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Abstract log preprocessing methodology to improve failure predic-

tion. Preprocessing is a process applied on the raw log be-

Log preprocessing, a process applied on the raw log be- fore applying a prediction method. Log preprocessing not
fore applying a predictive method, is of paramount impor- only cleans and formalizes the training data for discowerin
tance to failure prediction and diagnosis. While existimg fi  failure patterns, but also extracts necessary eventsifer fa
tering methods have demonstrated good compression rateyre forecastingThe goal of this studis to provide an ef-
they fail to preserve important failure patterns that arecr ~ fective preprocessing methodology to distill system event
cial for failure analysis. To address the problem, in this for better failure prediction in large-scale systems such a
paper we present a log preprocessing method. It consistshigh-end supercomputers [9].
of three integrated steps: (1) event categorization to uni-  Despite the crucial role of log preprocessing, existing
formly classify system events and identify fatal evenfs; (2 preprocessing techniques are often ad hoc and mainly con-
event filtering to remove temporal and spatial redundant centrate on compression rate. Temporal and spatial figgerin
records, while also preserving necessary failure patterns are commonly used to remove redundant records in system
for failure analysis; (3) causality-related filtering to oe logs [2]. While these preprocessing techniques have high
bine correlated events for filtering through apriori associ compression rate, e.g., upd6.96%, they suffer from three
ation rule mining. We demonstrate the effectiveness of ourmajor drawbacksFirst, they might remove important fail-
preprocessing method by using real failure logs collected ure patterns, namely a long stream of warnings preceding
from the Cray XT4 at ORNL and the Blue Gene/L systemthe failure. As will be shown later, such a pattern embeds
at SDSC. Experiments show that our method can preservdnvaluable information for failure analysis. Second, when
more failure patterns for failure analysis, thereby improv an event occurs across multiple locations, spatial filterin
ing failure prediction by up td74%. removes this trace of events. Since spatial filtering often

keeps one event, this event may contain a location which
Keywords: log preprocessing, event categorization, is different from the source of failure. Thus it might lead

event filtering, Cray XT4, IBM Blue Gene/L to wrong analysis. Third, they ignore the fact that a failure
may be reported from multiple subsystems characterizing
1. Introduction different aspects of the failure. While these records may

have different syntax, they are causally related. Prepro-

, . cessing these records independently could lead to wrong
Fueled by the ever-growing scale and complexity of results

computer systems, failures become ongoing facts of life to To address the above issues, in this study we present

be dealt Wlt_h in Iarge-_scale systems._ Recent studies h?‘VG‘a log preprocessing method which contains three tightly-
shown that in production systems, failure rates are as h'ghcoupled steps:

as more than 1000 per year, and depending on root cause
of the problem, the average failure repair time ranges from 1 gyent CategorizationRegular expression technology

a couple of hours to nearly 100 hours [6]. is adopted to classify various events into a hierarchical
Recognizing the dramatic impact of failures on system set of event categories.

productivity, an increasing attention has been paid te fail
ure prediction and a variety of predictive methods have 2. Event Filtering. An improved temporal and spa-
been presented in the recent years [5, 4, 17]. System logs tial filtering method is proposed to remove redun-

provide a rich source of information for failure prediction dant records. Different from existing filtering meth-
Unfortunately, system logs cannot be directly used by vari- ods [1, 2], our filtering method keeps track of event
ous prediction technologies due to the fact that they gener- start and the end times, event count, and event loca-
ally contain too many redundant information and are often tion. This addresses the first and the second issues

unstructured for data analysis. In this paper, we preaent listed above.



3. Causality-related Filtering.Apriori association rules  be INFO, WARNING, SEVER, ERROR, FATAL or FAIL-
are adopted to track causal correlations among eventsURE.

