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1 Introduction.

The purpose of this work is to further an ongoing study of performance and power profiling of workloads
relevant to high-performance scientific computing on heterogeneous architectures. In particular, this report
analyzes scaling, power, and GPU trace profiles of a proxy benchmark, AEFoam—which combines a tra-
ditional scientific workload (a computational fluid dynamics simulation) with machine learning tasks—on
various configurations of a CPU/GPU system.

2 History.

Data collection and development were performed on the Argonne Leadership Computing Facility’s ThetaGPU
system[2]. Details of the ThetaGPU specifications, dependency management, environment configuration, and
build process are detailed in the report of Spring 2022. None of this has changed (with one possible exception
detailed in the Appendix).

2.1 AEFoam.

AEFoam is one of the three “Solver Example” benchmarks presented as representatives of PythonFOAM][3].
Like its sister solvers, AEFoam combines the OpenFOAM[4] C++ computational fluid dynamics toolkit (for
simulation) with Python (for in situ data analysis): the C++ application initializes a Python interpreter and
controls it through Python’s C API. Unlike the other PythonFOAM solvers, however, AEFoam (whose name
stands for autoencoder) makes use of the TensorFlow[5] machine learning framework, which implements GPU
acceleration. It is therefore of interest as a proxy for Al-enabled scientific applications.

AEFoam’s control flow is cyclical; a single cycle is depicted in Fig. 1. Specifically:

1. OpenFOAM simulates fluid flow numerically on the CPU, calculating the value of each field at each cell
in its mesh for every iteration. The value of a field over the entire domain at a given iteration is called
a snapshot. A parameter called writeInterval controls the treatment of these snapshots. Normally,
OpenFOAM writes only the last of every writeInterval snapshots to disk and discards the rest
(since the storage and I/0O required to save and analyze them would otherwise soon grow prohibitive).
However, AEFoam instead preserves them in memory, passing them to the Python interpreter.

2. After a block of writeInterval snapshots are collected, they are used to train an autoencoder. Since
ThetaGPU’s version of TensorFlow was compiled with GPU support, this happens on the GPU (if one
is available).

3. OpenFOAM simulates another writeInterval timesteps. Each snapshot, as it is generated, is supplied
to the Python interpreter, where it is encoded and decoded by the autoencoder, and the error of
reconstruction calculated.



This cycle then repeats until the problem end time is reached. (N.B.: This description differs from that
given in [3] because it is based on the code provided in the supplementary repository, which differs from that
analyzed in the text.[6])

snapshots
S l
g CFD write
simulation interval

AE

Autoencoder
training
1
CFD
simulation
snapshot
._>(
encode decode

write out calculate error

Figure 1: AEFoam control flow on a single subdomain. Operations (depicted with rectangular nodes) and
data (rounded) in white occur in C++; those in green, Python. This figure is reproduced from [7].

Although previously studied only in serial, AEFoam was parallelized for this work in order to study its
scaling qualities. OpenFOAM provides built-in parallelization capabilites, implemented in MPI, via domain
decomposition: normal parallelized OpenFOAM workflows involve using OpenFOAM’s decomposePar utility
to divide the problem geometry into subdomains, running an OpenFOAM solver in parallel mode on the
decomposed problem (with each processor assigned to one subdomain and exchanging data at the subdomain
boundaries), and running the reconstructPar utility to reassemble the subdomain results into a single
solution for the entire domain.[8] (This study concerns only performance, not output, so decomposition is
not profiled and reconstruction is ignored completely.) This architecture means that each AEFoam process
will have its own Python interpreter; although the interpreter can access the MPI communicator, it will
train an individual autoencoder on its own subdomain only.

