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Summary

Energy-efficient scientific applications require insight into how high performance com-

puting system features impact the applications’ power and performance. This insight

can result from the development of performance and power models. In this article, we

use the modeling and prediction tool MuMMI (Multiple Metrics Modeling Infrastruc-

ture) and 10 machine learning methods to model and predict performance and power

consumption and compare their prediction error rates. We use an algorithm-based

fault-tolerant linear algebra code and a multilevel checkpointing fault-tolerant heat

distribution code to conduct our modeling and prediction study on the Cray XC40

Theta and IBM BG/Q Mira at Argonne National Laboratory and the Intel Haswell clus-

ter Shepard at Sandia National Laboratories. Our experimental results show that the

prediction error rates in performance and power using MuMMI are less than 10% for

most cases. By utilizing the models for runtime, node power, CPU power, and memory

power, we identify the most significant performance counters for potential application

optimizations, and we predict theoretical outcomes of the optimizations. Based on two

collected datasets, we analyze and compare the prediction accuracy in performance

and power consumption using MuMMI and 10 machine learning methods.
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1 INTRODUCTION

Energy-efficient scientific applications require insight into how high performance computing (HPC) system features impact the applications’ power

and performance. This insight can result from the development of performance and power models. Dense matrix factorizations, such as LU, Cholesky,

and QR, are widely used for scientific applications that require solving systems of linear equations, eigenvalues, and linear least squares prob-

lems.1,2 Such real-world scientific applications often take days, weeks, and even months to be executed on tens and even hundreds of thousands of

compute nodes, thereby relying on resilience software techniques and hardware fault tolerance to successfully finish the long executions because

of software or hardware failures. While reducing execution time is still a major objective for HPC, future HPC systems and applications will have

additional power and resilience requirements that represent a multidimensional tuning challenge. To embrace these key challenges, we must under-

stand the complicated tradeoffs among runtime, power, and resilience. In this article, we explore performance and power modeling and prediction

of an algorithm-based fault-tolerant linear algebra code (FTLA)3 and a multilevel checkpointing fault-tolerant heat distribution code (HDC)4 using

MuMMI (Multiple Metrics Modeling Infrastructure)5,6 and 10 machine learning (ML) methods.7,8

In this work, we use FTLA and HDC to conduct our experiments on the Cray XC40 Theta9 and IBM BG/Q Mira10 at Argonne National Labora-

tory, and on the Intel Haswell cluster Shepard11 at Sandia National Laboratories. We analyze FTLA’s performance and power characteristics and

use MuMMI and 10 machine learning methods to model, predict and compare performance and power of FTLA and HDC. MuMMI5 is a modeling
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infrastructure that facilitates systematic measurement, modeling, and prediction of performance and power consumption, and performance-power

tradeoffs and optimization for parallel systems. The 10 popular ML methods that cover tree/rule-based, nonlinear and linear ML methods from the

R caret package7,8 are random forests (RF),12 Gaussian process (GP) with radial basis function,13 extreme gradient boosting (xGB),14 stochastic gra-

dient boosting (SGB),15 Cubist (Cub),16 ridge regression (RR),17 k-nearest neighbors (kNN),7 support vector machines (SVM) with linear kernel,13

conditional inference tree (CIT),18 and multivariate adaptive regression spline (MAR).19

Our experimental results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. By

utilizing the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for potential

application optimization efforts associated with the application characteristics and the target architectures, and we predict theoretical outcomes

of the optimizations. Then, based on two datasets collected for the applications FTLA and HDC, we analyze and compare the prediction accuracy

using MuMMI and 10 ML methods.

The remainder of this article is organized as follows. Section 2 discusses the applications FTLA and HDC. Section 3 briefly describes three

architectures and their power profiling tools. Section 4 presents performance and power characteristics, modeling and prediction of FTLA using

MuMMI. Section 5discusses the modeling and prediction of FTLA and HDC using 10 ML methods and compares them with MuMMI. Section 6

summarizes this work.

2 FAULT-TOLERANT APPLICATIONS: FTLA AND HDC

Many resilience methods have been developed for preventing or mitigating failure impact. Existing resilience strategies can be broadly classified

into four approaches: checkpoint based, redundancy based, proactive methods, and algorithm based. Checkpoint/restart is a long-standing fault

tolerance technique to alleviate the impact of system failures, in which the applications save their state periodically, then restart from a previous

checkpoint. Multilevel checkpointing is the state-of-the-art design of checkpointing, focusing on reducing checkpoint overhead to improve check-

point efficiency. Such checkpointing libraries include fault tolerance interface (FTI),4,20 scalable checkpoint/restart (SCR),21,22 VeloC,23 and diskless

checkpointing.24 Redundancy approaches improve resilience by replicating data or computation.25-27 Proactive methods take preventive actions

before failures, such as software rejuvenation and process or object migration.28 Algorithm-based fault tolerance (ABFT) methods maintain consis-

tency of the recovery data by applying appropriate mathematical operations on both the original and recovery data, and they adapt the algorithm so

that the application dataset can be recovered at any moment.2,29-32 ABFT was applied to High Performance Linpack (HPL),33 to Cholesky factoriza-

tion,34 and to LU and QR factorizations.1,2,35 The FTLA2,3 in particular was developed as an extension to ScaLAPACK36 that tolerates and recovers

from fail-stop failures, which is defined as a process that completely stops responding, triggering the loss of a critical part of the global application

state, and halts the application execution. While fault tolerance methods and power management techniques continue to evolve, tradeoffs among

execution time, power efficiency, and resilience strategies are still not well understood. To understand the tradeoffs among runtime, power, and

resilience, in this article we explore performance and power modeling and prediction of two fault-tolerant applications under different resilience

strategies.