Rather _than performing filtering on causall)_/—related We have acquired two RAS logs from these systems.
events independently, we suggest to combine corre-raple 3 summarizes the logs. As we can see from the
lated events for filtering. This helps to preserve failure iopje the RAS log from the Cray XT4 system is sub-

patterns for better data analysis, which addresses thesiantially larger than that from the Blue Gene/L system.
third issue listed above. This is due to the fact that the machine has more num-

) ber of nodes. Sample data of the logs are available at
We demonstrate the effectiveness of our preprocess-http.//WWW cs.iit.edu/zlan/sampleg/

ing methodology by means of system logs collected from
two production systems, i.e., the Cray XT4 system at Oak
Ridge National Laboratory (ORNL) and the Blue Gene/L
system at San Diego Supercomputing Center (SDSC). Ex-
periments show that it can effectively preserve failure pat

terns and consequently improve failure prediction by up to ) _ o o
174%, with a compression rate of more tH%. This step aims at providing a standard categorization of
RAS events by analyzing their syntax. If two events have

the same syntax, we group them into one category for data
analysis. Regular expressioris the standard technique to
analyze the syntax. It involves extracting distinct keytgor
The Cray XT4 at ORNL, namedaguar, is ranked #5  and then usingoncatenation, alternatioandKleene star
on the TOP500 supercomputer list (June, 2008) [9]. It has operationsto generate the syntax for each category [15].
7 83.2 XT4 compute nodes, in addition to I./ O and login We adopta hierarchical approactior event categoriza-
service nodes. Each compute node contains a quad-conﬁon' That is, we first divide system events into several
2.1 GHz AMD Opteron processor and SG.B of memory. high-level classifications, and then further group events
Aggregated system performance is approximately 263 into a number of subcategories based on manual investi-
aflops. Approximately 600 terabytes are available in the ation on their contents. For Cray XT, nine high-level cat-
scratch file systems. Each node is connected to a Cra egories are identified based on thé Event Typleld,
SeaStgr router through HyperTransport, and the SeaStar§Vhich are further divided into 52 low-level event types; for
are all interconnected in a 3-D-torus topology. More de- g0 Gene/L, ten high-level categories are identified based

_tailed documents of the system architecture can be foundon theFacility field, which are further divided into 293 low-
in [7]. An example of event record from the system RAS level event types

log is shown in Table 1. RAS events are collected at a gran- N ) ] o
ularity of one second. Each record consists of five fields. In addition to provm_je_a flrjE-granuIar categorization, it
CRMS event type indicates the high-level category of the 1S also necessary to distinguish these event catego_rn?s int
events. BotlBRCandSVCare about the source of the prob- fatal or non-fatalgroups for the purpose of data training.

lem. The SVC usually provides more detailed information. Non-fatal events indicate system warnings or information
The entry field provides a description of the event. messages, while fatal events refer to those critical events

The Blue Gene/L system at SDSC consists of three that lead to system or application crashes. Although RAS

racks, with a total of 3,072 compute nodes and 384 1/0 !ogs in Blue Gene/L provide severity Ie_vel for each event,
nodes. Each compute node consists of two 700 MHz Pow-It IS not accurate as some fatal or failure events are not
erPC processors that share 512 MB of memory. The ag_truly fatal at aI_I [1]._ I_3y working with system administra-
gregated peak speed is 17.2 teraflops and the total memtors, we have |Qent|f|ed and removed some of these events
ory is 1.5 terabytes. More details of the system archi- from the fatal list. Totally, there gr@B fatal events for the
tecture is available in the literature [8]. An example of Blue Gene/L system. Examples include cache failure (CF),
event record from the system RAS log is shown in Table DDR register failure (DRF), interrupt failure (IF), power
2. Each record contains eight fieldBvent Typespecifies ~ nardware failure (PHF) and link failure (LF).

the mechanism through which the event is recordeak- Cray XT4 RAS logs do not provide such severity in-
cility indicates the services/hardware component that hasformation. By consulting with system administrators at
experienced the eventtvent Times the time stamp as- ORNL, we have identified ten types of fatal events. They
sociated with the reported everldlob ID identifies the job  are link failure fault (LFF), node heartbeat fault (NHF),
that detects the event.ocationdenotes the source of the node failed fault (NFF), service failed fault (SFF), seasta
event from which chip, node-card, service-card or link- hearbeat fault (SHF), node health check fault (NHC),
card.Entry Datagives a brief description of the event. One VERTY health check fault (VHC), RX message CRC er-
major difference from Cray XT4 log is that Blue Gene/L ror (RXM), RX message head CRC error (RXH) and LO
log provides explicitSeverityinformation. Severitycould voltage fault (LOV).

