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Abstract—Emerging workloads in high-performance comput-
ing (HPC) are embracing significant changes, such as having
diverse resource requirements instead of being CPU-centric.
This advancement forces cluster schedulers to consider multiple
schedulable resources during decision-making. Existing schedul-
ing studies rely on heuristic or optimization methods, which are
limited by an inability to adapt to new scenarios for ensuring
long-term scheduling performance. We present an intelligent
scheduling agent named MRSch for multi-resource scheduling in
HPC that leverages direct future prediction (DFP), an advanced
multi-objective reinforcement learning algorithm. While DFP
demonstrated outstanding performance in a gaming competition,
it has not been previously explored in the context of HPC
scheduling. Several key techniques are developed in this study to
tackle the challenges involved in multi-resource scheduling. These
techniques enable MRSch to learn an appropriate scheduling pol-
icy automatically and dynamically adapt its policy in response to
workload changes via dynamic resource prioritizing. We compare
MRSch with existing scheduling methods through extensive trace-
base simulations. Our results demonstrate that MRSch improves
scheduling performance by up to 48% compared to the existing
scheduling methods.

Index Terms—cluster scheduling; multi-resource scheduling;
direct future prediction; reinforcement learning

I. INTRODUCTION

The cluster scheduler, also known as a batch scheduler,

plays a critical role in high-performance computing (HPC),

with the responsibility of determining the order in which

jobs are executed. Existing cluster schedulers are CPU-centric.

However, exponential growth in computing power has enabled

HPC systems to tackle much more complex scientific prob-

lems. These emerging workloads have diverse resource re-

quirements beyond the CPU. For example, I/O intensive appli-

cations can take advantage of a burst buffer with dramatically

improved performance [1]. For these applications, raw CPU

power is not necessarily the primary resource that determines

performance, but the allocation with respect to fast storage is

more crucial. Such a change requires the scheduler to consider

multi-resource scheduling where the scheduling problem is to

optimize the use of multiple schedulable resources, e.g., CPU,

burst buffer, power, and so on.

Existing multi-resource scheduling methods often rely on

heuristics [2], [3], [4], [5]. Among them, dominant resource

fairness (DRF) [2] and Tetris [3] are widely cited. While

these heuristics have been demonstrated to be effective for

the workloads in data centers, they are not suitable for multi-

resource scheduling in HPC because these two communities

adopt different computing modes and target very different

workloads. For example, in DRF, each job consists of multiple

tasks, and the scheduling process is to determine the proper

number of tasks per job (i.e., a malleable job) to maximize

the minimum dominant share among jobs. In contrast, HPC

is dominated by rigid parallel jobs with a fixed number of

tasks. A key feature of HPC scheduling is to improve resource

utilization while preventing job starvation where large-sized or

long-running jobs are perpetually held in a waiting queue.

A few research studies presented heuristic or classical

optimization methods for multi-resource scheduling in HPC.

Sun et al. discussed list scheduling and pack scheduling, both

being proposed for scheduling moldable jobs [6], [7]. One

variant of the list scheduling method extends first-come, first-

serve (FCFS) to multi-resource scheduling [8]. While heuristic

methods are fast, they cannot deliver an optimal solution

to a scheduling problem. Optimization methods were also

explored for multi-resource scheduling [9], [10], [11], [12],

[13]. These methods formulate the scheduling problem into

a single-objective or multi-objective optimization problem.

Studies suggested that the optimization-based methods, es-

pecially the multi-objective optimization approach, result in

better scheduling performance [13].

Recent efforts explored reinforcement learning (RL) for

cluster scheduling [14], [15], [16]. Distinguishing from heuris-

tic and optimization methods that concentrate on the imme-

diate effect, reinforcement learning processes a sequence of

decisions where each decision can impact the next. Through

training, an RL agent learns to make an informative decision to

optimize the long-term effect resulting from each scheduling

decision as a sequence of actions (e.g., effects on the current

and future resource utilization) [17]. Moreover, a common

drawback of heuristics and optimization methods is the lack of

adaptation. An intriguing feature of RL is its ability to adapt

its actions automatically to dynamic changes in workloads

or system states. As such, RL offers a promising direction

for improving cluster scheduling. Also, existing RL-driven

scheduling techniques mainly concentrate on single-resource

scheduling.

In this study, we suggest that multi-objective reinforcement

learning (MORL) is a natural approach for multi-resource





TABLE I: Comparison of MRSch with existing multi-resource cluster scheduling methods.