Fault tolerance studies focus mainly on the tradeoffs between execution time, fault tolerance overhead, and resiliency, whereas most power

management studies focus on the tradeoffs between execution time and power. Understanding the tradeoffs among all these factors is crucial

because future HPC systems will be built under both reliability and power constraints. Our previous work37 presented an empirical study evaluating

the runtime and power requirements of multilevel checkpointing MPI applications using FTI on four different parallel architectures and collected

a large amount of performance data. Recent research has focused on a theoretical analysis of energy and runtime for fault tolerance protocols38-43

and benchmarking machine learning methods for performance modeling of scientific applications.44 In this work, we use the algorithm-based

fault-tolerant FTLA and the multilevel checkpointing fault-tolerant HDC to conduct our modeling and prediction study in power and performance.

Matrix QR factorization decomposes a matrix A into a product A=QR, where Q is an orthogonal matrix and R is an upper triangular matrix. The

FTLA code ftla-rSC133 consists of two main components: one QR operation followed by a resilient QR (RQR) operation, where the RQR performs

one QR, checkpointing, and repairing a failure until completing without a failure as shown in Figure 1. The structure of the block QR and LU is

identical. We focus on the QR in this article. The main loop is associated with the matrix sizes. For each matrix size, it performs one QR followed by

one small loop. The small loop size is the number of error injections. For each error injection, it performs one RQR.

We remove all segments for error injections from ftla-rSC13 to create another code called ftla. The main loop is associated with the matrix sizes.

For each matrix size, it performs one QR followed by one RQR. The RQR performs one QR and checkpointing. Then we remove the checkpointing

segments from ftla to get a code called la, which is similar to ScaLAPACK QR. In this article, we use the three codes ftla-rSC13, ftla, and la to conduct

our experiments. They are configured as strong scaling problems.

The other application used in this article is an FTI version of MPI heat distribution benchmark code (HDC),4 which computes the heat distribu-

tion over time based on a set of initial heat sources in the FTI package. FTI20 leverages local storage, along with data replication and erasure codes, to

provide several levels of reliability and performance. It provides four-level checkpointing: local write (L1), Partner copy (L2), Reed-Solomon coding

(L3), and PFS write (L4). The four checkpointing levels correspond to coping with the four types of failures: no hardware failure (software failure),
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F I G U R E 1 Control flow of the ftla-rSC13 code

single-node failure, multiple-node failure, and all other failures the lower levels cannot take care of, respectively. The checkpointing file size is 2 MB

per MPI process. HDC is compute-intensive and weak scaling.

3 SYSTEM ARCHITECTURES AND ENVIRONMENTS

We conduct our experiments on three HPC systems with different architectures: the Cray XC40 Theta9 and IBM BlueGene/Q (BG/Q) Mira10 at

Argonne National Laboratory and the Intel Haswell cluster Shepard11 at Sandia National Laboratories. Details about each system are given in Table 1.

Each Cray XC40 node has 64 compute cores: one Intel Phi Knights Landing (KNL) 7230 with the thermal design power (TDP) of 215 W, 32 MB of L2

cache, 16 GB of high-bandwidth in-package memory (MCDRAM) with the bandwidth of 480 GB/s, 192 GB of DDR4 RAM with the bandwidth of 90

GB/s, and a 128 GB SSD. MCDRAM can be configured as a shared last level cache (cache mode) shown in Figure 2 or as a distinct NUMA node memory

(flat mode) in Figure 3 or somewhere in between. For the flat mode, the default memory allocation preference is DDR4 first, then MCDRAM. Theta

uses the Cray Aries dragonfly network with user access to a Lustre parallel file system with 10 PB of capacity and 210 GB/s bandwidth.

Each BG/Q node of Mira has 16 compute cores—one BG/Q PowerPC A2 1.6 GHz chip with the TDP of 55 W45 and shared L2 cache of 32 MB

and 16 GB of memory. The IBM BG/Q architecture features a quad floating-point unit that can be used to execute four-wide SIMD instructions

or two-wide complex arithmetic SIMD instructions. Mira uses a 5D torus network with user access to a GPFS file system.10 Each Haswell node of

TA B L E 1 Specifications of three different architectures

System name ANL Cray XC40 Theta ANL IBM BG/Q Mira SNL Linux Cluster Shepard

Architecture Intel KNL IBM BG/Q Intel Haswell

Number of nodes 4392 49,152 36

CPU cores per node 64 16 32

Sockets per node 1 1 2

CPU type and speed Xeon Phi KNL 7230 1.30 GHz PowerPC A2 1.6 GHz Xeon(R) E5-2698 V3 2.3 GHz

L1 cache per core D: 32 kB/I: 32 kB D: 16 kB/I: 16 kB D: 32 kB/I: 32 kB

L2 cache per socket 32 MB (shared) 32 MB (shared) 256 kB (per core)

L3 cache per socket None None 40 MB (shared)

Memory per node 16 GB/192 GB 16 GB 128 GB

Network Cray Aries Dragonfly 5D Torus Mellanox FDR InfiniBand

Power tools CapMC/PoLiMEr EMON/MonEQ PowerInsight

TDP per socket 215 W 55 W 135 W

File system Lustre PFS GPFS Regular NFS
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F I G U R E 2 Cache memory mode on Cray XC40 Theta

F I G U R E 3 Flat memory mode on Cray XC40 Theta

Shepard has 32 compute cores—two Xeon E5-2698 V3 2.3 GHz chips with the TDP of 135 W per chip and shared L3 cache of 40 MB and 128 GB of

memory. Shepard uses a Mellanox fourteen data rate InfiniBand network with a regular NFS file system.11