3 Event Categorization

2 Background



Table 1. An example of event from Cray XT4 RAS log.
CRMS Event Type | SRC SvC
ecmeshlink failed | src:::c22c0s4| svc:::c2-2c0s4s(

Event time
2007-08-01 12:25:00Q

Entry
¢c22c0s4s0I5=5

Table 2. An example of event from Blue Gene/L RAS log.
Facility Severity | Event Time Job ID | Entry Data Location
KERNEL | INFO 2004-12-10-13| 14 3 ddr errors(s) detected and correctedR00-MO
.52.57.333932 on rank 0, symbol 35, bit 3 -N4-C9-U11

Rec ID
17366

Event Type
RAS

Table 3. Summary of RAS logs from the Cray XT4 and the Blue Gene/L systems.

Log Name Days | StartDate | End Date Log Size (GB) | No. of Records
Cray XT4 206 | 2007-05-05| 2007-11-27| 45 160063372
Blue Gene/L | 1110 | 2004-12-06| 2007-12-12| 1.84 511331

4 Event Filtering 05-05 10:30:00 to 2007-05-05 11:29:01. Only the first
record is kept and others are filtered out by using existing
filtering techniques. In other words, the pattern that a long
The purpose of event filtering is to remove redundant stream of warnings occur before a failure is filtered out.
records. An optimal filtering should not only achieve high To address the problem, we propose an improved filter-
compression rate, but also introduce low information loss. ing method. In addition to record the event, it also pre-
This leads to two commonly raised questions: (1) which geryesevent start time, event end time, event count, and
records are redundant? and (2) what information shouldgyent [ocations For instance, suppose we set the filtering
be kept? The first question has been discussed in [1]-[4].window to bel.0 minute, then for the above SFF event, the
Broadly speaking, there are two types of redundantrecordsnewly proposed filtering method will not only record the
The first type is defined frora temporal view When the  ySE event, but also record its start time as of 2007-05-05
system detects an anomaly, it keeps producing wamings) 0:30:00, its end time as of 2007-05-05 11:29:01 and event
until the failure occurs. Similarly, when a failure occuts,  -ount as oR10. Further, our method also keeps foea-
may re-appear multiple times in RAS logs before its root 5 information. For example, if USF is reported on both
problem is solved. Temporal filtering can help to remove 9.2:250s0 and c9-0c2s7s3, both locations are kept for the
this redundancy by removing the same type of events be-gyent in the filtered log. This can assist us in studying fail-
ing reported from the same location withilf.mpora1 SEC- re propagation and identifying the failure source.
onds. The second type comes frenspatial view Many How to decide an optimal threshold for filtering is still
jobs running on large-scale systems are parallel applica-5, open question. In this study, we adopt iterative
tions. When they are running on multiple nodes, any warn- approach[12, 13]. We first set the threshold to a very
ing or failure record can be generated from multiple loca- gma|| number, and then gradually increase the number. The
tions. Spatial filtering can help to remove this redundancy ¢o4rch stops when there is no significant change with re-
by removing similar events being reported at different 10- gnect to compression rate. Our experiments show that for
cations withinT's a.ia S€CONdS. the Cray XT4 log, the optimal threshold &) seconds,
Regarding the second question, i.e., what information which achieve€09.97% compression rate. For the Blue
should be kept during filtering, existing methods mainly Gene/L log, the optimal threshold #)0 seconds, which
rely on ad hoc techniques. When an event is continu- gchieve99.83% compression rate.
ously reported, existing filtering methods typically keep
the first record and remove subsequent ones. This may, . . .
eliminate information that are crucial for analyzing cdusa > Causality-Related Filtering
correlations among events. For instance, on the Cray XT4
log, by using such a filtering proces¥)% of fatal events A failure may be reported by multiple subsystems in dif-
will be found without any precursor events. One exam- ferent forms. While these records may have different syn-
ple is service failed fault (SFFpccurred at 2007-05-05 tax, they have the same semantics. We defineseasantic
11:29:52. The filtered log contains no event preceding redundancy which cannot be removed by existing filter-
this event within the past9 minutes. However, when ing techniques or the event filtering technique presented in
we checked the raw log, we found that there isRacket Section 4.
squash fault (USFevent occurred1 seconds before the Semantic redundancy can lead to wrong analysis re-
SFF event. This USF event was filtered out sift¢e in- sult. For instance, it can lead to a lower value for Mean-
stances of the USF event occurred continuously from 2007-Time-Between-Failures. Furthermore, it might hide the



Table 4. A sequence of records from the Blue Gene/L system.

