
Exploring Partial Replication to Improve
Lightweight Silent Data Corruption Detection

for HPC Applications

Eduardo Berrocal1, Leonardo Bautista-Gomez2, Sheng Di2, Zhiling Lan1, and
Franck Cappello2

1 Illinois Institute of Technology, Chicago, IL, USA,
{eberroca,lan}@iit.edu

2 Argonne National Laboratory, Lemont, IL, USA,
{leobago,sdi1,cappello}@anl.gov

Abstract. Silent data corruption (SDC) poses a great challenge for
high-performance computing (HPC) applications as we move to extreme-
scale systems. If not dealt with properly, SDC has the potential to influ-
ence important scientific results, leading scientists to wrong conclusions.
In previous work, our detector was able to detect SDC in HPC appli-
cations to a certain level by using the peculiarities of the data (more
specifically, its “smoothness” in time and space) to make predictions.
Accurate predictions allow us to detect corruptions when data values
are far “enough” from them. However, these data-analytic solutions are
still far from fully protecting applications to a level comparable with
more expensive solutions such as full replication. In this work, we pro-
pose partial replication to overcome this limitation. More specifically,
we have observed that not all processes of an MPI application experi-
ence the same level of data variability at exactly the same time. Thus,
we can smartly choose and replicate only those processes for which our
lightweight data-analytic detectors would perform poorly. Our results in-
dicate that our new approach can protect the MPI applications analyzed
with 49–53% less overhead than that of full duplication with similar de-
tection recall.
Index Terms—Silent Data Corruption Detection; Partial Replication;
Data Analysis; HPC Applications.

1 Introduction

Silent data corruption (SDC) involves corruption to an application’s memory
state (including both code and data) caused by undetected soft errors, that is,
errors that modify the information stored in electronic devices without destroy-
ing the functionality [13]. If undetected, these errors have the potential to be
damaging since they can change the scientific output of HPC applications and
mislead scientists with spurious results.

External causes of transient faults are usually rooted in cosmic ray particles
hitting the electronic devices of the supercomputer [22]. As systems keep scaling



up, the increasing number of devices will make these external faults appear more
often. Other techniques introduced to deal with excessive power consumption,
such as aggressive voltage scaling or near-threshold operation, as well as more
complex operating systems and libraries, may also increase the number of errors
in the system [7].

Substantial work has been devoted to this problem, both at the hardware
level and at higher levels of the system hierarchy. Currently, however, HPC
applications rely almost exclusively on hardware protection mechanisms such
as error-correcting codes (ECCs), parity checking, or chipkill-correct ECC for
RAM devices [19, 10]. As we move toward the exascale, however, it is unclear
whether this state of affairs can continue. For example, recent work shows that
ECCs alone cannot detect and/or correct all possible errors [16]. In addition,
not all parts of the system, such as logic units and registers inside the CPUs,
are protected with ECCs.

With respect to software solutions, full process replication provides excellent
detection accuracy for a broad range of applications. The major shortcoming of
full replication is its overhead (e.g., ≥ 100% for duplication, ≥ 200% for trip-
lication). Another promising solution is data-analytic-based (DAB) fault toler-
ance [26, 9, 2, 6], where detectors take advantage of the underlying properties of
the application data (the smoothness in the time and/or space dimensions) in
order to compute likely values for the evolution of the data and use those val-
ues to flag outliers as potential corruptions. Although DAB solutions provide
high detection accuracy for a number of HPC applications with low overhead,
their applicability is limited because of an implicit assumption—the application
is expected to exhibit smoothness in its variables all the time.

In this work, we propose a new adaptive SDC detection approach that com-
bines the merits of replication and DAB. More specifically, we have observed that
not all processes of some MPI applications experience the same level of data vari-
ability at exactly the same time; hence, one can smartly choose and replicate
only those processes for which lightweight data-analytic detectors would perform
poorly. In addition, evaluating detectors solely on overall single-bit precision and
recall may not be enough to understand how well applications are actually pro-
tected. Instead, we calculate the probability that a corruption will pass unnoticed
by a particular detector. In our evaluation, we use two applications dealing with
explosions from the FLASH code package [12], which are excellent candidates for
testing partial replication. Our results show that our adaptive approach is able
to protect the MPI applications analyzed (99.999% detection recall) replicating
only 43–51% of all the processes with a maximum total overhead of only 52–56%
(compared with 110% for pure duplication).

