
System Log Pre-processing to Improve Failure Prediction

Ziming Zheng, Zhiling Lan
Illinois Institute of Technology

{zzheng11, lan}@iit.edu

Byung H. Park, Al Geist
Oak Ridge National Laboratory

{parkbh, gst}@ornl.gov

Abstract

Log preprocessing, a process applied on the raw log be-
fore applying a predictive method, is of paramount impor-
tance to failure prediction and diagnosis. While existing fil-
tering methods have demonstrated good compression rate,
they fail to preserve important failure patterns that are cru-
cial for failure analysis. To address the problem, in this
paper we present a log preprocessing method. It consists
of three integrated steps: (1) event categorization to uni-
formly classify system events and identify fatal events; (2)
event filtering to remove temporal and spatial redundant
records, while also preserving necessary failure patterns
for failure analysis; (3) causality-related filtering to com-
bine correlated events for filtering through apriori associ-
ation rule mining. We demonstrate the effectiveness of our
preprocessing method by using real failure logs collected
from the Cray XT4 at ORNL and the Blue Gene/L system
at SDSC. Experiments show that our method can preserve
more failure patterns for failure analysis, thereby improv-
ing failure prediction by up to174%.

Keywords: log preprocessing, event categorization,
event filtering, Cray XT4, IBM Blue Gene/L

1. Introduction

Fueled by the ever-growing scale and complexity of
computer systems, failures become ongoing facts of life to
be dealt with in large-scale systems. Recent studies have
shown that in production systems, failure rates are as high
as more than 1000 per year, and depending on root cause
of the problem, the average failure repair time ranges from
a couple of hours to nearly 100 hours [6].

Recognizing the dramatic impact of failures on system
productivity, an increasing attention has been paid to fail-
ure prediction and a variety of predictive methods have
been presented in the recent years [5, 4, 17]. System logs
provide a rich source of information for failure prediction.
Unfortunately, system logs cannot be directly used by vari-
ous prediction technologies due to the fact that they gener-
ally contain too many redundant information and are often
unstructured for data analysis. In this paper, we presenta

log preprocessing methodology to improve failure predic-
tion. Preprocessing is a process applied on the raw log be-
fore applying a prediction method. Log preprocessing not
only cleans and formalizes the training data for discovering
failure patterns, but also extracts necessary events for fail-
ure forecasting.The goal of this studyis to provide an ef-
fective preprocessing methodology to distill system events
for better failure prediction in large-scale systems such as
high-end supercomputers [9].

Despite the crucial role of log preprocessing, existing
preprocessing techniques are often ad hoc and mainly con-
centrate on compression rate. Temporal and spatial filtering
are commonly used to remove redundant records in system
logs [2]. While these preprocessing techniques have high
compression rate, e.g., up to99.96%, they suffer from three
major drawbacks. First, they might remove important fail-
ure patterns, namely a long stream of warnings preceding
the failure. As will be shown later, such a pattern embeds
invaluable information for failure analysis. Second, when
an event occurs across multiple locations, spatial filtering
removes this trace of events. Since spatial filtering often
keeps one event, this event may contain a location which
is different from the source of failure. Thus it might lead
to wrong analysis. Third, they ignore the fact that a failure
may be reported from multiple subsystems characterizing
different aspects of the failure. While these records may
have different syntax, they are causally related. Prepro-
cessing these records independently could lead to wrong
results.

To address the above issues, in this study we present
a log preprocessing method which contains three tightly-
coupled steps:

1. Event Categorization.Regular expression technology
is adopted to classify various events into a hierarchical
set of event categories.

2. Event Filtering. An improved temporal and spa-
tial filtering method is proposed to remove redun-
dant records. Different from existing filtering meth-
ods [1, 2], our filtering method keeps track of event
start and the end times, event count, and event loca-
tion. This addresses the first and the second issues
listed above.