Rec ID | Eventtime | Category [ Entry

786421 | 2007-08-24-05.25.24.800071L link failure Link PGOOD error latched on link card
786422 | 2007-08-24-05.26.17.56351P link failure Link PGOOD error latched on link card
786428 | 2007-08-24-05.48.29.44639p link failure Link PGOOD error latched on link card

786429 | 2007-08-24-05.53.52.006698 power hardware failurg power module status fault detected on node card.
status registers are: 0/0/1/0

786430 | 2007-08-24-05.56.54.80412p link failure Link PGOOD error latched on link card
786431 | 2007-08-24-05.57.43.48689[ link failure Link PGOOD error latched on link card
786437 | 2007-08-24-06.19.37.76644P link failure Link PGOOQOD error latched on link card

786438 | 2007-08-24-06.24.39.05131[ power hardware failurg power module status fault detected on node card.
status registers are: 0/0/1/0

confidence(A — B) is the conditional probability of B

Table 5. Exemplar transactions from Cray XT4. when A 0ccurs.

Transaction ID| List of Failure Events

1 L0V, NHE SHE.NFF The other is calledift, which measures the correlation
2 NHF between A and B in all the transactions as follows:

3 LOV, NHF,SHF,NFF

4 RXM, RXH P(AB

(A, B) = o) @

n LOV, NHF,SHF,NFF P(A)P(B)

For example, iflift(A, B) is larger than a predefined
root cause of the problem. An example is shown in Ta- threshold, then we consider that the co-occurrence of A

ble 4. As we can see, the system always reports severaPnd Bina traqsaction is not by coincidence, but by their
link failure followed by a power hardware failure. If we causal correlat_lon. o

use existing temporal and spatial filtering methods, bathth ~ OUr causality-related filtering measures whether (1)
record #786429 and #786438 will be kept as independent??fidence(A — B) = confidence(B — A) = 1, or (2)
events. Even worse, if the thresholdool seconds is used ~ c07fidence(A — B) = 1 and lift(A, B) > 2, or (3)

for event filtering, only the link failure #786421 would be confidence(B — A) = 1 andlifi(A, B) > 2. If any of
kept in the log. Since the end time of the link failure is not (e conditions is satisfied, the events A and B will be com-
kept, a predictive method will consider the event #786421 Pined for filtering. More specifically, we keep A and B as

to be far away from #786429 and #786438. This will lead & cOMbined event, and apply the event filtering technique
to wrong results. as presented in the previous section. As an example, the

To address the problem, we proposgriori associa- events #786421 and #786438 shown in Table 4 are consid-

tion rule mining[11] to identify the sets of fatal events co- ©red causally-related.

occurring frequently and filter them together. Suppose that ~ FOr the Cray XT4 log, three sets are found to be corre-
7] T{ | and[T% . T! | represent the start-end peri- 1ated: (1) NHF, NFF, SHF, RXM, RXH and LOV; (2) NHC
ods of fatal events A and B respectively. A window size of @nd VHC; (3) LFF and SFF. Similarly, for the Blue Gene/L
W is defined to measure the gap between two events. 1109, three sets are found to be correlated: (1) cache failure
[Tg _w T/J; + W ﬂ[T,é T{, ] # 0, then Aand B DDR address register failure, DDR Info register failure and
are considered as a transaction. Further, the relatioaris tr Interrupt failure; (2) data address failure, data storkifei
sitive. That is if[T}; Wt T}{ + W] ﬂ[Té T,{; ] # and exception syndrome failure; (3) power hardware fail-

[ re and link failure.
0 and([Tf, — WI.Th + WINTL,. TS, # 0, then  °° dlink failure
A, B and C will be combined as one transaction. Exemplar

transactions from the Cray XT4 are shown in Table 5. 6 Experiments
Two parameters are used to measure whether events are
causally-related or not. Onegsnfidencewhich measures Our experiments are conducted to evaluate whether our

whether two events are co-occurring in all the transactions preprocessing methods (denoted#C) can preserve use-
ful failure patterns for better failure prediction, as asi