Several vendor-specific power management tools exist, such as Cray’s CapMC and out-of-band and in-band power monitoring capabilities,46

IBM EMON API on BG/Q,45 Intel RAPL,47 and NVIDIA’s power management library.48 In this work, we use simplified PoLiMEr49 to measure power

consumption for the node, CPU, and memory at the node level on Theta. PoLiMEr uses Cray’s CapMC to obtain power and energy measurements

of the node, CPU, and memory on Theta. The power sampling rate is approximately 2 samples per second (default). We also use EMON API-based

MonEQ50 to collect power profiling data on Mira. EMON API45 provides 7 power domains to measure the power consumption for the node, CPU,

memory, and network at the node-card level. Each node-card consists of 32 nodes. To obtain the power consumption at the node level, we calculate

the average power by dividing by 32. So we conduct our experiments on multiple node-cards to obtain the power-profiling data. The power sampling

rate is approximately 2 samples per second (default). We use PowerInsight51 to measure the power consumption for the node, CPU, memory, and

hard disk at the node level on Shepard. PowerInsight provides the measurement for 10 power rails for CPU, memory, disk, and motherboard on the

Intel Haswell system Shepard. The power sampling rate used is 1 sample per second (default).

4 MODELING AND PREDICTION USING MUMMI

In this section, we use the three codes ftla-rSC13, ftla, and la with matrix sizes from 6000 to 20,000 with a stride of 2000 and a block size of 100

to conduct our experiments with a maximum of error injections of 5 on Cray XC40 Theta, IBM BG/Q Mira, and Intel Haswell Shepard. We analyze

their performance and power characteristics, and use performance counter-based modeling tool MuMMI5,6 to model performance and power and

to predict theoretical outcomes for the potential optimizations.

We use MuMMI with support of PoLiMEr, MonEQ and PowerInsight to instrument these codes to collect performance data, power data, and

performance counters on Cray XC40 Theta with the Cray compiler (Intel compiler 18.0), IBM BG/Q Mira with IBM XL compiler 12.1, and Intel

Haswell Shepard with Intel compiler 16.1. We use the same default compiler options from the FTLA code ftla-rSC13 to compile the codes. For a

given application run, we execute the application 14 times on each system to ensure the consistency of the results while collecting different sets

of available performance counters for performance and power modeling. We found that the variation of the application runtime is very small (less

than 1%), so we use the performance metrics corresponding to the smallest runtime for our work. In the rest of this article, we use the formula

(prediction − baseline)∕baseline ∗ 100% to calculate the prediction error rate.

4.1 Cray XC40 Theta

Each Theta node9 has one Intel KNL with MCDRAM in addition to the traditional DDR4 RAM. MCDRAM can be configured as a shared last level

cache L3 (cache mode) or as a distinct NUMA node memory (flat mode). With the different memory modes by which the system can be booted, it

becomes a challenge from a software perspective to understand the best mode for an application. We use the codes la and ftla to investigate the

performance and power impacts under the cache or flat mode use of MCDRAM.
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Figure 4 presents the performance and power comparison of la using the two memory modes on Theta, where the terms with -flat stand for

using the flat mode and the terms without -flat stand for using the cache mode (default). The advantage of using MCDRAM as cache is that an

application may run entirely in MCDRAM so that the application performance may be improved significantly. We find that the application run-

time using the cache mode is almost half of the runtime using the flat mode on 64 cores because the application with the problem sizes fits into

the MCDRAM and MCDRAM has the bandwidth of 480 GB/s which is much higher than the DDR4 bandwidth of 90 GB/s. From this figure, we

also observe that the difference for both node power consumptions is small. The CPU power for using the cache mode is higher, but the memory

power for using the cache mode is much lower. Overall, using the cache mode results in lower energy consumption for these cases. We find the

same trend for the code ftla shown in Figure 5. Therefore, in the remainder of this section, we use the cache mode to conduct our experiments

on Theta.

Figure 6 presents a performance comparison of the three codes on Theta, where ftla-1 stands for the code ftla-rSC13 with one error injec-

tion. We observe a proportional increase in application runtime with increasing numbers of error injections on up to 1024 cores because of the

proportional increase in the number of error injections.

F I G U R E 4 Comparison for la on Theta

F I G U R E 5 Comparison for ftla on Theta
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F I G U R E 6 Performance comparison on Theta

F I G U R E 7 Power comparison on Theta

Figure 7 shows the average node power consumption on Theta. The node power consumption decreases with increasing numbers of cores

because of the strong scaling and dynamic power management support. Further, we compare power over time for the FTLA with one error injection

and five error injections on 1024 cores in Figure 8. We observe that the CPU power mainly affects the node power changes for both cases. Because

of the dynamic power management on Theta, during each matrix loop the power adjusts dynamically, the power increases with the increase in the

matrix size from 6000 to 20,000. The runtime mainly results in the large energy increase.

To develop accurate models of runtime and power consumptions for the code ftla-rSC13, we use the power and performance modeling tool

MuMMI from our previous work5,6 for the data collection. We collect 26 available performance counters on Theta with different system configu-

rations (numbers of cores: 64, 128, 256, 512, and 1024) and the number of error injections (1, 2, and 3) as a training set. We then use a Spearman

correlation and principal component analysis (PCA) to identify the major performance counters (r1, r2, … , rn(n ≪ 26)), which are highly correlated

with the metric: runtime, node power, CPU power, or memory power. Then we use a nonnegative multivariate regression analysis to generate four

models based on the small set of major counters and CPU frequency (f), as shown in Figure 9, where a numeric value is the coefficient for the counter

in the corresponding model; power_sys stands for node power model; power_cpu stands for CPU power model; and power_mem stands for memory

power model.

