
 1

Failure-Aware Resource Selection for Grid Computing

Zhiling Lan and Yawei Li

Department of Computer Science

Illinois Institute of Technology, Chicago, IL 60616

{lan, liyawei}@iit.edu

1. Introduction

Over the past decade, grid computing has been

rapidly becoming a promising model for high-

throughput computing, distirbuted supercomputing,

and data-intensive computing [11]. Grid is defined as a

hardware and software infrastructure that enables

coordinated resource sharing within dynamic

organizations. While Grids bring unprecedented

computing power for users, how to efficiently utilize

their enormous power remains a challenging problem.

In particular, job scheduling has been actively studied

in the field of grid computing. Generally, job

scheduling in Grids is handled in a hierarchical manner:

global scheduling to select suitable machines or sites

(denoted as resource selection or site selection), and

local scheduling to choose appropriate nodes at a site.

Therefore, how to select an optimal resource for a

given job among heterogeneous and dynamical sharing

resources is of critical importance for grid computing.

There are many research efforts on addressing the

resource selection issue for grid computing. Globus is

a well-known grid infrastructure, which provides a

number of services for remote job invocation and

management. However, it does not specify any policies

for optimal resource selection and users are supposed

to specify resources through the RSL language [1].

Broadly speaking, the optimal resource selection

problem is addressed by either embedding application-

specific information in the selection module, or

targeting particular classes of applications, or utilizing

load- or performance-based selection policies [8,9,10].

Grids are more pront to failures than traditional

parallel machines as there are potentially thousands of

resources that are heterogeneous and sharing among

various applications [4]. Several research works have

been proposed on fault management for grid

computing [4,5,10], which mainly deal with failures

through job migration or rescheduling after the job

allocation phase. To date, little work has been done on

addressing the reliability issue during resource

selection.

In this paper, we propose a resource selection

framework that is intended to identify an optimal

resource for a given application by considering the

reliability characteristics of available resources. In

contrast to the existing fault tolerance practice in grid

computing, the proposed work emphasizes on choosing

an optimal resource by considering reliability, fault

tolerant mechanism, and processor performance of

available resources during the phase of resource

selection. The rationale behind is that an intelligent

resource selection could save tramendous overhead

that may be introduced by job migration or

rescheduling after job allocation. The proposed

framwork can be easily integrated with existing grid

infrastructure and failure-aware resource management

systems.

2. Failure-Aware Resource Selection

2.1. System Architecture
A block diagram of the proposed failure-aware

resource selection framework is illustrated in Figure 1.

We assume that each site contains a cluster that is

homogeneous, but clusters at different sites may be

heterogeneous.

• A user submits an application with specified

requirements to the resource selector. The

requirements include the number of processors

required and the estimated execution time on a

base machine.

• The resource discovery service, e.g. the Globus

MDS (Monitoring and Discovery Service)

provides the basic mechanism for discovering and

disseminating information about the structure and

state of Grid resources.

• The performance service and the reliability service

maintain historical information of performance

and reliability data of resources. The information

includes relative processor speed per site, average

queue wait time per site, failure history, and fault

tolerant mechanism adopted per site.

• The resource selector is responsible for choosing

the optimal resource that can provide the minimal

completion time for a given application,

considering the reliability characteristics of

available resources. The result will then be

forwarded to the resource allocation service.

• The resource allocation service, e.g. the Globus

GRAM (Grid Resource Allocation and

Management), supports remote submission of the

application to remote resources, and subsequently

monitoring and control the resulting computation.

 2

Figure 1. Failure-Aware Resource Selection

2.2. Selection Policy
When a user request arrives, the failure-aware

resource selector is responsible for choosing a site that

can provide the minimum expected job completion

time:])[(min1

completion

iNi TE
≤≤

 where N is the number of

available sites.

Job completion time consist of two parts: queue-

wait time queue

iT and execution time exec

iT . queue

iT is

estimated as the average queue wait time at a site,

while exec

iT depends on many factors, including

processor speed, reliability characteristics, and

associated fault tolerance mechanism at a site.

Historical data maintained by the performance and

reliability service is used to calculate these values.

Based on the analytical models proposed in [7], we

calculate expected execution time at a site as below:

• If site i does not provide any fault tolerance

support, then the expected job execution time at

site i is calculated by the following equation:

i; site at downtime average the is

i; site at failure of CDF the is

);
T

(i site at time execution job free-fault the is

machine; base the to relatived i, site of eperformanc node the is

machine; base a on time exec. job estimated the is

d

i

i

i

free

i

i

free

ii

T

i

free

ii

free

ii

d

ifree

i

exec

i

C

)(F

T

ρ

T

where

)(TF

(t)tdF

)(TF

)(TFC
T]E[T

free
i

⋅

=

++=

∫

ρ

)1(0

• If site i provides periodic checkpointing

mechanism, then the expected job execution time

can be calculated as below:

)2()]())1(([)(

)()()()(

1

1

0

iiii

N

k

i

exec

i

T

i

free

ii

d

i

free

ii

free

iiii

exec

i

kFkF]kNE[T

ttdFTFCTFT)(τF]NE[T

i

free
i

ττ −+−+

++=

∑

∫
−

=

);

);

i

free

i

i

cp

ii

free

i

i

cp

i

N

T

CNT

N

C

where

=

+=

(i site at intervalpriodic the is

T
(i site at time exec. job free-fault the is

i; site at job the for scheckpoint of number the is

i; site at cost ingcheckpoint the is

i

τ

ρ

3. On-going and Future Work
Currently, we are conducting trace-based

simulations to evaluate the proposed work. Failure logs

and job logs collected from various production systems

are used.

Our future work includes integrating the proposed

failure-aware resource selection with existing resource

management systems and test on production Grid

systems, such as the TeraGrid.

Reference
[1] The Globus Project. http://www.globus.org

[2] C. Liu, L. Yang et al., “Design and Evaluation of a

Resource Selection Framework for Grid Applications”,

Proc. of HPDC’02, 2002.

[3] B. Lee and J. Weissman, “Adaptive Resource

Selection for Grid-Enabled Network Services”, Proc.

of NCA’03, 2003.

[4] R. Medeiros, W. Cirne, et al., “Faults in Grids:

Why are they so bad and What can be done about it”,

Proc. of Intl. Workshop on Grid Computing, 2003.

[5] L. Burchard, C. De Rose, et al., “VRM: A Failure-

Aware Grid Resource Management System”, Proc. of

International Symposium on Computer Architecture

and High Performance Computing, 2005.

[6] J. Frey, T. Tannenbaum, et al., “Condor-G: A

Computation Management Agent for Multi-

Institutional Grids”, Proc. of HPDC’01, 2001.

[7] Sachin Garg, Yennun Huang, et al., “Minimizing

Completion Time of a Program by Checkpointing and

Rejuvenation”, SIGMETRICS 1996.

[8] Seung-Hye Jang, Valerie Taylor, et al.,

“Performance Prediction-based versus Load-based Site

Selection: Quantifying the Difference”, Proc. of

PDCS-2005, Las Vegas, Nevada, 2005.

[9] F. Berman and R. Wolski, “The AppLeS Project:

A Status Report”, Proc. of the 8
th

 NEC Research

Symposium, Germany, 1997.

[10] H. Casanova and J. Dongarra, “NetSolve: A

Network-Enabled Server for Solving Computational

Science Problems”, The International Journal of

Supercomputer Applications and High Performance

Computing, 1193: 212-223, 1997.

[11] I. Foster and C. Kesselman, “The Grid: Blueprint

for a New Computing Infrastructure”, Morgan

Kaufmann, 2004.