The rest of the paper is organized as follows. In Sect. 2 we describe how
DAB SDC detectors work. In Sect. 3 we introduce our adaptive method for SDC
detection. In Sect. 4 we describe the probabilistic evaluation metric used. In
Sect. 5 we present our experimental results. In Sect. 6 we discuss related work in
this area. In Sect. 7 we summarize our key findings and present future directions
for this work.



10 20 30 40 50 60
bit position

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Rank 99

(a)

10 20 30 40 50 60
bit position

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Rank 87

(b)

rank 99 rank 87

origin of explosion

pressure | iteration=1920
6

5

4

3

2

1

0
(c)

Fig. 1. Detection recall for two different processes in Sedov during 100 iterations.

2 Data-Analytic-Based SDC Detectors

In this section we describe how DAB detectors work. We also point out their
major limitations.

Lightweight DAB SDC detectors are composed of two major parts. The pre-
dictor component computes a prediction for the next value of a particular data
point. The prediction takes advantage of the underlying physical properties of
the evolution of the data, since we have observed that this evolution is smooth
in the time and/or space dimensions for a wide range of variables in HPC scien-
tific applications. After the prediction is done, the detector component decides
whether the current value of the data point is corrupted.

We have implemented our lightweight DAB SDC detectors inside the Fault
Tolerance Interface (FTI) [4], an MPI library for HPC applications to perform
fast and efficient checkpoint/restarts (C/R). We can add SDC detection support
by taking advantage of the fact that iterative applications already provide (to
FTI) the data variables representing their state. An HPC application needs to
perform only one extra call to FTI: a call at the end of every iteration to allow
our detectors to check for SDC in the data.

In our previous work we showed that one can detect a large number of cor-
ruptions by using simple and lightweight predictors. For the time dimension, we
found that quadratic curve fitting (QCF) outperformed all the other considered
options [6] with a memory overhead of less than 90% for all the applications stud-
ied. Another way to do predictions is by using the spatial information instead
of the temporal information. In [3], 3D linear interpolation was used succesfully
to predict values in a computational fluids dynamics (CFD) miniapplication.

Once a prediction X(t) has been made, our detector decides whether the
current value of the data V (t) is a normal value by checking whether it falls inside
a particular confident interval determined by a parameter δ: [X(t)−δ,X(t)+δ].
We calculate δ using the maximum prediction error from all data points in a
process at t−1 multiplied by some constant: δ = λ ·emax(t−1). This constant λ
determines a tradeoff between detection recall (how many real corruptions can
we actually detect) and precision (how many of the detected corruptions are
actually real corruptions). In our case, the value for λ is chosen to have zero
false positives given a particular execution size (i.e., to maximize precision).



When data values change too abruptly in a particular process, our δ be-
comes far too big to detect barely any corruption. Two examples of this kind
of application dealing with sharp changes in the data are Sedov and BlastBS.
Sedov is a hydrodynamical test code involving strong shocks and nonplanar
symmetry [21]. BlastBS, on the other hand, is a 3D version of the magnetohy-
drodynamical spherical blast wave problem [27]. Both are part of the FLASH
simulation code package.

To illustrate the problem at hand, we show in Fig. 1 (a) and (b) detection
recall rates for single bit-flips injected on each bit position over two different
processes in the variable pressure of Sedov during a particular period of time
(100 iterations). One can see how the wave of the explosion passing through
rank 87 is making detection recall rates decrease substantially for this variable3.
In contrast, detection recall is high in rank 99. To get a glimpse of how this
data looks like, consider Fig. 1 (c). Here, we show the state of the maximum of
variable pressure right after the window of 100 time steps has passed.

3 Adaptive Method

Full replication is generally considered too costly for HPC because of its high
overhead both in the time and the space dimensions. Partial replication, however,
is worth considering for applications for which sharp changes in the data occur
only in a small subset of the processes, such as those involving explosions or
collisions (e.g., Sedov). Considering again the example introduced in Sect. 2, we
can see that duplicating rank 99 in this situation is a major waste of resources,
while rank 87 can surely benefit from replication, making detection recall go
from below 10% in the majority of bits to 100% in all of them automatically.