P(AB) . C : -

(1) using existing spatial and temporal filtering method (de-
P(A) noted asST) [2]. A standard 10-fold cross-validation
Suppose there are transactionsn transactions contain  method is used for the learning and testing. Two metrics are
event A andr transactions contain both A and B, then used to evaluate failure predictioprecision(i.e., propor-
P(A) = m/n and P(AB) = r/n. In the other words, tion of correct predictions to all the predictions made) and

confidence(A — B) =
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Figure 1. Impact on failure prediction: (a)-(b) from the
Cray XT4; and (c)-(d) from the Blue Gene/L. Ti@FC
curve represents the results on the cleaned log produced by
our preprocessing method, and ®i€curve represents the
results on the cleaned log produced by existing temporal-
spatial filtering method.

recall (i.e., proportion of correct predictions to the number
of failures).

We have tested several prediction methods, includ-
ing decision tree, back propagation neural netwodnd
Bayesian belief networlon the cleaned logs produced by
using our preprocessing methatF'C' and by using exist-
ing filtering methodST'. Due to the space limit, here we

only present the results with the decision tree, and the re-

sults with the other methods are very similar.
Figure 1 present prediction results by using decision
trees. Each plot contains two curves, each representing th

results achieved on the cleaned log produced by our prepro

cessing method' F'C' or by using existing filtering method
ST. Given that a window is often used to specify how far
ahead to check precursor events for failure prediction, in
our experiments the window is set360, 600, 900, 1200,
1500, and1800 seconds respectively.

For the Cray XT, bothprecision and recall are al-
ways above0.85 on the cleaned log generated by our
methodC' FC, whereas they are typically below75 on
the cleaned log produced by existing meth. The rel-
ative improvement on failure prediction is betweX¥%, —

e

tering step In the raw log, a long stream of warnings often
occur before each failure event. THE method removes
this pattern from the cleaned log, especially when the pre-
diction window is small, thereby resulting in a large pamntio

of fatal events without any precursor events and leading to
a low value onrecall. Meanwhile, the ST method keeps
some of the precursor events that are irrelevant to failures
in the cleaned log. This leads to a low value jpreci-
sion Instead, our preprocessing meth@d'C' can address
these issues by applying an improved event filtering and a
causally-related filtering.

For the Blue Gene/L, we can observe similar improve-
ments by using our preprocessing method. The relative im-
provement on failure prediction is betweé2d% — 27%.

By examining the logs, we find thahe improvement on
the Blue Gene/L comes from the causally-related filtering
step The Blue Gene/L log contains a substantial amount of
semantic redundancies, which cannot be removed by using
the ST method.

We also observe that theecall values on the Blue
GenelL log is low (below).50), meaning that more than
half of failure events cannot be predicted. The main rea-
son is that the log contains abot% of events without
any precursor events, mostly network related. It indicates
that the decision tree method alone is not sufficient for ef-
fective failure prediction. As pointed out in our previous
work [4], in a large-scale system the sources of failures
are many and complex, thus it is improbable for a single
prediction method to capture all of them alone. Instead, a
meta-learning based approach should be applied to com-
bine the strengths of multiple predictive methods for bette
failure prediction.

In addition, we have also tested our preprocessing mech-
anism on the Cray log archived in the USENIX Computer
Failure Data Repository [18]. By using the CFC prepro-
cessing method with the same experimental parameters, we
have obtained a compression rate9@. With respect to
the improvement on failure predictiorecall can be dra-
matically boosted fron®.3 to 0.7 on the cleaned log pro-
duced by the CFC method as against the log generated by

the ST method.

7 Reated Work

Considerable research efforts have been conducted on
system log analysis. For example, a simple event corre-
lator is developed to recognize temporal patterns among
failures for web sever logs [15]; 22-month log is studied
for identifying transient and intermittent errors in [1@;
set of log mining techniques are investigated for predictin

174%. Further, we notice that prediction accuracy on the anomalies in enterprise telephony systems [16]; and Sa-
cleaned log produced by existing meth8d’ is not con- hoo et al. have evaluated the time-series, the rule-based
sistent, with the results oscillating dramatically betwee classification and Bayesian network for failure prediction
0.30 —0.80. By examining the logs, we find thtte signif- on an IBM 350-nodes cluster [5]Unlike these studies,
icantimprovement on the Cray XT comes from the event fil-our paper is more focused on providing an effective pre-
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