2.2 Modifications to AEFoam.

Several small changes were made to AEFoam, either to fix bugs or to improve data collection.

e A bug in handling Python references in C++ was fixed, preventing segfault-aborts under memory
pressure:

diff --git a/Solver_Examples/AEFoam/PythonComm.H b/Solver_Examples/AEFoam/
PythonComm.H
index db20acc..543ff6d 100644
--- a/Solver_Examples/AEFoam/PythonComm.H
+++ b/Solver_Examples/AEFoam/PythonComm.H
@@ -25,6 +25,7 @@ if (runTime.outputTime())
clock_gettime (CLOCK_MONOTONIC, &twl); // POSIX

// Call autoencoder
+ rank_val = PyLong_FromLong(rank) ;



PyTuple_SetItem(autoencoder_args, 0, rank_val);
(void) PyObject_CallObject(autoencoder_func, autoencoder_args);

@@ -59,6 +60,7 QQ else
clock_gettime (CLOCK_MONOTONIC, &twl); // POSIX

// Call encode
+ rank_val = PyLong_FromLong(rank) ;
PyTuple_SetItem(encode_args, O, array_2d);
PyTuple_SetItem(encode_args, 1, rank_val);
PyArrayObject *pValue = reinterpret_cast<PyArrayObject*>
@@ -81,6 +83,7 Q@@ else
clock_gettime (CLOCK_MONOTONIC, &twl); // POSIX

// Call snapshot
+ rank_val = PyLong_FromLong(rank) ;
PyTuple_SetItem(snapshot_args, 0, array_2d);
PyTuple_SetItem(snapshot_args, 1, rank_val);
(void) PyObject_CallObject(snapshot_func, snapshot_args);
diff --git a/Solver_Examples/AEFoam/PythonCreate.H b/Solver_Examples/AEFoam/
PythonCreate.H
index 8920095..50af1b9 100644
--- a/Solver_Examples/AEFoam/PythonCreate.H
+++ b/Solver_Examples/AEFoam/PythonCreate.H
@@ -52,7 +52,8 @@ volScalarField wpod_(U.component(vector::Z));
volScalarField urec_(U.component(vector::X));

// To pass rank to Python interpreter

-PyObject *rank_val = PyLong_FromLong(Pstream: :myProcNo()) ;
+int rank = Pstream::myProcNo();
+PyObject *rank_val = PyLong_FromLong(rank) ;

PyObject *array_2d(nullptr);

int encode_mode = 0;

This bug was known from previous work on the sister solver PODFoam (see section 2.2, item 6 of the Spring
report).

e Allocation of snapshot memory was moved from the stack to the heap:

diff --git a/Solver_Examples/AEFoam/PythonCreate.H b/Solver_Examples/AEFoam/
PythonCreate.H

index 50af1b9..fe8ef02 100644

--- a/Solver_Examples/AEFoam/PythonCreate.H

+++ b/Solver_Examples/AEFoam/PythonCreate.H

Q@@ -63,6 +63,6 @@ int encode_mode = O;

// Placeholder to grab data before sending to Python
int num_cells = mesh.cells().size();

-double input_vals[num_cells][1];

+auto input_vals = new double[num_cells][1];

This bug was also known from previous work (see section 2.2, item 10). This became necessary only for
larger problem sizes (when the memory needed to store entire blocks of snapshots could no longer fit on the



stack), and some configurations were profiled using the original build. However, both general principle and
empirical evidence suggest that the data remain comparable: memory management should not meaningfully
differ based on virtual address, as long as access patterns are the same, and a scaling analysis for both ‘stack’
and ‘heap’ versions showed no apparent performance difference.

e The Python module was patched to pin each autoencoder to a specific GPU:

diff --git a/Solver_Examples/AEFoam/Run_Case/python_module.py b/
Solver_Examples/AEFoam/Run_Case/python_module.py

index d7e3423..bbel374 100644

--- a/Solver_Examples/AEFoam/Run_Case/python_module.py

+++ b/Solver_Examples/AEFoam/Run_Case/python_module.py

@@ -16,6 +16,15 @@

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

from tensorflow.keras.models import load_model, Sequential, Model

+import mpidpy

+mpidpy.rc.initialize = False

+mpidpy.rc.finalize = False

+from mpidpy import MPI

+if MPI.Is_initialized(): # we’re not running in serial mode
+ gpus = tf.config.list_physical_devices(’GPU’)

+ if len(gpus) > O:

+ tf.config.set_visible_devices([gpus[MPI.COMM_WORLD.Get_rank() % len(
gpus)1], ’GPU’)
+

# Custom activation (swish)
def my_swish(x, beta=1.0):
return x * K.sigmoid(beta * x)

TensorFlow’s default behavior is to allocate almost all memory on all available GPUs, then run only on
the GPU with the lowest ID[9]. Enabling the TF_FORCE_GPU_ALLOW_GROWTH environment variable disabled
greedy allocation, while calling tf.config.set_visible_devices here striped the processes across all avail-
able GPUs.