One way to detect corruptions efficiently by using replication, proposed by
Fiala et al. [11], is by comparing messages in MPI. The idea is that any corruption
in the data of a particular process will ultimately produce corrupted messages
that will be sent to other process. By comparing messages from replicas of the
same process, one can determine whether that process (or any of its replicas)
got its data corrupted. In this paper we adopt an adaptive strategy. For some
processes (replication set), we use partial replication based on the method of
Fiala et al. For the other processes, we use our lightweight DAB detectors.

We implement the following strategy in order to select our replication set
and to dynamically adapt it over time. After the first iteration, we choose a
subset of processes to replicate, given the maximum prediction error in that first
iteration. The number of processes to replicate is determined by the replication
budget B. During the following w application time steps (where w defines a
window), we create an array S of size n, which is the number of processes in the
application. After every time step, we sort all processes in ascending order given
their maximum prediction errors and add their positions in S. For example, if at

3 The rank of a process in MPI is its ID inside a group of processes. In this paper we
consider only the rank of the general group to which all processes belong. In this
sense, we use rank(s) or process(es) interchangeably.



a particular time step, rank 12 is the one with the highest prediction error and
there are 128 processes, then S[12] += 128. When w steps have passed, the score
S represents an aggregation of the relative positions of each rank with respect
to the others given their prediction errors during the window w. At this point
we sort all processes by their score S, pick the top B (which is the allocated
budget) as the new replication set, and reset S to start a new window again.

4 Probabilistic Evaluation Metric

In order to understand why this metric is needed, consider the case where we have
a mechanism with perfect detection recall for the 22 most significant bits of 32-bit
numbers. What is the probability that, in this particular example, a corruption
will evade our detector? The answer to this question will actually depend on how
many bits can get “flipped” in the memory state of the application. Assuming
1-bit-flip corruptions only, we could say that 10/32 = 0.3125 (31% of corruptions
will pass undetected). For 2-bit-flips, the probability would be (10/32)×(9/31) =
0.0907 (9.07% corruptions will pass undetected). For our detector to be unaware
of a 2-bit-flip corruption in this case, all flips would always need to hit bits in the
10 less significant positions of the mantissa. We could continue with 3-bit-flips,
4, and so on. An interesting observation from this example is that, generally, the
fewer bits that can get “flipped” in a system, the harder it is to detect corruptions
using software mechanisms. Furthermore, another interesting question appears:
What is the distribution of corruption sizes (in terms of the number of bits)
in the system? Is a corruption affecting a large number of bits more or less
common than one affecting just a few? The key idea is that protecting the data
of simulations at this level is not so much protecting against particular bit-flips
as it is protecting against numerical deviations from the original data.

In this work we use an evaluation metric based on the probability that a
corruption will pass unnoticed by a particular detector. Since we aim at designing
general SDC detectors, we cannot assume that bit-flips in the less significant
bits of the mantissa are harmless. For example, we performed a sensitivity study
where we injected different corruption sizes on multiple applications (the full
study is omitted because of space limitations). In that study we observed that
the same exact corruption produces different impacts4 on different applications,
i.e., there are applications that can absorb the corruption effortlesly while there
are others that suffer big data deviations.

The evaluation metric, which we also call the probability of undiscovered
corruption, is defined as

Pf =

N∑
i=1

[
P (#bits = i)× (1− (

1

N
×

N∑
j=1

rj))
i

]
, (1)

4 Impact is defined as the rate of deviation over the variable’s total data range during
the execution. For example, a deviation of 10 on a [0,200] range produces an impact
of 0.05.



where N is the number of bits per data point (i.e., 64), 1
N ×

∑N
j=1 rj represents

the average recall rate for all bit positions collected during our injection studies,
and P (#bits = i) represents the probability that the corruption is exactly i bits
long.

The distribution P (#bits = x) depends on how corruptions in the whole
system ultimately affect the numerical data of simulations. Because of the im-
possibility of calculating this distribution for a system as massive as a supercom-
puter, we assume four distributions representing the following four cases: (1) the
number of bits affected is usually small, with 1 bit being the most common size
(for this case, we use a Poisson distribution with λ = 1.0); (2) all bit sizes are
equally probable (i.e., P (#bits = x) = 1/N); (3) all possible corruptions (2N )
are equally probable (e.g., P∼ N (32.5, 13.05) for N = 64); and (4) the number
of bits affected is usually big, with N bits being the most common size (for this
case, we use the inverse of distribution (1)).