Features

Methods Heuristics
[8], [7], [2], [3], [6]

Classical optimization
[9], [10], [11], [12], [13]

Existing RL-driven scheduling
[16], [15], [23], [14]

MRSch

Long-term scheduling effect × × √ √

Automatic policy tuning × × √ √

Dynamic resource prioritizing × × × √

Training requirement × × √ √

Unlike scheduling in data centers, HPC scheduling has

several salient features. In particular, HPC is dominated by

tightly-coupled parallel applications. Hence, advanced job

reservation and backfilling are commonly used for preventing

job starvation and improving resource utilization [8], [24]. Job

reservation holds resources for the job at the head of the wait-

ing queue to prevent starvation. Backfilling enables subsequent

jobs to move ahead to utilize free resources appropriate for that

job. A widely used strategy is EASY backfilling, which allows

short jobs to skip ahead in the queue only if they do not delay

the current job waiting at the head of the queue [8].

Considerable studies have been conducted to improve clus-

ter scheduling by leveraging machine learning. For instance,

one active topic is forecasting job characteristics or user

behaviors to improve cluster scheduling, such as reported in

[25] with a summary of the challenges and limitations of

applying machine learning for job characteristic prediction.

Distinguishing from this research, in recent years several

pioneering studies explored reinforcement learning for HPC

scheduling (i.e., sequential decision making). For example,

RLScheduler deployed a new kernel-based neural network

structure and trajectory filtering mechanism to stabilize the

learning process [15]. MARS combined heuristics and a deep

RL actor-critic algorithm to optimize HPC systems for legacy

and complex workflows [23]. DRAS leveraged a hierarchical

neural network that incorporates HPC-specific scheduling fea-

tures [16]. These studies targeted CPU-only scheduling.

For multi-resource scheduling, heuristic methods are com-

monly used, such as co-scheduling CPUs and memory in data

centers [2], [3], [26], [5]. Among them, dominant resource

fairness (DRF) and Tetris are well-known methods [2], [3].

DRF adopts a max-min fairness algorithm for the dominant

resources to ensure that no user is better off if the resources,

such as CPU and memory, are equally partitioned among

them [2]. Tetris presents a multi-dimensional bin packing

method that improves the average job completion time by

preferentially serving jobs that have less remaining work

compared to other jobs [3]. These studies targeted typical

workloads seen in data centers with jobs composed of multiple

tasks and scheduling decisions designed to determine how

many tasks for each job should be selected.

Unfortunately, these techniques are not suitable for multi-

resource scheduling in HPC for two reasons. First, the schedul-

ing objective in HPC is to optimally schedule jobs in the wait-

ing queue (instead of tasks within the jobs, as in data centers).

Second, large-sized, long-running rigid jobs are common in

HPC, and preventing their starvation in the waiting queue is

a crucial scheduling requirement.

Existing multi-resource scheduling approaches in HPC can

be broadly classified as either heuristics- or optimization-based

methods. In list scheduling [6], [7], jobs are first organized

in a priority list and assigned in sequence to the earliest

available resources. An extension of FCFS to multi-resource

scheduling is an instance of list scheduling. Classical opti-

mization methods have also been considered for multi-resource

scheduling [9], [10], [11], [12]. Yuping et al. [13] developed

a multi-resource scheduling algorithm to explore a Pareto set

for decision-making. Heuristic and optimization methods are

similar in that decisions are made for the best immediate effect,

such as maximizing resource utilization at the decision-making

moment. However, considering only immediate consequences

may lead to suboptimal performance in the long term.

MRSch differs from these prior studies in multiple aspects,

as summarized in Table I.

B. Direct Future Prediction

Direct future prediction (DFP) is an advanced MORL al-

gorithm developed in 2017 [18]. Its foundational idea is to

train an agent to predict the effect of different actions on

future measurements, conditioned by the present state input,

measurements, and goal. DFP inherits the long-term schedul-

ing impact of traditional reinforcement learning. Distinct from

conventional RL with feedback as a scalar reward, feedback in

DFP is in the form of a measurement (a vector). Leveraging

this extension, unlike traditional RL methods that learn a

single objective according to a scalar reward, DFP can switch

goals (i.e., the product of the measurement and goal vector)

under various circumstances. This switching is performed by

dynamically adjusting the goal vector.

DFP incorporates three input modules, each processing an

image s (i.e., a perception module), measurement m, and goal

g (i.e., reflecting the relative importance of each measurement)

separately. The pursued objective can be expressed as a dot

product of the predicted measurement change and goal vector.