2.3 Modifications to the case definition.

The case definition (that is, the directory structure defining the particular boundary value problem AEFoam
was solving) was modified in the following ways:

e The problem endTime was set to 0.035.

The original endTime of 10000 was far too long to work with (see section 2.2, item 11); a much shorter once
was necessary. The specific value 0.035 was chosen purely for convenience (it made the original problem size
finish within the maximum walltime of the debug queue).

e The geometry was re-meshed.

It was clear based on previous work that spatially larger problem sizes would be needed for good scaling data,
and the problem had to be re-meshed in order to change the size. The original mesh generation tool was
unavailable (due to affiliation and licensing issues). However, Dr. Maulik very kindly supplied the original
geometry file, along with instructions for using the open-source alternative Gmsh[11]:

1. Set the refinement parameter in the geometry file to the desired scale (smaller values are finer meshes).



2. Run gmsh -3 -format msh2 -o <out>.msh bfs.geo to generate a 3D mesh from the geometry file
bfs.geo.

3. Run gmshToFoam <out>.msh -case <case directory>/ to generate an OpenFOAM mesh from an
existing OpenFOAM case directory and a Gmsh mesh (gmshToFoan is supplied by OpenFOAM).

4. Edit <case directory>/constant/polyMesh/boundary, with reference to the original boundary file,
to restore the proper type and inGroups parameter values.

Because of the re-meshing, it was also necessary to replace one initial condition. One of the flow-field
variables, nut, was originally defined over the internalField as a nonuniform list of explicit values (derived
from the output of “another solver that assisted with accuracy/time-to-solution”[10]). Because this list was
not the correct length for the re-meshed geometry, it was replaced with a uniform value of 1 x 104,

2.4 Data collection.

Performance and power data were collected using version 2 of Mantis, a test harness[12] for automatically
running applications in multiple configurations through multiple profiling tools and compiling the results
in a single format. Where in Spring, benchmarks were run with ‘plugins’ taking the form of Bash scripts,
Mantis is now a Python library which can provide its own CLI or be called from other Python code. (Most
of the work on Mantis took place during Summer 2022 and is therefore outside the scope of this report.)
This AEFoam runscript does the latter:

import mantis_monitor
import itertools
import subprocess
import os

class AEFoam(mantis_monitor.benchmark.benchmark.Benchmark) :
cwd = ’/lus/grand/projects/SEEr-Polaris/Run_Case_G’
env = None # don’t overwrite externally-set env vars

@classmethod
def generate_benchmarks(cls, arguments):
return [
cls({’gpu_count’: gpu_count, ’ranks’: ranks, ’nodes’: nodes})
for (gpu_count, ranks, nodes)
in itertools.product(arguments[’gpu_counts’], arguments[’ranks’],
arguments[’nodes’])

]

def before_each(self):
print (f’Starting run with {self.gpu_count} GPUs’)
os.environ[’CUDA_VISIBLE_DEVICES’] = ’,’.join(str(i) for i in range(self.
gpu_count)) # os.putenv doesn’t update os.environ
print (’Cleaning output’, flush=True)
subprocess.run(’rm *.h5’, shell=True, cwd=self.cwd)
subprocess.run("find . -maxdepth 1 -regex
’\./\([1-9] [0-9]1*\ | [0-9] [0-9]*\. [0-9] [0-9]*\)’> -exec rm -r {} \;", shell=True,
cwd=self.cwd)
subprocess.run(’rm -r processor*’, shell=True, cwd=self.cwd)
if self.ranks > 1:
print (’Decomposing mesh’, flush=True)
subprocess.run(’decomposePar’, shell=True, cwd=self.cwd)



def get_run_command(self):
aefoam_bin = ’~/0OpenFOAM/hgreenbl-8/platforms/linux64GccDPInt32-spack/bin/
AEFoam-heap’
if self.ranks ==
return f’{aefoam_bin}’
if self.nodes ==
return f’mpiexec -np {self.ranks} {aefoam_bin} -parallel’