5 Evaluation

We use two applications from the FLASH code package in our experiments—
Sedov and BlastBS—representing two different types of explosions. These appli-
cations are excellent candidates for testing the effectiveness of partial replication
for data experiencing sharp changes due to explosions and collisions. Implemen-
tations of MPI allowing replication at the process level, such as RedMPI [11],
do not yet support partial replication; we simulate partial replication by con-
sidering precision and recall to be 100% for those processes that are part of the
replication set5. For the others, we use our lightweight SDC detectors.

10 20 30 40 50 60
bit position

0.7

0.8

0.9

1.0

re
ca

ll

Sedov
2DINT
5%

10%
15%

20%
25%

10 20 30 40 50 60
bit position

0.7

0.8

0.9

1.0

re
ca

ll

BlastBS
2DINT
5%

10%
15%

20%
25%

Fig. 2. Single-bit detection recall results from our injection study. We use two appli-
cations (Sedov and BlastBS) running 256 processes, and we set w = 100. Five partial
replication rates (5-25%) are compared with nonreplication (2DINT).

Detection recall for each bit position is calculated by averaging the results
over hundreds of random injections on the pressure variable in every process over

5 Of course, this only holds for deterministic applications (which is the case here).



thousands of time steps. For all our experiments, we set our λ parameter, which
controls our dynamic detection range δ (see Sect. 2) to have exactly zero false
positives. In all the experiments, we run the applications using 256 processes,
while the data domain is configured to be a two-dimensional grid. We report
the results only of those experiments using linear interpolation (spatial) as our
predictor. Similar results were obtained using our temporal predictor (QCF), so
we omit them here.

Figure 2 presents the results of our injection study. Here, we fix the window
w (see Sect. 3) to be 100 time steps. One can see the added benefit of using
partial replication for improving single-bit detection recall rates. For example,
we observe an overall improvement for Sedov from 6% for 5% replication to 18%
for 25% replication. For BlastBS we also see significant gains, with improvements
from 5% for 5% replication to 24% for 25% replication.

0 20 40 60 80 100
% of replicated ranks

10-4

10-3

10-2

10-1

100

P
f

Sedov
dist1
dist2
dist3
dist4

0 20 4010-9410-8810-8210-7610-7010-6410-5810-5210-4610-4010-3410-2810-2210-16

0 20 40 60 80 100
% of replicated ranks

10-4

10-3

10-2

10-1

100

P
f

BlastBS

0 20 4010-9410-8810-8210-7610-7010-6410-5810-5210-4610-4010-3410-2810-2210-16

Fig. 3. Probability of undiscovered corruption when replicating a particular percentage
of processes using the four distributions P (#bits= x) described in Sec. 4. Note that
the y-axis is plotted using logarithmic scale. The small subplots represent the data
zoomed below 10−15.

Figure 3 presents the results when using the probabilistic evaluation metric
Pf with the four distributions presented in Sect. 4. We note that the y-axis is
plotted by using a logarithmic scale. We can categorize the distributions in a
spectrum from difficult (dist1) to easy (dist4) (as discussed in Sect. 4, the fewer
the number of bits that can get corrupted, the harder it is to detect corruptions
at the software level). In this case, only distributions 1 and 2 are of further
interest to us, since distributions 3 and 4 represent easy detection cases; that is,
the probability of undiscovered corruption using our DAB detectors is already
below 10−15 without even considering replication. For distribution 1, we need
over 43% of the processes replicated in order to achieve a 99.999% protection
(i.e., Pf < 0.001) level in the case of Sedov and 51% in the case of BlastBS.
Recall that distribution 1 is the most difficult one, representing an upper bound
in the number of replicated processes needed.