For the model of runtime T, we develop the following equation:

T = 𝛽0 + 𝛽1 ∗ r1 + 𝛽2 ∗ r2 + · · · + 𝛽n ∗ rn + 𝛽 ∗ 1
f
. (1)
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F I G U R E 8 Power over time on 1024 cores of Theta

F I G U R E 9 Four models on Theta

In this equation, T is the component predictor used to represent the value for runtime. The intercept is 𝛽0; each 𝛽i(i = 1,2, … , n) represents the

regression coefficient for performance counter ri, and 𝛽 represents the coefficient for the CPU frequency. Equation (1) can be used to predict the

runtime for the larger numbers of error injections (4 or 5 error injections).

Similarly, we can model CPU power consumption P using the following equation:

P = 𝛼0 + 𝛼1 ∗ r1 + 𝛼2 ∗ r2 + · · · + 𝛼n ∗ rn + 𝛼 ∗ f3
. (2)

In this equation, P is the component predictor used to represent the value for the CPU power. The intercept is 𝛼0; and each 𝛼i(i = 1,2, … , n)
represents the regression coefficient for performance counter ri, and 𝛼 represents the coefficient for the CPU frequency. Equation (2) can be used

to predict the CPU power on larger numbers of error injections. Similarly, a multivariate linear regression model is constructed for the other metrics

(node power, memory power).

Table 2 shows the prediction error rates for the runtime and power of the application with 4 and 5 error injections using Equations (1) and (2).

Overall, the prediction error rates (absolute values) are less than 3.3% in runtime. This indicates that our counter-based performance models are

very accurate. The prediction error rates are less than 8.9% in node power, less than 6.3% in CPU power, and less than 7.9% in memory power. These
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TA B L E 2 Prediction error rates on Theta

ftla-4 ftla-5

# cores Runtime Node power CPU power Memory power Runtime Node power CPU power Memory power

64 0.19% −3.66% −2.51% −5.97% −0.54% −3.88% −3.86% −0.82%

128 −2.1% −1.96% 0.16% −6.85% −3.21% −3.96% −2.71% −0.85%

256 0.75% 2.02% 3.13% −7.89% −1.32% −2.62% −3.07% −1.30%

512 −0.49% −1.86% −1.50% −6.24% 0.74% −3.63% −5.80% −7.03%

1024 −1.01% 2.85% 2.52% −3.86% −0.65% 8.89% 6.29% 7.74%

F I G U R E 10 Counter ranking on Theta

performance and power models are generated from different system configurations and problem sizes, thus providing a broader understanding of

the application’s usage of the underlying architectures. This in turn results in more knowledge about the application’s energy consumption on the

given architecture.

Based on the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for the

application. Figure 10 shows the performance counter rankings of the four models using 12 different counters. We found that the L2_DCM (Level

2 data cache misses) and TLB_DM (Data translation lookaside buffer misses) contribute most in the runtime model; L2_DCM and L1_TCM (Level 1

cache misses) contribute most in the node power; TLB_DM and L1_TCM contributes most in CPU power models; and L2_STM (Level 2 store misses)

contributes most in the memory power model. TLB_DM is correlated with L1_TCM. Therefore, the optimization efforts for the code should focus on

the components associated with L2_DCM, TLB_DM, and L2_STM on Theta. For instance, as shown in Figure 11, we use our what-if prediction system

based on the four model equations to predict the theoretical outcomes of the possible application optimization by reducing L2_DCM by 30%, the

other counters may be changed based on the pairwise correlation with this counter. The theoretical improvement percentage is 2.99% in runtime,

10.08% in node power, 7.44% in CPU power, and 7.10% in memory power. Theta supports several huge page sizes ranging from 2 MB to 2 GB with

the default page size of 4 kB. In order to reduce the TLB miss (TLB_DM), the main kernel address space is mapped with huge pages—a single 2 MB

huge page requires only a single TLB entry, while the same memory, in 4 kB pages, would need 512 TLB entries. Using the huge pages will result in

the application performance improvement.

4.2 IBM Blue Gene/Q Mira

On Mira, the EMON API provides the power measurement at a node-card level, so we conduct our experiments on 512 cores (one node card), 1024,

2048, 4096, 8192, and 16,384 cores. To develop accurate models for runtime and power consumptions on Mira, we collect 40 available performance
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F I G U R E 11 Theoretical prediction on Theta

F I G U R E 12 Four models on Mira

counters with different system configurations (numbers of cores: 512, 1024, 2048, 4096, 8192, and 16,384) and the number of error injections (1,

2, and 3) as a training set. We then use MuMMI to generate four models based on the small set of major counters and CPU frequency (f), as shown

in Figure 12, where a numeric value is the coefficient for the counter in the corresponding model.

Table 3 shows the prediction error rates for the runtime and power of the application with 4 and 5 error injections using Equations (1) and

(2). Overall, the prediction error rates in runtime are less than 0.1%. This indicates that our counter-based performance models are accurate. The

prediction error rates are less than 5% in node power and less than 8.7% in CPU power; and the error rates are less than 10% in memory power for

most cases except 15.30% for ftla-4 on 2048 cores.