The outputs of these modules are concatenated into a joint

representation j that is processed by two parallel streams, an

expectation stream and a normalized action stream, inspired by

the dueling architecture introduced by DeepMind [27]. These

two streams are combined to produce a final prediction for

each action. More details of DFP can be found in [18].

The DFP agent interacts with the environment to obtain

the actual measurement change. The loss function between
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Fig. 2: Overview of MRSch. The environment (the top portion) denotes the HPC multi-resource scheduling system. The MRSch

agent (the bottom portion) contains three input modules (state, measurement, and goal) and interacts with the environment by

observing environmental changes and making scheduling decisions (i.e., selecting jobs for execution). The arrows between the

agent and the environment indicate the information flows between them.

this measurement and the predicted measurement is used to

train the neural network. During training, the agent follows an

ε-greedy policy to avoid local optimums. During testing, the

agent selects the action that yields the best-predicted outcome.

III. MRSCH DESIGN

MRSch represents the scheduler as an intelligent agent

that makes decisions for when and which jobs should be

allocated to available resources (Figure 2). The environment

includes job and resource information, along with system

measurements, such as resource utilization. The objective of

the MRSch agent is to maximize the utilization of each

resource by taking the actions of selecting jobs for scheduling.

Because resource scarcity dynamically changes, the weight

per resource, represented by the goal module, must adapt to

dynamic environmental changes for optimizing job selection.

The MRSch agent interacts with the environment over

discrete scheduling instances. At a given instance, the agent

reads the job and resource information as input for the state

and measurement modules. The input of the goal module

represents the weights of each measurement from the mea-

surement module. The outputs of these three modules are

concatenated into a joint representation that is processed by

the parallel expectation stream and action stream. The outputs

of these streams are combined to produce a final prediction of

future measurements for each action. The agent then takes an

action by selecting jobs from the waiting queue and obtains

the actual future measurement (the target module) fed back by

the system. MRSch trains the neural networks to improve the

prediction accuracy of future measurements for each action by

minimizing a loss function between the prediction and target.

Key techniques designed into MRSch are described below.

A. Input Modules

The foremost challenge is formulating the specific HPC

multi-resource scheduling problem as MORL. In the follow-

ing, we describe our representations of the input modules

featured in Figure 2.

State. In the original DFP, the input of the state module

is an image [18]. Encoding job and resource information as

an image is not suitable for our case because it is difficult

to capture critical job information (e.g., job waiting time) in

images. Instead, we encode the job and resource information

as vectors. Each waiting job is encoded as a vector of (R+2)
elements, where R is the number of resources requested by

the job, and the additional elements correspond to the user-

supplied estimated runtime and queued time of the job.

For system resources, we encode each resource unit as a

vector of two elements. The first is a binary value representing

resource availability (1 means available and 0 means not

available). If the resource is occupied, then we take the user-

supplied runtime estimate and job start time to calculate

this unit’s estimated available time. The second element is

the time difference between the resource unit’s estimated

available time and the current time. If the resource is available,

then we set this element to zero. The resource unit can be

defined by the system administrator, e.g., a node for the CPU

resource or a TB burst buffer as the unit for the burst buffer

resource. Finally, we concatenate job information and resource

information into a fixed-size vector as the input for the state

module.

Rather than using CNN within the state module as deployed

in the original DFP, we incorporate a multilayer perceptron

(MLP). CNN works well on data with spatial relationships,

such as image data [28]. However, the features of our state in-

put are independent. We show experimental results comparing

MLP and CNN architectures in Section §V-A.

We also use one neural network for all resources instead

of one neural network per resource. This design choice is

based on two reasons. First, more training parameters are

available for the state module with a single neural network



TABLE II: Symbols and their descriptions.

Symbol Description

N number of jobs in the system.
R number of resources in the system.
ti user-supplied runtime estimate of job i in waiting queue,

remaining runtime estimate of job i running on system.
Pij percentage of requested resource j,

(divided by the system resource j capacity) for job i.
rj goal vector value reflecting the contention fierceness

of resource j by all jobs, including running and queued.

configuration compared to separate neural networks. Second,

if using multiple neural networks, job information would

be encoded multiple times in the final joint representation,

resulting in an inefficient redundancy.

Our state neural network consists of four layers, including

the input layer, two fully-connected layers, and output layer.

The input layer is connected to two fully-connected layers

activated by a leaky rectifier [29], and the second fully-

connected layer is connected to the output layer.

