calculate
the relative performance of these clusters. As we can see,

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

the cosmology performance on these systems does not ex-
actly match the NPB performance. For example, the rela-
tive performance of Titan as compared to Blue Horizon is
���� according to NPB result. However, the performance
of AMR64 on Titan is actually better than on Bluehorizon
when the number of processors is less than 32. Further, al-
though the NPB result indicates that Sunwulf has better per-
formance as compared to Titan, the cosmology performance
on Sunwulf is much worse than on Titan.

4.2. Communication Performance

To analyze communication behavior of ENZO on these
clusters, we divide the communication into the collective
and point-to-point communication.

Figure 5 shows the communication results for both
datasets on three clusters. For ShockPool3D, Bluehorizon
provides the best communication performance while Sun-
wulf has the worst performance. This result matches the
NetPIPE result provided in the previous section. The un-
derlying interconnection on Sunwulf is fast Ethernet, which
provides the slowest message-passing among these clus-
ters according to NetPIPE measurement. As shown in
section 3, Bluehorizon is a SMP system with eight proces-
sors per node; therefore most of communication occurs
within node when using 8 - 64 processors. NetPIPE re-
sults show that message-passing performance within node
on Bluehorizon is much better than message-passing per-
formance across nodes on Titan. This explains why Blue-
horizon delivers better communication performance as
compared to Titan for the dataset ShockPool3D.

Figure 5. Collective vs. Point-To-Point Com-
munication

For AMR64, the figure shows that Titan provides bet-
ter communication performance when using 8 or 16 proces-
sors. This indicates that the underlying hardware and soft-
ware tools for message passing on Titan can achieve better
communication performance with small number of proces-
sors. Further, the figure indicates that on both Blue Hori-
zon and Titan, the larger portion of communication is point-
to-point communication and the collective communication
increases with increasing number of processes. On Blue
Horizon, point-to-point communication decreases when the
number of processes is increased from � to ��; then it re-
mains the same when we further increase the number of pro-
cesses from �� to ��. On Titan, point-to-point communica-
tion always increases with increasing number of processes.

By looking into the communication performance on Ti-
tan, we notice that when the number of processes is more
than ��, the communication time is increasing for both
datasets. This indicates that the underlying interconnected
network of Titan does not scale past �� processors. Our ex-
perimental data (not shown here) indicates that execution of
both datasets tend to create a large amount of small-sized
messages (less than 1KBytes), especially when the num-
ber of processes is large. Therefore, the underlying inter-
connection of Titan seems not efficient for small-sized mes-
sages when there are more than �� processes.

4.3. Load Balancing Performance

As mentioned earlier, ENZO employs SAMR technique
to address the adaptive feature of grid hierarchy. To mea-
sure the time spent on adaptation process, we instrumented
the ENZO code and measured the time for the subroutine
ReBuildHierachy. This subroutine is composed of the pro-
cess of rebuilding the grid hierarchy, sharing the newly
constructed grid hierarchy, and performing load balancing
among the processes after each adaptation step.

Figure 6 shows the adaptive cost for both datasets on
three clusters. For ShockPool3D, the performance of Re-
buildHierarchy is quite different. On Blue Horizon, it is
decreasing from ������ seconds to ������ seconds as the
number of processes increases from � to ��. However, on Ti-
tan, it is first decreasing from ������� seconds to �������

and then increasing to ������� seconds as the number of
processes increases. On Sunwulf, as compared to the other
systems, the cost for RebuildHierarchy is much more. The
time for this process is decreasing from 		����� to ��	����

with increasing number of processes.
For AMR64, the time for this RebuildHierarchy process

is always increasing as the number of processes increases
on both Blue Horizon and Titan. On Blue Horizion, it is in-
creasing from �����	 to ������, while it is increasing from
������ to ������ on Titan.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Adaptive Characteristics of ENZO
on Three Clusters

In [6], we proposed an efficient dynamic load balancing
(DLB) scheme for SAMR applications and implemented it
in the ENZO code. In this scheme, each load balancing step
consists of one or more iterations of two phases: moving-
grid phase and splitting-grid phase. The moving-grid phase
redistributes grids directly from overloaded processors to
underloaded processors by the guidance of the global infor-
mation; and the splitting-grid phase splits a grid into two
smaller grids along the longest dimension. For each load
balancing step, the moving-grid phase is invoked first; then
splitting-grid phase may be invoked if no more direct move-
ment can occur. If significant imbalance still exists, another
round of two phases may be invoked. Experiments show
that by using this proposed DLB scheme, the parallel exe-
cution time can be reduced by up to ��� and the quality of
load-balancing can be improved by a factor of six, as com-
pared to the original DLB scheme used in ENZO.

Three metrics were proposed in [6] to measure the qual-
ity of load balancing. Especially, Load Balancing Ratio is
defined as follows:

���� ��������	
���� �

��
���

����������
	�
�������

�
(1)

Where � is number of adaptations, ��������� de-
notes the maximal amount of load of a processor for the
��� adaptation, and ��	������� denotes the average load
of all the processors for the ��� adaptation. It is clear that
Load Balancing Ratio is smaller or equal to ���. The closer
it is to 1.0 the better; the value of 1.0 implies equal load dis-
tribution among all processes.

Figure 7 shows the quality of load balancing, represented
by Load Balancing Ratio, achieved on these clusters for
both datasets. As we can see, the quality of load balanc-
ing achieved on different systems are similar to each other,
which indicates that our proposed DLB scheme is not in-
fluenced by the underlying platform. Further, for all the
cases, the Load Balancing Ratio is always larger than ����.