Based on the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters. Figure 13

shows the performance counter rankings of the four models using 9 different counters. We find that the BR_MSP (conditional branch instructions

mispredicted) contributes most in the runtime model and is correlated with the counters SR_INS (Store instructions), BR_TKN (Conditional branch

instructions taken), FP_INS (floating-point instructions), and RES_STL (Cycles stalled on any resource); VEC_INS (Vector/SIMD instructions (could

include integer)) contributes most in the node power and CPU power models; and FML_INS (floating-point multiply instructions) contributes most

in the memory power model. VEC_INS and FML_INS are not correlated with any other counters. Therefore, the optimization efforts for the code

should focus on the components associated with BR_MSP, VEC_INS, and FML_INS on Mira. For instance, Mira features a quad floating-point unit

that can be used to execute four-wide SIMD instructions or two-wide complex arithmetic SIMD instructions. In order to take advantage of vector

instructions supported by BG/Q processors, the compiler options -qarch-qp and -qsimd=auto may be applied to compile the code to improve the

energy efficiency. For instance, as shown in Figure 14, we use our what-if prediction system based on the four model equations to predict the theo-

retical outcomes of the possible optimization. By accelerating VEC_INS by 30%, the theoretical improvement percentage is 0.15% in runtime, 1.29%

in node power, 2.49% in CPU power, and 1.79% in memory power.
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TA B L E 3 Prediction error rates on Mira

ftla-4 ftla-5

# cores Runtime Node power CPU power Memory power Runtime Node power CPU power Memory power

512 0.009% 4.11% 3.19% 9.82% 0.009% −3.40% −3.65% −9.00%

1024 0.018% 3.65% 8.64% −6.18% 0.020% −3.43% −3.37% −5.34%

2048 0.046% 3.23% 1.92% 15.30% 0.049% 0.05% 3.77% 6.95%

4096 0.035% 1.40% 3.98% −7.12% 0.041% −4.01% −4.77% −3.49%

8192 −0.021% −0.50% −0.12% −5.71% −0.043% −1.89% −2.44% −4.13%

16,384 0.076% 2.45% 5.52% −9.62% −0.086% 0.97% 3.03% −6.36%

F I G U R E 13 Counter ranking on Mira

F I G U R E 14 Theoretical prediction on Mira
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4.3 Intel Haswell Shepard

To develop accurate models for runtime and power consumptions on Shepard, we collect 32 available performance counters for different system

configurations (numbers of cores: 32, 64, 128, 256, 512, and 1024) and the number of error injections (1, 2, and 3) as the training dataset, and we

use MuMMI to generate the four models based on the small set of major counters and CPU frequency (f), as shown in Figure 15.

Table 4 shows the prediction error rates for the runtime and power of the application with 4 and 5 error injections using Equations 1 and 2.

Overall, the prediction error rates (absolute values) are less than 0.25% for runtime. These results indicate that our counter-based performance

models are accurate. The prediction error rates are less than 7.3% in node power, and less than 6.6% in CPU power; and the prediction error rates

in memory power are less than 7.46% for most cases except 16.57% for ftla-4 and 12.88% for ftla-5 on 256 cores.

Based on the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters. Figure 16

shows the performance counter rankings of the four models using 13 different counters. We found that the L2_ICM (Level 2 instruction cache misses)

and L1_DCM (Level 1 data cache misses) contribute most in the runtime model; L2_TCM (Level 2 cache misses) and L1_ICM (Level 1 instruction cache

misses) contribute most in the node power; L2_TCM and L1_TCM contributes most in CPU power models; and L2_TCM and L1_ICM contribute most

in memory power model. L2_ICM is correlated with L1_TCM, and L2_TCM is correlated with L1_ICM. Therefore, the optimization efforts for the code

should focus on the components associated with L2 and L1 caches on Shepard. For instance, as shown in Figure 17, we use our what-if prediction

system based on the four model equations to predict the theoretical outcomes of the possible application optimization by reducing L2_TCM by

30%, the other counters may be changed based on the correlation with this counter. The theoretical improvement percentage is−0.02% in runtime,

7.02% in node power, 6.79% in CPU power, and 14% in memory power. For instance, loop optimization methods such as loop blocking and unrolling

may help improve the cache locality.

F I G U R E 15 Four models on Shepard

TA B L E 4 Prediction error rates on Shepard

ftla-4 ftla-5

# cores Runtime Node power CPU power Memory power Runtime Node power CPU power Memory power

32 −0.05% 7.25% 6.57% 7.45% −0.04% 1.64% 2.24% 4.08%

64 0.06% −3.07% −2.91% −6.05% 0.09% −4.88% −4.99% −5.72%

128 0.05% −0.48% −0.82% 0.10% −0.10% −1.71% −0.44% 0.92%

256 0.02% 2.21% 0.58% 16.57% 0.12% 3.12% 2.21% 12.88%

512 −0.04% −0.27% −0.74% 6.42% 0.02% −0.71% −1.27% −1.87%

1024 0.19% −0.99% −2.18% 5.30% 0.24% −1.21% −1.58% −1.58%
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F I G U R E 16 Counter ranking on Shepard

F I G U R E 17 Theoretical prediction on Shepard

4.4 Summary

Table 5 summarizes the top performance counters for each model using MuMMI on the three systems. For the same FTLA application, we observe

that different architectures really impacts the application performance and power consumption distinctly. Both Theta and Shepard have Intel archi-

tectures such as Intel KNL for Theta and Intel Haswell for Shepard. The top performance counters in performance and power models mainly are

related to L2 cache activities except the top performance counter TLB_DM in CPU power model for Theta. Mira has the IBM BlueGene/Q archi-

tecture which features a quad floating-point unit that can be used to execute four-wide SIMD instructions or two-wide complex arithmetic SIMD

TA B L E 5 Top performance counters for each model using MuMMI on three systems

System Runtime model Node power model CPU power model Memory power model

Theta L2_DCM L2_DCM TLB_DM L2_STM

Mira BR_MSP VEC_INS VEC_INS FML_INS

Shepard L2_ICM L2_TCM L2_TCM L2_TCM
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instructions. Its top performance counters are BR_MSP, VEC_INS, and FML_INS that are mainly related to the quad floating-point unit. Therefore, for

the potential optimizations of the same application on different architectures, it needs to seriously consider how well the application characteristics

fit into the underlying architectures for efficient execution based on the insights from the most important performance counters.