3. Causality-related Filtering.Apriori association rules
are adopted to track causal correlations among events.
Rather than performing filtering on causally-related
events independently, we suggest to combine corre-
lated events for filtering. This helps to preserve failure
patterns for better data analysis, which addresses the
third issue listed above.

We demonstrate the effectiveness of our preprocess-
ing methodology by means of system logs collected from
two production systems, i.e., the Cray XT4 system at Oak
Ridge National Laboratory (ORNL) and the Blue Gene/L
system at San Diego Supercomputing Center (SDSC). Ex-
periments show that it can effectively preserve failure pat-
terns and consequently improve failure prediction by up to
174%, with a compression rate of more than90%.

2 Background

The Cray XT4 at ORNL, namedJaguar, is ranked #5
on the TOP500 supercomputer list (June, 2008) [9]. It has
7, 832 XT4 compute nodes, in addition to I/O and login
service nodes. Each compute node contains a quad-core
2.1 GHz AMD Opteron processor and 8GB of memory.
Aggregated system performance is approximately 263 ter-
aflops. Approximately 600 terabytes are available in the
scratch file systems. Each node is connected to a Cray
SeaStar router through HyperTransport, and the SeaStars
are all interconnected in a 3-D-torus topology. More de-
tailed documents of the system architecture can be found
in [7]. An example of event record from the system RAS
log is shown in Table 1. RAS events are collected at a gran-
ularity of one second. Each record consists of five fields.
CRMS event type indicates the high-level category of the
events. BothSRCandSVCare about the source of the prob-
lem. The SVC usually provides more detailed information.
The entry field provides a description of the event.

The Blue Gene/L system at SDSC consists of three
racks, with a total of 3,072 compute nodes and 384 I/O
nodes. Each compute node consists of two 700 MHz Pow-
erPC processors that share 512 MB of memory. The ag-
gregated peak speed is 17.2 teraflops and the total mem-
ory is 1.5 terabytes. More details of the system archi-
tecture is available in the literature [8]. An example of
event record from the system RAS log is shown in Table
2. Each record contains eight fields.Event Typespecifies
the mechanism through which the event is recorded.Fa-
cility indicates the services/hardware component that has
experienced the event.Event Timeis the time stamp as-
sociated with the reported event.Job ID identifies the job
that detects the event.Locationdenotes the source of the
event from which chip, node-card, service-card or link-
card.Entry Datagives a brief description of the event. One
major difference from Cray XT4 log is that Blue Gene/L
log provides explicitSeverityinformation. Severitycould

be INFO, WARNING, SEVER, ERROR, FATAL or FAIL-
URE.

We have acquired two RAS logs from these systems.
Table 3 summarizes the logs. As we can see from the
table, the RAS log from the Cray XT4 system is sub-
stantially larger than that from the Blue Gene/L system.
This is due to the fact that the machine has more num-
ber of nodes. Sample data of the logs are available at
http://www.cs.iit.edu/˜zlan/samplelog/.

3 Event Categorization

This step aims at providing a standard categorization of
RAS events by analyzing their syntax. If two events have
the same syntax, we group them into one category for data
analysis. Regular expressionis the standard technique to
analyze the syntax. It involves extracting distinct keywords
and then usingconcatenation, alternationandKleene star
operationsto generate the syntax for each category [15].

We adopta hierarchical approachfor event categoriza-
tion. That is, we first divide system events into several
high-level classifications, and then further group events
into a number of subcategories based on manual investi-
gation on their contents. For Cray XT, nine high-level cat-
egories are identified based on theCRMS Event Typefield,
which are further divided into 52 low-level event types; for
Blue Gene/L, ten high-level categories are identified based
on theFacility field, which are further divided into 293 low-
level event types.