Apart from the obvious performance overhead incurred by using replication
(i.e., extra hardware needed to run extra processes, or spatial overhead), there
is also an overhead introduced by extra messages sent throughout the network,



which ultimately enlarges the runtime of applications. Another source of tem-
poral overhead is our own DAB detector, which needs to run on every iteration
and check all the data points for all the protected variables. From the system’s
point of view, both dimensions—temporal and spatial—contribute equally to
the overall overhead, so both should be included. In partial replication we also
need to consider the extra temporal overhead introduced by process migration
when changing the replication set. We calculate the total overhead, then, using
the following model:

O(r, w) = T (r)× (r + 1) +
M × r × n
W × Tw

. (2)

where r is the replication rate (e.g., 0.5 when replicating half of the processes)
and T (r) is the runtime overhead introduced by the DAB detector and partial
replication when running with a replication rate equal to r (e.g., T (r) = 1.1 if
there is a 10% increase in running time). The right-hand side of the summa-
tion represents the overhead introduced by changing the replication set every
w steps6. In this part, M is the memory used per process, r × n is the replica-
tion budget (n is the number of processes), W represents the aggregate network
bandwidth in the system, and Tw is the time taken to run w steps in the original
application. Note that this is an upper bound, since in some cases the number
of processes to replicate is less than the budget, namely, when some processes
replicated in the previous window are chosen again for the current one. We find
that in only a few cases does the replication set change completely.

1.0 1.2 1.4 1.6 1.8 2.0
O(r,w)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

P
f

Sedov
w=100
w=200

w=300
w=400

w=500
w=600

1.4 1.6 1.8 2.0 2.20.0
0.001
0.002
0.003
0.004

1.0 1.2 1.4 1.6 1.8 2.0
O(r,w)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

P
f

BlastBS

1.4 1.6 1.8 2.0 2.20.0

0.001

0.002

0.003

0.004

Fig. 4. Total overhead introduced by partial replication using different values of w.
Distribution 1 used for P (#bits= x); the small subplots represent the data zoomed
between [0.0, 0.004].

The temporal overhead T (r) may vary depending on the communication-to-
computation ratio of the application. For those cases where computation domi-
nates communication, the extra overhead is usually small. Fiala et al. [11] show

6 Wang et al. [25] show that calculating process migration time as
process memory/network bandwidth is a fairly good estimate.



that temporal overhead for full duplication (i.e., r = 1.0) is not a concern (around
1–2%) for those applications that can maintain a well-balanced communication-
to-computation ratio as they scale (applications exhibiting weak scalability). On
the other hand, temporal overheads can reach 30% for network-bound applica-
tions and kernels. Since we are simulating partial replication, we are unable to
measure exactly the value of T (r) for the applications used. In this case, we
assume the temporal overhead introduced by the extra network messages never
to be above 5%, given that the stencil codes evaluated are not network-bound.
Moreover, our experiments indicate that the temporal overhead introduced by
using our DAB detectors is never above 6%7. Thus, we set T (r = 1.0) = 1.11
(i.e., 5+6=11% temporal overhead introduced by replicating all processes and
using our DAB detector on every process). We estimate T (r) for r < 1.0 as-
suming a balanced communicaton pattern between processes (which is the case
in the stencil codes evaluated, where processes communicate mainly with their
neighbors): T̂ (r < 1.0) = 1 + r × 0.05 + 0.06.

In order to get an idea of how much overhead would be introduced by partial
replication, we compute the values of Pf in Fig. 4 based on O(r), for different
values of the parameter w. Moreover, we assume distribution 1 for P (#bits= x).
All the injection experiments are run on the Fusion cluster at Argonne National
Laboratory [1], which has an InfiniBand QDR network with a bandwidth of 4
GB/s per link, per direction, arranged on a fat tree topology. Since we are not
taking into account network contention issues in our overhead model, we set W
to the lowest possible aggregate bandwidth in order to get an upper bound on
the effect that the network bandwidth has on the overhead. That is, we set W=4
GB/s.

As one can see, a window of a 100 time steps is the best choice among all the
considered possibilities. The reason is that the smaller temporal overheads can
not compensate for the accuracy loss incurred when using larger window sizes.
Our analyses show that we can have a 99.999% protection (i.e., Pf < 0.001)
with w = 100 with a total overhead of around 1.52 (52%) for Sedov and 1.56
(56%) for BlastBS, with a replication rate of 43% and 51% respectively. This is
an improvement of 53% and 49%, respectively, over full duplication (considering
5% in temporal overhead due to the extra network messages, full duplication has
a total overhead of 2.1, or 110%) with a detection recall close to 100%. For easy
comparison, these results are listed in Table 1.