5 MODELING AND PREDICTION USING 10 ML METHODS

In this section, we use 10 popular ML methods from the R caret package7,8 to model and predict performance and power of FTLA and HDC. Our

methodology is as follows. First, we use the datasets for FTLA or HDC as input to split the data into the training and test datasets based on the

80/20% rule, and find out what the training and test datasets are by setting the seed 3456 of R’s random number generator set.seed() so that creating

the random objects can be reproduced. Second, we apply the same training and test datasets to the 10 ML methods. Third, we use the same training

and test datasets to build the performance and power models using MuMMI online. Finally, we compare the prediction error rates for these methods

using violin plot from R violin package52 which is a combination of a box plot and a kernel density plot to visualize the distribution of the prediction

error rates.

The 10 popular ML methods from R caret package cover tree/rule-based, nonlinear and linear ML methods, and they are RF,12 GP with radial

basis function,13 xGB,14 SGB,15 Cub,16 RR,17 kNN,7 SVM with linear kernel,13 CIT,18 and MAR.19

RF12 for regression or classification based on a forest of trees using random inputs, which was constructed in Reference 53 as a tree-based

model. An RF model achieves the variance reduction by selecting strong, complex learners that exhibit low bias. This ensemble of many independent,

strong learners yields an improvement in error rates.

GP54 with radial basis function,13 which is based on the prior assumption that adjacent observations should convey information about each

other. It is assumed that the observed variables are normal, and that the coupling between them takes place by means of the covariance matrix of

a normal distribution. Using the kernel matrix as the covariance matrix is a convenient way of extending Bayesian modeling of linear estimators to

nonlinear situations.

xGB,14 which is an efficient implementation of the gradient boosting framework in Reference 55. It provides a sparsity aware algorithm for

handling sparse data and a theoretically justified weighted quantile sketch for approximate learning.

SGB,15 which is an implementation of extensions to AdaBoost algorithm56 and gradient boosting machine.57 It includes regression methods for

least squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood,

AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures.

Cub,16 which is a regression modeling using rules with added instance-based corrections that combines the ideas in References 58 and 59. A

Cub regression model is to fit for each rule based on the data subset defined by the rules. The set of rules are pruned or possibly combined, and the

candidate variables for the linear regression models are the predictors that were used in the parts of the rule that were pruned away.

RR,17,60 which adds a penalty on the sum of the squared regression parameters to create biased regression models. It reduces the impact of

collinearity on model parameters. Combatting collinearity by using biased models may result in regression models where the overall mean squared

error is competitive.

kNN,7 which imply predicts a new sample using the k-closest samples from the training set. To predict a new sample for regression, It identifies

that sample’s kNN in the predictor space. The predicted response for the new sample is then the mean of the k neighbors’ responses.

SVM with linear kernel,13 which is the kernlab’s implementation of SVMs.61 It chooses a linear function in the feature space by optimizing some

criterion over the sample.

CIT,18 which embeds tree-structured regression models into a well-defined theory of conditional inference procedures. This nonparametric

class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate

response variables and arbitrary measurement scales of the covariates.

MAR,19 which builds a regression model using the techniques in Reference 62. It is a form of regression analysis that is an extension to linear

regression that captures nonlinearities and interactions between variables.

5.1 FTLA

For FTLA with the fixed problem size (matrix sizes from 6000 to 20,000 with a stride of 2000 and a block size of 100, strong scaling), we ran the FTLA

with five numbers of error injections (1, 2, 3, 4, and 5) on six different numbers of cores (32, 64, 128, 256, 512, and 1024) with five CPU frequency

settings (1.2, 1.5, 1.8, 2.1, and 2.3 GHz) to collect the total 144 data samples on Shepard. Each data sample includes 53 variables such as application

name, system name, number of cores, matrix sizes, stride size, block size, number of error injections, CPU frequency, 32 available performance

counters, runtime, system power, CPU power, memory power, and so on. The 32 performance counters are TOT_CYC, TOT_INS, L1_TCM, L2_TCM,

L3_TCM, CA_SHR, BR_CN, BR_TKN, BR_NTK, BR_MSP, CA_CLN, CA_ITV, RES_STL, L2_TCA, L1_STM, L2_TCW, L1_LDM, L2_DCA, L2_DCR, L2_DCW,
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L1_ICM, BR_INS, L1_DCM, L2_ICA, TLB_DM, TLB_IM, L2_DCM, L2_ICM, LD_INS, SR_INS, L2_LDM, L2_STM, then TOT_CYC is used to normalize all

the performance counters. The metrics for performance and power are runtime, node power, CPU power and memory power. We split the data as

training and test datasets with the 80/20% rule so that the training dataset consists of 116 samples, and the test dataset consists of 28 samples. For

the fair comparison, we apply the same training and test datasets to all modeling methods.

For the sake of simplicity, we use ML methods to model the performance (runtime) and node power only in this section. Figure 18 shows the

performance prediction error rates using 10 ML methods and MuMMI. These violin plots visualize the distribution of the prediction error rates for

each method. For MuMMI (MuM), the prediction error rates are between−0.41% and 0.37% in runtime. We observe that Cub and xGB resulted in

the lowest error rates in runtime among 10 ML methods, and for other ML methods, the maximum error rates are more than 50%. Overall, MuMMI

outperformed all ML methods in performance prediction.