In addition to provide a fine-granular categorization, it
is also necessary to distinguish these event categories into
fatal or non-fatalgroups for the purpose of data training.
Non-fatal events indicate system warnings or information
messages, while fatal events refer to those critical events
that lead to system or application crashes. Although RAS
logs in Blue Gene/L provide severity level for each event,
it is not accurate as some fatal or failure events are not
truly fatal at all [1]. By working with system administra-
tors, we have identified and removed some of these events
from the fatal list. Totally, there are83 fatal events for the
Blue Gene/L system. Examples include cache failure (CF),
DDR register failure (DRF), interrupt failure (IF), power
hardware failure (PHF) and link failure (LF).

Cray XT4 RAS logs do not provide such severity in-
formation. By consulting with system administrators at
ORNL, we have identified ten types of fatal events. They
are link failure fault (LFF), node heartbeat fault (NHF),
node failed fault (NFF), service failed fault (SFF), seastar
hearbeat fault (SHF), node health check fault (NHC),
VERTY health check fault (VHC), RX message CRC er-
ror (RXM), RX message head CRC error (RXH) and L0
voltage fault (L0V).

2



Table 1. An example of event from Cray XT4 RAS log.
Event time CRMS Event Type SRC SVC Entry
2007-08-01 12:25:00 ec meshlink failed src:::c22c0s4 svc:::c2-2c0s4s0 c22c0s4s0l5=S

Table 2. An example of event from Blue Gene/L RAS log.
Rec ID Event Type Facility Severity Event Time Job ID Entry Data Location
17366 RAS KERNEL INFO 2004-12-10-13 14 3 ddr errors(s) detected and correctedR00-M0

.52.57.333932 on rank 0, symbol 35, bit 3 -N4-C9-U11

Table 3. Summary of RAS logs from the Cray XT4 and the Blue Gene/L systems.
Log Name Days Start Date End Date Log Size (GB) No. of Records
Cray XT4 206 2007-05-05 2007-11-27 45 160063372
Blue Gene/L 1110 2004-12-06 2007-12-12 1.84 511331

4 Event Filtering

The purpose of event filtering is to remove redundant
records. An optimal filtering should not only achieve high
compression rate, but also introduce low information loss.
This leads to two commonly raised questions: (1) which
records are redundant? and (2) what information should
be kept? The first question has been discussed in [1]-[4].
Broadly speaking, there are two types of redundant records.
The first type is defined froma temporal view. When the
system detects an anomaly, it keeps producing warnings
until the failure occurs. Similarly, when a failure occurs,it
may re-appear multiple times in RAS logs before its root
problem is solved. Temporal filtering can help to remove
this redundancy by removing the same type of events be-
ing reported from the same location withinTtemporal sec-
onds. The second type comes froma spatial view. Many
jobs running on large-scale systems are parallel applica-
tions. When they are running on multiple nodes, any warn-
ing or failure record can be generated from multiple loca-
tions. Spatial filtering can help to remove this redundancy
by removing similar events being reported at different lo-
cations withinTspatial seconds.

Regarding the second question, i.e., what information
should be kept during filtering, existing methods mainly
rely on ad hoc techniques. When an event is continu-
ously reported, existing filtering methods typically keep
the first record and remove subsequent ones. This may
eliminate information that are crucial for analyzing causal
correlations among events. For instance, on the Cray XT4
log, by using such a filtering process,29% of fatal events
will be found without any precursor events. One exam-
ple is service failed fault (SFF)occurred at 2007-05-05
11:29:52. The filtered log contains no event preceding
this event within the past59 minutes. However, when
we checked the raw log, we found that there is auPacket
squash fault (USF)event occurred51 seconds before the
SFF event. This USF event was filtered out since810 in-
stances of the USF event occurred continuously from 2007-

05-05 10:30:00 to 2007-05-05 11:29:01. Only the first
record is kept and others are filtered out by using existing
filtering techniques. In other words, the pattern that a long
stream of warnings occur before a failure is filtered out.