Figure 7. Load Balancing Performance

This shows that the proposed DLB scheme can achieve high
quality of load balancing for both datasets.

4.4. Analysis Results

Combining the above experimental data, we can draw
four conclusions in terms of performance of the ENZO ap-
plication on these cluster systems:

� First of all, we conclude that the application perfor-
mance on these cluster systems depend on both the sys-
tem performance and the application characteristics.
For most cases, the best performance of the cosmol-
ogy application is achieved on the IBM SP2 system
Blue Horizon which has the best performance accord-
ing to the NPB measurement. However, we notice that
the performance also depends on the input parameters.
For example, our experimental data shows that AMR64
performs better on the IA-64 Linux cluster Titan while
ShockPool3D can achieve better performance on the
IBM SP2 system Blue Horizon.

� For both datasets, the cosmology performance on the
IA-64 Linux cluster Titan is not satisfactory when the
number of processes is more than 	
. For example, for
AMR64, the execution time on Titan increases dramat-
ically when using more than 	
 processes. This indi-
cates that the underlying network inter-connection of
Titan has scalability problems. In particular, it is sus-
pected that it is not efficient for small-sized messages
with a large number of processors.

� The performance analysis also indicates that the rel-
ative performance according to NPB benchmark does
not exactly match the relative performance of the cos-
mology application on these clusters. According to
the NPB measurement, the UNIX-based cluster Sun-
wulf has better performance as compared to the IA-
64 Linux cluster Titan. However, the performance of
ShockPool3D is much worse on Sunwulf than on Ti-
tan.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

� Lastly, all the data shows that the proposed DLB
scheme can achieve the same quality of load balanc-
ing on different clusters no matter how different these
systems are.

5. Summary and Future Work

In this paper, we provided a detailed performance anal-
ysis of a large-scale production cosmology application on
three cluster systems (the IBM SP2 system at SDSC, the
IA-64 Linux cluster at NCSA, and the SUN cluster at IIT).
Each of these systems represents a widely-used cluster en-
vironment in the area of scientific computing. The perfor-
mance is evaluated from three different aspects: overall per-
formance, communication characteristics, and load balanc-
ing characteristics. Our experimental data shows that the ap-
plication performance on these systems depends on both the
system performance and the application characteristics. The
experimental data also shows that the relative performance
according to the NPB benchmark does not exactly match the
relative performance of the cosmology application on these
clusters. We notice that the underlying interconnected net-
work of Titan has scalability problem. Furthermore, the ex-
perimental data indicates that the proposed DLB scheme[6]
can achieve the same quality of load balancing on differ-
ent systems no matter how different these systems are.

Currently, we are working on exploring large-scale ap-
plications including the cosmology and biology applica-
tions on distributed clusters, in particular, the Distributed
Terascale Facility (DTF). We are also working on general-
izing the dynamic load balancing scheme proposed in [5],
with the goal of developing a general and extensible dy-
namic load balancing tool to be used with large-scale adap-
tive applications on distributed environment, such as the
Computational Grid.

Acknowledgments

The authors would like to thank Valerie Taylor at Texas
A&M, Michael Norman at UCSD, and Greg Bryan at Ox-
ford University for numerous comments and suggestions
that contributed to this work. We also would like to ac-
knowledge the National Center for Supercomputing
Applications (NCSA), San Diego Supercomputing Cen-
ter (SDSC), and the Scalable Computing Software Lab at
Illinois Institute of Technology for the use of their ma-
chines.

References

[1] Alliance. IA-64 Linux Cluster at NCSA. World Wide Web,
http://www.ncsa.uiuc.edu/.

[2] M. Berger and P. Colella. Local adaptive mesh refinement for
shock hydrodynamics. Journal of Computational Physics,
82(1):64–84, May 1989.

[3] G. Bryan. Fluid in the universe: Adaptive mesh refine-
ment in cosmology. Computing in Science and Engineer-
ing, 1(2):46–53, March/April 1999.

[4] G. Bryan, T. Abel, and M. Norman. Achieving extreme
resolution in numerical cosmology using adaptive mesh re-
finement: Resolving primordial star formation. In Proc. of
SC2001, Denver, CO, 2001.

[5] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balanc-
ing of samr applications on distributed systems. In Proc.
of SC2001, Denver, CO, 2001.

[6] Z. Lan, V. Taylor, and G. Bryan. A novel dynamic load bal-
ancing scheme for parallel systems. Journal of Parallel and
Distributed Computing, page 1763 1781, 2002.

[7] H. Neeman. Autonomous Hierarchical Adaptive Mesh Re-
finement for Multiscale Simulations. PhD thesis, UIUC,
1996.

[8] NPACI. NPACI User Guides. World Wide Web,
http://www.npaci.edu/BlueHorizon/.

[9] NetPIPE Team. A Network Protocol Indepen-
dent Performance Evaluator. World Wide Web,
http://www.scl.ameslab.gov/netpipe/.

[10] NPB Team. Nas Parallel Benchmarks. World Wide Web,
http://www.nas.nasa.gov/Software/NPB/.

[11] Dave Turner and Xuehua Chen. Protocol-dependent
message-passing performance on linux clusters. In IEEE
Cluster 2002, Chicago, IL, 2002.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)

0-7695-2066-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:24:27 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