Figure 19 shows the node power prediction error rates using MuMMI and 10 ML methods. For MuMMI (MuM), the prediction error rates

are between −6.31% and 6.06% in node power. MAR, Cub and xGB resulted in the lowest error rates in node power among 10 ML methods and

outperformed MuMMI. Because the runtime of the strong scaling FTLA had decreased significantly with the increased number of cores, but the

average node power had decreased a little bit, when we used the datasets to build performance counter-based model for the runtime or the node

power using 10 ML methods, the only difference is from the object metric (runtime or node power). This is mainly why 10 ML methods performed

much better for power prediction than for performance prediction.

For the sake of simplicity, we choose four ML methods: Cub, xGB, RF, and MAR to do an in-depth analysis in performance and power modeling

and prediction. For Cub, the prediction error rates are between−45.75% and 27.88% in runtime, and between−3.78% and 3.61% in node power. The

performance model under-predicted for most cases. Let’s look at how the variables contribute in performance and node power models. To measure

predictor importance for Cub models,7 we can enumerate how many times a predictor variable was used in either a linear model or a split and use

these tabulations to get a rough idea the impact each predictor has on the model. Figure 20 shows the important predictors for performance model

of FTLA, where the x-axis is the total usage of the predictor (i.e., the number of times it was used in a split or a linear model). The larger the importance

value, the more important the predictor is in relating the latent predictor structure to the response. Very small importance values are likely not

considered to contain predictive information for the response and should be considered as candidates for removal from the model. Figure 21 shows

the important predictors for node power model of FTLA. We observe that the top 3 counters in performance model are L2_DCA, TLB_DM, and

L2_DCR; the top 3 counters in power model are L2_TCM, L2_ICA, and L2_LDM. Overall, L2 cache and TLB mainly impact the performance and power

F I G U R E 18 Prediction error rates (runtime) for FTLA
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F I G U R E 19 Prediction error rates (node power) for FTLA

F I G U R E 20 Variable importance for performance model
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F I G U R E 21 Variable importance for node power model

models using Cub, however, it is interesting to observe that the top 3 counters in performance model are in the bottom of the counter list in power

model, and the top 3 counters in power model are also in the bottom of the counter list in performance model.

For xGB, the prediction error rates are between −33.35% and 44.38% in runtime, and between −5.71% and 2.85% in node power. Variable

importance for the boosting method is a function of the reduction in squared error. Figure 22 shows the important predictors for performance model

of FTLA. Figure 23 shows the variable importance for node power model of FTLA. We observe that the top 3 counters in performance model are

TLB_DM, L2_TCW, and L2_DCA; the top 3 counters in power model are L2_TCM, L1_STM, and LD_INS. Overall, TLB, L2 cache and L1 cache mainly

impact the performance and power models using xGB. Similarly, we observe that the top 3 counters in performance model are in the bottom of the

counter list in power model, and the top 3 counters in power model are also in the bottom of the counter list in performance model. Contrasting

the importance results to Cub in Figures 20 and 21, we see that 2 of the top 5 counters are the same (L2_DCA and TLB_DM in performance model;

L2_TCM and L1_STM in power model), however, the importance orderings are much different.

For RF, the prediction error rates are between−56.15% and 71.97% in runtime, and between−9.09% and 5.46% in node power. Figure 24 shows

the variable importance for performance model of FTLA. Figure 25 shows the variable importance for node power model of FTLA. We observe that

the top 3 counters in performance model are L2_DCA, TLB_DM, and L1_ICM; the top 3 counters in power model are L2_TCM, L1_STM, and L2_STM.

Overall, L2 cache, TLB, and L1 cache mainly impact the performance and power models using RF, however, it is interesting to observe that the top 3

counters in performance model are in the bottom of the counter list in power model, and the top 3 counters in power model are also in the bottom

of the counter list in performance model. The variable importance in RF models is similar to that in Cub models, albeit in different order, because

both are tree/rule-based models.

The prediction error rates using MAR are between−56.15% and 71.97% in runtime, and between−9.09% and 5.46% in node power. Figure 26

shows the variable importance with only 10 counters used in performance model of FTLA. Figure 27 shows the variable importance with only 4

counters used in node power model of FTLA. We observe that the top 3 counters in performance model are TLB_DM, L1_ICM, and RES_STL; the top

3 counters in power model are L2_TCM, BR_CN, and BR_NTK. Overall, TLB and L2 cache mainly impact the performance and power models using

MAR.

Overall, Table 6 summarizes the top performance counters for each model for FTLA using the four ML methods. For the four ML methods, we

find that L2_DCA or TLB_DM are one of the dominant factors in performance models, and L2_TCM is the dominant factor in power models. This
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F I G U R E 22 Variable importance for performance model

F I G U R E 23 Variable importance for node power model
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F I G U R E 24 Variable importance for performance model

F I G U R E 25 Variable importance for node power model
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F I G U R E 26 Variable importance for performance model

F I G U R E 27 Variable importance for node power model
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TA B L E 6 Top performance counters for each model using ML methods for FTLA

ML method Runtime model Node power model

Cubist L2_DCA L2_TCM

Extreme gradient boosting TLB_DM L2_TCM

Random forests L2_DCA L2_TCM

Multivariate adaptive regression spline TLB_DM L2_TCM

indicates that MuMMI and the ML methods identify the same important performance counter in the power models. MuMMI requires the small

amount of data, but the ML methods requires large amount of data for high prediction accuracy. Given the datasets for FTLA, the 10 ML models have

been fit to the same datasets. Since the ML methods have their own way of learning the relationship between the predictors and the target object

and provide different variable importance, it is not easy to identify which ML provides the robust variable importance.