To address the problem, we propose an improved filter-
ing method. In addition to record the event, it also pre-
servesevent start time, event end time, event count, and
event locations. For instance, suppose we set the filtering
window to be1.0 minute, then for the above SFF event, the
newly proposed filtering method will not only record the
USF event, but also record its start time as of 2007-05-05
10:30:00, its end time as of 2007-05-05 11:29:01 and event
count as of810. Further, our method also keeps theloca-
tion information. For example, if USF is reported on both
c9-2c2s0s0 and c9-0c2s7s3, both locations are kept for the
event in the filtered log. This can assist us in studying fail-
ure propagation and identifying the failure source.

How to decide an optimal threshold for filtering is still
an open question. In this study, we adopt aniterative
approach [12, 13]. We first set the threshold to a very
small number, and then gradually increase the number. The
search stops when there is no significant change with re-
spect to compression rate. Our experiments show that for
the Cray XT4 log, the optimal threshold is60 seconds,
which achieves99.97% compression rate. For the Blue
Gene/L log, the optimal threshold is300 seconds, which
achieves99.83% compression rate.

5 Causality-Related Filtering

A failure may be reported by multiple subsystems in dif-
ferent forms. While these records may have different syn-
tax, they have the same semantics. We define it assemantic
redundancy, which cannot be removed by existing filter-
ing techniques or the event filtering technique presented in
Section 4.

Semantic redundancy can lead to wrong analysis re-
sult. For instance, it can lead to a lower value for Mean-
Time-Between-Failures. Furthermore, it might hide the

3



Table 4. A sequence of records from the Blue Gene/L system.
Rec ID Event time Category Entry

786421 2007-08-24-05.25.24.800071 link failure Link PGOOD error latched on link card
786422 2007-08-24-05.26.17.563519 link failure Link PGOOD error latched on link card
· · · · · · · · · · · ·

786428 2007-08-24-05.48.29.446392 link failure Link PGOOD error latched on link card
786429 2007-08-24-05.53.52.006698 power hardware failure power module status fault detected on node card.

status registers are: 0/0/1/0
786430 2007-08-24-05.56.54.804122 link failure Link PGOOD error latched on link card
786431 2007-08-24-05.57.43.486897 link failure Link PGOOD error latched on link card
· · · · · · · · · · · ·

786437 2007-08-24-06.19.37.766449 link failure Link PGOOD error latched on link card
786438 2007-08-24-06.24.39.051317 power hardware failure power module status fault detected on node card.

status registers are: 0/0/1/0

Table 5. Exemplar transactions from Cray XT4.
Transaction ID List of Failure Events
1 L0V, NHF,SHF,NFF
2 NHF
3 L0V, NHF,SHF,NFF
4 RXM, RXH
· · · · · ·

n L0V, NHF,SHF,NFF

root cause of the problem. An example is shown in Ta-
ble 4. As we can see, the system always reports several
link failure followed by a power hardware failure. If we
use existing temporal and spatial filtering methods, both the
record #786429 and #786438 will be kept as independent
events. Even worse, if the threshold of900 seconds is used
for event filtering, only the link failure #786421 would be
kept in the log. Since the end time of the link failure is not
kept, a predictive method will consider the event #786421
to be far away from #786429 and #786438. This will lead
to wrong results.

To address the problem, we proposeapriori associa-
tion rule mining[11] to identify the sets of fatal events co-
occurring frequently and filter them together. Suppose that
[T f

A,s, T
f
A,e] and [T f

B,s, T
f
B,e] represent the start-end peri-

ods of fatal events A and B respectively. A window size of
W f is defined to measure the gap between two events. If
[T f

A,s −W f , T f
A,e +W f ]

⋂
[T f

B,s, T
f
B,e] 6= ∅, then A and B

are considered as a transaction. Further, the relation is tran-
sitive. That is, if[T f

A,s−W f , T f
A,e +W f ]

⋂
[T f

B,s, T
f
B,e] 6=

∅ and [T f
B,s − W f , T f

B,e + W f ]
⋂

[T f
C,s, T

f
C,e] 6= ∅, then

A, B and C will be combined as one transaction. Exemplar
transactions from the Cray XT4 are shown in Table 5.