6 Related Work

Software solutions for SDC detection can be grouped in four main categories: (1)
full replication [11, 18], which is the most general but also the most expensive;
(2) algorithm-based fault tolerance (ABFT) [14]; (3) approximate computing [5];

7 The memory overhead of our DAB detectors is practically 0% given that we are
using spatial-based predictors only in this study. For that reason, we do not include
extra memory usage in the overhead calculation.



Table 1. Detection recall and overhead for DAB-only detectors, 2x replication, and our
adaptive solution. In the latter, two cases are shown corresponding to two protection
levels: 97% and 99.999% recall, respectively.

DAB-only Duplication Adaptive (case 1) Adaptive (case 2)

Sedov
Overhead 6% 110% 25% 52%

Recall 92% 100% 97% 99.999%

BlastBS
Overhead 6% 110% 26% 56%

Recall 91% 100% 97% 99.999%

and (4) data-analytic-based (DAB) fault tolerance [26, 9, 2, 6]. ABFT and ap-
proximate computing are not general enough and have limited applicability, since
kernels need to be adapted manually and only a subset of them can be protected.
In the case of DAB, detectors take advantage of the underlying properties of the
applications’ data (their smoothness in the time and/or space dimensions) in
order to compute likely values for the evolution of the data and use those to flag
outliers as potential corruptions. In this work we combine replication-based and
DAB in order to avoid some of their individual shortcomings (i.e., the high cost
of replication and the limited applicability of DAB).

Replication mechanisms for fault tolerance have been studied extensively
in the past, especially in the context of aerospace and command and control
systems [8]. Traditionally, the HPC community has considered replication to be
too expensive to be applicable; and, to the best of our knowledge, it has not
been implemented in any real production system.

Liu et al. [17] propose partial replication in time by taking advantage of the
fact that soft errors in the first 60% of iterations of some iterative applications
are relatively tolerable. The idea is to duplicate all processes only during the
last 40% of iterations. Nakka et al. [20], Subasi et al. [24], and Hukerikar et
al. [15]—by introducing new programming language syntax—propose to make
the programmers responsible for identifying those parts of the code or data that
are critical and need to be replicated. In contrast to these solutions, which are
application dependent, our work is more general in the sense that we do not
require any specific knowledge of tolerability to errors of particular iterations,
variables, or code regions.

Partial replication in HPC where processes are chosen at random has also
been investigated. Research has shown, however, that such an approach does not
pay off [23]. In this work we choose the processes to replicate based on their data
behavior.

7 Conclusions and Future Work

In this paper we have shown that combining partial replication along with DAB
detectors allows us to get SDC protection levels that are close enough to those
achieved by duplication at a lower overhead price. Our results show that we can
get an overall SDC protection level, or recall, of 99.999% replicating only between



43% and 51% of all the processes with a maximum total overhead (upper bound)
of 52–56% (compared to 110% for duplication) for the applications analyzed.

As future steps for this work, we want to consider the situation where the
replication budget B is “elastic” during the length of the computation—for ex-
ample, a situation where we can replicate a small number of processes (say,
10%) during the majority of the computation but increase the rate to a higher
number (say, 60%), for a short period of time. This strategy can be useful for
situations where sharp data changes are concentrated not only in a particular
place in space but also in time. One can imagine an scenario in exascale where
systems will have spare resources, in our case nodes, which will be allowed to
be requested “on the fly” by applications and libraries in order to perform fault
tolerance tasks.

Acknowledgments

This material was based upon work supported by the U.S. Department of En-
ergy, Office of Science, Advanced Scientific Computing Research Program, under
Contract DE-AC02-06CH11357, and by the ANR RESCUE and the INRIA-
Illinois-ANL- BSC-JSC-Riken Joint Laboratory on Extreme Scale Computing.
The work at the Illinois Institute of Technology is supported in part by U.S.
National Science Foundation grants CNS-1320125 and CCF-1422009.