5.2 HDC

For HDC with the checkpointing file size of 2 MB per MPI process (weak scaling), we ran the HDC with 10 different four-levels checkpointing con-

figurations on eight distinct numbers of cores (32, 64, 128, 256, 512, 640, 960, and 1024) with the CPU frequency of 2.3 GHz to collect the total 80

data samples. Each data sample includes 54 variables such as application name, system name, number of cores, number of iterations, checkpointing

file size, Level 1 checkpoint, Level 2 checkpoint, Level 3 checkpoint, Level 4 checkpoint, CPU frequency, 32 available performance counters, run-

time, system power, CPU power, memory power, and so on. We split the data as training and test datasets with the 80/20% rule so that the training

dataset consists of 64 samples, and the test dataset consists of 16 samples. For the fair comparison, we apply the same training and test datasets to

all modeling methods.

Figure 28 shows the performance prediction error rates using the 10 ML methods and MuMMI. For MuMMI (MuM), the prediction error rates

are between −9.07% and 3.60% in runtime. We observe that xGB resulted in the lowest error rates (between −6.57% and 5.40%) in performance

F I G U R E 28 Prediction error rates (runtime) for HDC
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F I G U R E 29 Prediction error rates (node power) for HDC

models among the 10 ML methods and outperformed MuMMI, and for other ML methods, the maximum error rates are more than 11%. Therefore,

MuMMI outperformed the ML methods in performance prediction except xGB.

Figure 29 shows the node power prediction error rates using MuMMI and the 10 ML methods. For MuMMI (MuM), the prediction error rates

are between −5.07% and 6.56% in node power. We observe that all these error rates are between −9% and 9%. kNN, xGB, GP, and RR resulted

in the lowest error rates in node power among the 10 ML methods and outperformed MuMMI. Because the runtime of the weak scaling HDC

had increased with the increased number of cores because of the increased communication overhead, and the average node power had decreased

slightly. When we used the datasets to build performance counter-based model for the runtime or the node power using the 10 ML methods, the

only difference is from the object metric (runtime or node power). This is mainly why 10 ML methods performed much better for power prediction

than for performance prediction.

The prediction error rates using xGB are between −6.57% and 5.40% in runtime, and between −4.17% and 5.72% in node power.

Figure 30 shows the variable importance for performance model of HDC. Figure 31 shows the variable importance for node power model

of HDC. We observe that the top 3 counters in performance model are BR_INS, TLB_DM, and L2_TCW; the top 3 counters in power

model are CA_ITV, L1_TCM, and L2_TCW. It is interesting to observe that the top counter BR_INS in performance model is in the bottom

of the counter list in power model, and the top counter CA_ITV in power model is also in the bottom of the counter list in performance

model.

The prediction error rates using kNN are between −15.11% and 17.98% in runtime, and between −4.47% and 4.43% in node power.

Figure 32 shows the variable importance for performance model of HDC. Figure 33 shows the variable importance for node power model

of HDC. We observe that the top 3 counters in performance model are L2_DCR, L2_DCA, and TLB_DM; the top 3 counters in power model

are TLB_IM, BR_CN, and L2_DCR. Contrasting the importance results to xGB in Figures 30and 31, we see that 4 of the top 5 counters

are the same in performance model and only 1 of the top 5 counters is the same in power model, and the importance orderings are much

different.

Overall, Table 7 summarizes the top performance counters for each model for HDC using the ML methods xGB and kNN. These top performance

counters for performance and power models are different. Given the datasets for HDC, the 10 ML models have been fit to the same datasets, how-

ever, the ML methods have their own way of learning the relationship between the predictors and the object metric and provide different variable

importance, thus it is not easy to identify which ML provides the robust variable importance.
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F I G U R E 30 Variable importance for performance model

F I G U R E 31 Variable importance for node power model
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F I G U R E 32 Variable importance for performance model

F I G U R E 33 Variable importance for node power model



24 of 26 WU ET AL.

TA B L E 7 Top performance counters for each model using ML methods for HDC

ML method Runtime model Node power model

Extreme gradient boosting BR_INS CA_ITV

k-Nearest neighbors L2_DCR TLB_IM

6 CONCLUSIONS

We used MuMMI and the 10 ML methods to model, predict and compare the performance and power of the strong scaling FTLA and the weak scaling

HDC. Our experiment results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. Based

on the performance counters of these models, we identified the most significant performance counters for potential optimization efforts associated

with the application characteristics on these systems, and we used our what-if prediction system to predict the theoretical performance and power

of a possible application optimization. These performance and power models were generated from different system configurations and problem

sizes, thus providing a broader understanding of the application’s usage of the underlying architectures. This in turn resulted in more knowledge

about the application’s energy consumption on a given architecture.

When we compared the prediction accuracy using MuMMI with that using the 10 ML methods, we observe that MuMMI outperformed these

ML methods in performance prediction except one case which the xGB outperformed MuMMI for the application HDC, however, in power predic-

tion, only three or four ML methods outperformed MuMMI. The 10 ML methods performed much better for the weak scaling HDC than the strong

scaling FTLA because of the much smaller difference in the runtime and node power in the datasets of HDC. As we illustrated that the 10 ML meth-

ods had their own way of learning the relationship between the predictors and the target object metric and provide different variable importance, it

is not easy to identify which ML provides the robust variable importance for potential application improvements. To address the issue in our future

work, we plan to utilize ensemble learning to combine several ML methods to result in more accurate models and provide the robust variable impor-

tance for the latent improvements as shown in Reference 63. Overall, performance and power modeling tools like MuMMI and some ML methods

are able to aid in application optimizations for energy efficiency, power or energy-aware job schedulers, and system performance and power tun-

ing. The methodology presented in this article can be applied to large scale scientific applications6 and deep learning applications64 on other HPC

systems.
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