Two parameters are used to measure whether events are
causally-related or not. One isconfidence, which measures
whether two events are co-occurring in all the transactions:

confidence(A → B) =
P (AB)

P (A)
(1)

Suppose there aren transactions,m transactions contain
event A andr transactions contain both A and B, then
P (A) = m/n andP (AB) = r/n. In the other words,

confidence(A → B) is the conditional probability of B
when A occurs.

The other is calledlift , which measures the correlation
between A and B in all the transactions as follows:

lift(A,B) =
P (AB)

P (A)P (B)
(2)

For example, if lift(A,B) is larger than a predefined
threshold, then we consider that the co-occurrence of A
and B in a transaction is not by coincidence, but by their
causal correlation.

Our causality-related filtering measures whether (1)
confidence(A → B) = confidence(B → A) = 1, or (2)
confidence(A → B) = 1 and lift(A,B) > 2, or (3)
confidence(B → A) = 1 and lift(A,B) > 2. If any of
the conditions is satisfied, the events A and B will be com-
bined for filtering. More specifically, we keep A and B as
a combined event, and apply the event filtering technique
as presented in the previous section. As an example, the
events #786421 and #786438 shown in Table 4 are consid-
ered causally-related.

For the Cray XT4 log, three sets are found to be corre-
lated: (1) NHF, NFF, SHF, RXM, RXH and L0V; (2) NHC
and VHC; (3) LFF and SFF. Similarly, for the Blue Gene/L
log, three sets are found to be correlated: (1) cache failure,
DDR address register failure, DDR Info register failure and
interrupt failure; (2) data address failure, data store failure
and exception syndrome failure; (3) power hardware fail-
ure and link failure.

6 Experiments

Our experiments are conducted to evaluate whether our
preprocessing methods (denoted asCFC) can preserve use-
ful failure patterns for better failure prediction, as against
using existing spatial and temporal filtering method (de-
noted asST) [2]. A standard 10-fold cross-validation
method is used for the learning and testing. Two metrics are
used to evaluate failure prediction:precision(i.e., propor-
tion of correct predictions to all the predictions made) and

4



(a) (b)

(c) (d)

Figure 1. Impact on failure prediction: (a)-(b) from the
Cray XT4; and (c)-(d) from the Blue Gene/L. TheCFC
curve represents the results on the cleaned log produced by
our preprocessing method, and theSTcurve represents the
results on the cleaned log produced by existing temporal-
spatial filtering method.

recall (i.e., proportion of correct predictions to the number
of failures).

We have tested several prediction methods, includ-
ing decision tree, back propagation neural network, and
Bayesian belief network, on the cleaned logs produced by
using our preprocessing methodCFC and by using exist-
ing filtering methodST . Due to the space limit, here we
only present the results with the decision tree, and the re-
sults with the other methods are very similar.

Figure 1 present prediction results by using decision
trees. Each plot contains two curves, each representing the
results achieved on the cleaned log produced by our prepro-
cessing methodCFC or by using existing filtering method
ST . Given that a window is often used to specify how far
ahead to check precursor events for failure prediction, in
our experiments the window is set to300, 600, 900, 1200,
1500, and1800 seconds respectively.

For the Cray XT, bothprecision and recall are al-
ways above0.85 on the cleaned log generated by our
methodCFC, whereas they are typically below0.75 on
the cleaned log produced by existing methodST . The rel-
ative improvement on failure prediction is between20% −
174%. Further, we notice that prediction accuracy on the
cleaned log produced by existing methodST is not con-
sistent, with the results oscillating dramatically between
0.30−0.80. By examining the logs, we find thatthe signif-
icant improvement on the Cray XT comes from the event fil-

tering step. In the raw log, a long stream of warnings often
occur before each failure event. TheST method removes
this pattern from the cleaned log, especially when the pre-
diction window is small, thereby resulting in a large portion
of fatal events without any precursor events and leading to
a low value onrecall. Meanwhile, the ST method keeps
some of the precursor events that are irrelevant to failures
in the cleaned log. This leads to a low value onpreci-
sion. Instead, our preprocessing methodCFC can address
these issues by applying an improved event filtering and a
causally-related filtering.