Measurement. The inputs to the measurement module

are the metrics of the scheduling objective. Different HPC

facilities may have different scheduling objectives. A typical

objective is to maximize the utilization for all schedulable

resources. Suppose two types of resources, Resource A and

B, are available, and the site objective is to maximize the

utilization of both resources. A measurement vector is defined

as <Resource A util, Resource B util>, and a three-layer fully-

connected network parses the measurement module.

Goal. The values of the goal vector determine the weights of

each measurement in the overall scheduling objective. Positive

values correspond to maximizing the particular measurement,

and negative values correspond to its minimization. Configur-

ing the goal vector is described in the next subsection.

Action. MRSch deploys a window to specify a range of

jobs to select from within the waiting queue. Intuitively,

the scheduler can select multiple jobs within this window

simultaneously, but this could result in an explosive number

of actions. Instead, MRSch decomposes a scheduling decision

that includes several jobs in one action into a series of

individual job selections.

B. Dynamic Resource Prioritizing

The fierceness of contention for each resource changes dur-

ing multi-resource scheduling, so more consideration should

be assigned to the more contentious resource. Therefore,

dynamically adjusting the resource priority is essential.

In MRSch, dynamic resource priority is achieved by ad-

justing the goal vector input to the goal module, g, that

represents the weights of each measurement in the overall

scheduling objective. A larger value of the goal vector means

the corresponding measurement plays a more important role

in the scheduling objective. MRSch gives preference to the

resource with more fierce contentions.

Suppose there are R schedulable resources and the schedul-

ing objective is to maximize resource utilization (Table II lists

all symbols and their corresponding meanings). MRSch sets

the values in the goal vector as follows:

rj =

∑N

i=1
Pijti

∑R

j=1

∑N

i=1
Pijti

(1)

Equation (1) describes how long (normalized) it will take to

complete all the jobs’ resource j demands in the ideal situation

where resource j is fully utilized. A longer time represents a

more fierce resource contention.

C. Avoid Job Starvation

HPC job sizes and runtimes can span broad scales in

practice. A job size ranges from a single node to the entire

HPC system comprised of thousands of compute nodes, and

its runtime may vary from seconds to days. Such a variety

in job characteristics presents a unique challenge for HPC

scheduling: queued jobs, especially large-sized jobs, tend to be

starved when small-sized jobs continue arriving into the queue

and skip to the front while insufficient resources are available

for the larger job. Directly applying DFP to the multi-resource

scheduling problem results in severe job starvation.

MRSch adopts two techniques to overcome this challenge.

First, a window-based design alleviates job starvation by

providing higher priority to older jobs in the queue. Second,

MRSch inherits the reservation strategy. At a given scheduling

instance, the scheduler enforces a window at the front of the

waiting queue. When MRSch selects a job from this window, if

its requested resources are available, then it is marked as ready

and sent for immediate execution on the system. This process

repeats until the system no longer has sufficient available

resources for the next job selected by the agent. This next

job is then marked as reserved so that its requested resources

will be held for its execution on the system at the earliest

available time. In addition, EASY backfilling is leveraged to

improve resource utilization.

D. Training Strategy

To obtain a converged and accurate model for scheduling,

the MRSch agent must gain experience through training from

a large quantity of jobs with various job arrival patterns and

diverse job characteristics. We train our MRSch agent with

real workloads, along with sampled and synthetic workloads,

to increase its robustness toward workload changes.

We follow the principle of gradual improvement to learn a

robust model. MRSch begins with common represented cases

and incrementally improves its capability with unseen rare

cases. In particular, three types of job sets and a three-phase

training process are employed to train MRSch in the following

order: a set of sampled jobs from real job traces, real job

traces, and synthetic jobs generated to represent previously

unseen patterns. The sampled job sets have controlled job

arrival rates that provide the easiest learning environment for

MRSch to learn good scheduling decisions within a controlled

environment. Subsequent training on real job traces with

varying job arrival patterns enables MRSch to learn more

complex scenarios. The final phase includes synthetic job sets

to tune MRSch with experiences from a broader variety of



TABLE III: Workloads based on the production traces, representing light to heavy contention for the burst buffer.

Workload Number of requested nodes Percentage of jobs requesting burst buffer Burst buffer size range

S1 number of requested nodes in the trace 50% [5 TB, 285 TB]
S2 number of requested nodes in the trace 75% [5 TB, 285 TB]
S3 number of requested nodes in the trace 50% [20 TB, 285 TB]
S4 number of requested nodes in the trace 75% [20 TB, 285 TB]
S5 half of number of requested nodes in the trace 75% [20 TB, 285 TB]

potential states that may have not been seen during the first

two sets. Results comparing different training strategies are

presented in §V-B.