References

1. Fusion cluster at Argonne National Laboratory. [online] Available at
http://http://www.lcrc.anl.gov/guides/Fusion

2. Bautista-Gomez, L.A., Cappello, F.: Detecting silent data corruption through data
dynamic monitoring for scientific applications. In: PPoPP’14. pp. 381–382 (2014)

3. Bautista-Gomez, L.A., Cappello, F.: Detecting and correcting data corruption in
stencil applications through multivariate interpolation. In: 1st International Work-
shop on Fault Tolerant Systems (part of Cluster’15). pp. 595–602 (2015)

4. Bautista-Gomez, L.A., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N.,
Matsuoka, S.: Fti: High performance fault tolerance interface for hybrid systems.
In: SC’11. pp. 32:1–32:32 (2011)

5. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. International Journal of High Performance Computing Applica-
tions pp. 1–20 (2014)

6. Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., Cappello, F.: Lightweight silent
data corruption detection based on runtime data analysis for hpc applications. In:
HPDC’15 (short paper) (2015)

7. Borkar, S.: Major challenges to achieve exascale performance. Intel Corp. (April
2009)

8. Briere, D., Traverse, P.: AIRBUS A320/A330/A340 electrical flight controls – a
family of fault-tolerant systems. In: Proceedings of the IEEE International Sym-
posium on Fault-Tolerant Computing. pp. 616–623 (1993)

9. Chalermarrewong, T., Achalakul, T., See, S.C.W.: Failure prediction of data cen-
ters using time series and fault tree analysis. In: ICPads’12. pp. 794–799 (2012)



10. Dell, T.J.: A white paper on the benefits of chipkill-correct ecc for pc server main
memory. In: IBM Microelectronics Division. pp. 1–23 (1997)

11. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: SC’12. pp. 78:1–78:12 (2012)

12. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNe-
ice, P., Rosner, R., Truran, J.W., Tufo, H.: Flash: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal
Supplement Series (ApJS) 131, 273–334 (2000)

13. Hengartner, N.W., Takala, E., Michalak, S.E., Wender, S.A.: Evaluating experi-
ments for estimating the bit failure cross-section of semiconductors using a colored
spectrum neutron beam. Technometrics 50(1), 8–14 (Feb 2008)

14. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Transactions on Computers 100(6), 518–528 (1984)

15. Hukerikar, S., Diniz, P.C., Lucas, R.F., Teranishi, K.: Opportunistic application-
level fault detection through adaptive redundant multithreading. In: HPCS’14
(2014)

16. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice: Un-
derstanding the nature of dram errors and the implications for system design. In:
ASPLOS’XVII. pp. 111–122 (2012)

17. Liu, J., Kurt, M.C., Agrawal, G.: A practical approach for handling soft errors in
iterative applications. In: Cluster’15. pp. 158–161 (2015)

18. Mukherjee, S., Kontz, M., Reinhardt, S.: Detailed design and evaluation of redun-
dant multi-threading alternatives. In: ISCA’02. pp. 99–110 (2002)

19. Mukherjee, S.S., Emer, J., Reinhardt, S.K.: The soft error problem: An architec-
tural perspective. In: HPCA’05 (2005)

20. Nakka, N., Pattabiraman, K., Iyer, R.: Processor-level selective replication. In:
DSN’07. pp. 544–553 (2007)

21. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics (10th Edition).
Academic Press, New York (1959)

22. Snir, M., et. al.: Addressing failures in exascale computing. International Journal
of High Performance Computing 28(2), 129–173 (March 2014)

23. Stearly, J., Ferreira, K., Robinson, D., Laros, J., Pedretti, K., Arnold, D., Bridges,
P., Riesen, R.: Does partial replication pay off? In: DSN’12 (2012)

24. Subasi, O., Arias, J., Unsal, O., Labarta, J., Cristal, A.: Programmer-directed
partial redundancy for resilient hpc. In: CF’15 (2015)

25. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live
migration in hpc environments. In: SC’08 (2008)

26. Yim, K.S.: Characterization of impact of transient faults and detection of data
corruption errors in large-scale n-body programs using graphics processing units.
In: IPDPS’14. pp. 458–467 (2014)

27. Zachary, A.L., Malagoli, A., Colella, P.: A higher-order godunov method for multi-
dimensional ideal magnetohydrodynamics. SIAM Journal of Scientific Computing
15(2), 263–284 (1994)

Government License Section (please add after the reference section): The submitted manuscript
has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display publicly, by or
on behalf of the Government.