For the Blue Gene/L, we can observe similar improve-
ments by using our preprocessing method. The relative im-
provement on failure prediction is between12% − 27%.
By examining the logs, we find thatthe improvement on
the Blue Gene/L comes from the causally-related filtering
step. The Blue Gene/L log contains a substantial amount of
semantic redundancies, which cannot be removed by using
theST method.

We also observe that therecall values on the Blue
Gene/L log is low (below0.50), meaning that more than
half of failure events cannot be predicted. The main rea-
son is that the log contains about24% of events without
any precursor events, mostly network related. It indicates
that the decision tree method alone is not sufficient for ef-
fective failure prediction. As pointed out in our previous
work [4], in a large-scale system the sources of failures
are many and complex, thus it is improbable for a single
prediction method to capture all of them alone. Instead, a
meta-learning based approach should be applied to com-
bine the strengths of multiple predictive methods for better
failure prediction.

In addition, we have also tested our preprocessing mech-
anism on the Cray log archived in the USENIX Computer
Failure Data Repository [18]. By using the CFC prepro-
cessing method with the same experimental parameters, we
have obtained a compression rate of97%. With respect to
the improvement on failure prediction,recall can be dra-
matically boosted from0.3 to 0.7 on the cleaned log pro-
duced by the CFC method as against the log generated by
the ST method.

7 Related Work

Considerable research efforts have been conducted on
system log analysis. For example, a simple event corre-
lator is developed to recognize temporal patterns among
failures for web sever logs [15]; a22-month log is studied
for identifying transient and intermittent errors in [10];a
set of log mining techniques are investigated for predicting
anomalies in enterprise telephony systems [16]; and Sa-
hoo et al. have evaluated the time-series, the rule-based
classification and Bayesian network for failure prediction
on an IBM 350-nodes cluster [5].Unlike these studies,
our paper is more focused on providing an effective pre-

5



processing methodology to improve log analysis in large-
scale systems. We believe that our preprocessing method
can be integrated with the above studies by working on the
raw system log and producing a cleaned log for log anal-
ysis. Recognizing the critical role of system logs for fault
management, the first WASL workshop is organized in De-
cember, 2008. The workshop contains many related papers
on novel techniques for extracting useful information from
existing logs and on methods to improve the information
content of future logs [17].

How to effectively preparing system logs for log analy-
sis is a challenging problem and has been neglected in most
scientific papers [14]. In [12, 13], tupling methods are pre-
sented to coalesce related events for log analysis.Event
clusteris proposed to deal with multiple redundant records
of fatal events at one location [2]. In one cluster, only the
first record is kept after filtering. In [3], an adaptive seman-
tic filter (ASF) method is designed to exploit semantic cor-
relation between the events by using temporal gap. Salfner
et al. present three preprocessing algorithms to prepare
log files fed into the HSMM prediction model used in a
commercial telecommunication system [14].Compared to
these studies, our preprocessing method has three unique
features. First, it not only keeps event type and start/end
times, but also records event frequency. This can greatly
help to preserve failure re-occurring patterns observed in
the raw log. Second, it includes apriori association rule
mining to find causally related events and combine them
for filtering. This can assist us in achieving better data anal-
ysis by preserving casual correlations. Finally, our work is
currently focused on high-end supercomputers like Cray
XT and Blue Gene (both are pioneering systems in the
field of high performance computing). To date, little work
has been done on detailed log preprocessing techniques for
these systems, especially for Cray XT systems.