IV. IMPLEMENTATION AND EVALUATION

MRSch is implemented in TensorFlow [21]. We evaluate

MRSch through trace-based simulation using real workloads

collected from a production system. In our experiments,

MRSch interacts with CQSim, a trace-based HPC job schedul-

ing simulator that has been used in various scheduling studies

for a decade [30]. A real system processes jobs from user

submissions, while CQSim imports jobs by reading the job

arrival information from a trace. The simulator emulates sys-

tem execution by advancing the simulation clock according to

the job runtime recorded in the trace. Changes in the job wait

queue or the system trigger the simulator to send scheduling

requests to the MRSch agent. Typical triggers include the

submission of a new job to the queue or a running job leaving

the system.

For simplicity of presentation, we first confine our attention

to two resources and later present a case study featuring more

resources in §V-E.

A. Workload Traces

A variety of resources beyond CPUs may be considered

as schedulable resources. Given that the burst buffer is widely

deployed in production supercomputers [31], [32], we evaluate

MRSch with the scheduling of CPU and burst buffer.

Our workload trace is a five-month historical job trace in

2018 from Theta at ALCF [33]. This trace only contains CPU

request information, so we extend the data with burst buffer

(BB) requests, assuming a shared burst buffer of 1.26 PB. To

compensate for this lack of burst buffer information in the

trace, a corresponding Darshan [34] trace extracts the amount

of data moved between compute nodes and the parallel file

system, which is then considered as the potential burst buffer

request for each job. During the five months, 40% of the jobs

have Darshan I/O records, and 17.18% have more than 1 GB

of data transferred. The amount of transferred data is assigned

as the corresponding job’s burst buffer request, with a range

of requested burst buffer sizes between 1 GB to 285 TB.

A limitation is that the burst buffer was not heavily utilized

during the time of this historical trace because the burst buffer

was a relatively new resource, and not all applications had been

refactored to benefit from this new feature. Also, some jobs

did not include Darshan I/O recordings.

We extensively evaluated MRSch under various configura-

tions, including cases of resource contention for either the

CPU or burst buffer, by generating five synthetic workloads

from the original trace (Table III). These designed workloads

represent light to heavy contentions for the burst buffer. The

assigned burst buffer request is randomly selected from the

original requests within a certain range. Those greater than 5

TB are randomly assigned to S1 or S2, while S3 and S4 select

from requests greater than 20 TB. Compared to S1 and S2,

S3 and S4 have larger burst buffer requests. S1 and S2 have

similar distributions, but more jobs in S2 include burst buffer

requests. A similar pattern is observed in S3 and S4. The S5

workload is generated by reducing the requested number of

nodes from S4 by half to represent workloads with less CPU

resource contention.

We split the five-month log into three parts: the first three

and a half months of the workload for agent training, a

subsequent two weeks of the workload for model validation,

and the remaining data for inference/testing.

B. Evaluation Metrics

The quality of the scheduling method must be evaluated by

multiple metrics, including both system-level and user-level

metrics. Four well-established metrics are used to evaluate

MRSch, where the first two are system-level metrics and the

last two are user-level metrics.

1) Node utilization: the ratio of the used node-hours during

useful job execution to the elapsed node-hours.

2) Burst buffer utilization: the ratio of the used burst buffer

hours to the elapsed burst buffer hours.

3) Average job wait time: the average interval between job

submission to job start time.

4) Average job slowdown: the average ratio of job response

time (job runtime plus wait time) to the actual runtime,

representing the responsiveness of a system.

C. Network Architecture

The input of the state neural network is a vector of size

[4W+2N1+2N2, 1], where W is the window size (10 in our

experiment), N1 is the number of compute nodes, and N2 is

the number of burst buffer units in the system. For the Theta

machine, the input size of the state neural network is [11410,

1]. We use two fully-connected layers with 4,000 and 1,000

neurons, respectively, with an output layer of 512 nodes. A

three-layer fully-connected network with 128 neurons parses

the measurement and goal modules. The action space includes

the waiting jobs in the window. MRSch selects the jobs from

this window for job allocation to optimize the goal. The

MRSch agent follows an ε-greedy policy to select jobs in the

training time by acting greedily according to the current goal

with probability (1 − ε) and selects a random action with

probability ε. We set ε = 1.0 at the beginning of the training,
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