8 Conclusions

In this paper, we have presented a log preprocessing
method containing three interrelated steps (event catego-
rization, event filteringandcausality-related filtering) for
large-scale systems. We have evaluated it on the failure
logs collected from the Cray XT4 at ORNL and the Blue
Gene/L at SDSC, as well as the Cray failure log shared on a
public domain [18]. Experimental results have shown that
it can not only keep failure patterns in the raw logs for bet-
ter log analysis, but also provide a satisfactory compression
rate.

Acknowledgment

Z. Lan is supported by US NSF grants CNS-0834514,
CNS-0720549, and CCF-0702737. The work of B.H. Park
and A. Geist is supported by US DOE, Office of Science,

Advanced Computing Science Research Division. We
would like to thank John White and Eva Hocks at SDSC for
helping us on the Blue Gene/L log. This research used re-
sources of the National Center for Computational Sciences
at Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. The authors
like to thank Jeffrey Becklehimer for his help on the Cray
events categorization. Many thanks are due to our paper
shepherd, Andrea Bondavalli, for his time and guidance.

References

[1] A. Oliner and J. Stearly, “What Supercomputers Say: A
Study of Five System Logs,”Proc. of DSN, 2007.

[2] Y. Liang, Y. Zhang, A. Sivasubramanium, R. Sahoo, J. Mor-
eia, and M. Gupta, “Filtering Failure Logs for a Blue Gene/L
Prototype,”Proc. of DSN, 2005.

[3] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “An Adap-
tive Semantic Filter for Blue Gene/L Failure Log Analysis,”
Workshop on SMTPS, 2007.

[4] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Meta-
Learning Failure Predictor for Blue Gene/L Systems,”Proc.
of ICPP, 2007.

[5] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R.
Vilalta, and A. Sivasubramaniam, “Critical Event Prediction
for Proactive Management in Large-Scale Computer Clus-
ters,”Proc. of SIGKDD, 2003.

[6] B. Schroeder and G. Gibson , “A Large-Scale Study of Fail-
ures in High Performance Computing Systems,”Proc. of
DSN, 2006.

[7] Cray XT series documents.
http://www.cray.com/products/XT.aspx,2008.

[8] A. Gara, M. Blumrich et al., “Overview of the Blue Gene/L
System Architecture,”IBM J. Res. & Dev., vol. 49(2/3),
2005.

[9] The TOP500 supercomputing site.http://top500.org/, June
2008.

[10] T. Lin and D. Siewiorek, “Error Log Analysis: Statistical
Modeling and Heuristic Trend Analysis,”IEEE Transactions
on Reliability, vol. 39(4), 1990.

[11] R. Agrawal, T. Imielinski, and A. Swami, “Mining Associ-
ation Rules between Sets of Items in Large Database,”Proc.
of SIGMOD, 1993.

[12] J. Hansen and D. Siewiorek, “Models for Time Coalescence
in Event Logs,”Proc. of FTCS, 1992.

[13] M. Buckley and D. Siewiorek, “Comparative Analysis of
Event Tupling Schemes,”Proc. of FTCS, 1996.

[14] F. Salfner and S. Tschirpke, “Error Log Processing for Ac-
curate Failure Prediction,”Proc. of WASL’08, in conjunction
with OSDI, 2008.

[15] J. Rouillard, “Real-time Log File Analysis Using the Simple
Event Correlator (SEC),”Proc. of LISA, 2004.

[16] C. Lim, N. Singh and S. Yajnik, “A Log Mining Approach
to Failure Analysis of Enterprise Telephony Systems,”Proc.
of DSN, 2008.

[17] The First USENIX Workshop on the Analysis of System
Logs.http://www.usenix.org/events/wasl08/, Dec., 2008.

[18] USENIX Computer Failure Data Repository.
http://cfdr.usenix.org/data.html#cray.

6