env_string = ’ ’.join(f’-x {var}’ for var in os.environ.keys())
ranks_per_node = self.ranks // self.nodes
return (

f’mpiexec -hostfile $COBALT_NODEFILE {env_string} -display-map °’
f’-np {self.ranks} -npernode {ranks_per_node} {aefoam_bin} -parallel’

def __init__(self, arguments):
self.gpu_count = arguments[’gpu_count’]
self.ranks = arguments[’ranks’]
self.nodes = arguments[’nodes’]
self.name = f’AEFoam_{self.gpu_count}gpu_{self.nodes}node_{self.ranks}rank’

mantis_monitor.monitor.run_with(AEFoam)

The AEFoam class defines what confguration parameters Mantis should accept for this benchmark, how to
set up or tear down each run (in this case, cleaning up old output and generating a fresh decomposition),
and how to actually run AEFoam (taking the configuration into account). Mantis itself handles actually
running each profiling tool and all data collection.

3 Results.

Data were collected for the following problem sizes:
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Figure 2: Numbers of points and faces in the problem sizes profiled. “baseline” refers to the original mesh
geometry.



The ‘heap’ version of AEFoam was required for refinements 0.004 and 0.003 due to their greater memory
requirements. However, a comparison of the ‘stack’ and ‘heap’ builds shows very little performance difference:
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Figure 3: Time to completion (s) vs ranks (#) for ‘stack’ (0.005) and ‘heap’ (0.005h) AEFoam (8 GPUs, 1
node). All scaling plots are log-log.

Refinements below 0.003 were not collected due to their even greater memory requirements. (An attempt at
0.002 was OOM-killed.)

Overall scaling results for single-node tests are shown in Fig. 4. Scaling was very weak at smaller problem
sizes and better at larger ones, but never showed consistent improvement all the way to maximum ranks;
even the largest problem sizes peaked at just 32 ranks (rather than the 128 available per node).

refinement
—— 0.003
0.004
— 0.005
— 0.01
— 0.02

baseline

10 1

10° 4

102 4

10° 101 102
ranks

Figure 4: Time to completion (s) vs ranks (#) for various refinements (8 GPUs, 1 node).



Surprisingly, the re-meshed problem ran much faster than the baseline at comparable problem sizes. Inspec-
tion of the output showed this to be due to the solver adopting a much greater timestep—approximately
1 x 10~* as opposed to the previous 3 x 10~%. This appears to be due to the change in mesh strategy rather
than the change in initial conditions, as keeping the baseline mesh but switching to a uniform nut made a
comparatively tiny difference:
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Figure 5: Time to completion (s) vs ranks (#) for ‘baseline’ and ‘baseline-uniform’ (baselineu) AEFoam (8
GPUs, 1 node).

The poor performance at small problem sizes was expected, as previous work had made it clear that the
baseline case definition was quite small. PODFoam, supplied with a functionally identical case directory, did
not scale past 8 ranks (see section 2.2, item 7 of previous report). Poor performance at high rank counts
was less expected.

This may be in part an artifact of the ‘simple’ decomposition method used by OpenFOAM coping poorly
with Gmsh’s meshes: multiple subdomains at higher rank counts contained no cells at all—and this was
almost completely independent of problem size!

Table 1: Number of empty subdomains, by refinement and ranks

baseline 1 110.02 1 010.01 1 01 0.005 1 0] 0.004 1 01 0.003 1 0
baseline 2 110.02 2 0]0.01 2 01 0.005 2 0| 0.004 2 0 0.003 2 0
baseline 4 110.02 4 01001 4 0] 0.005 4 01 0.004 4 0| 0.003 4 0
baseline 8 10.02 8§ 0]0.01 8 0] 0.005 8 0 0.004 8 0] 0.003 8 0
baseline 16 1002 16 0001 16 0]0.006 16 0] 0.004 16 0] 0.003 16 0
baseline 32 2002 32 1]001 32 1]0005 32 1]0.004 32 1]0.003 32 1
baseline 64 4002 64 3001 64 3]0005 64 3|0.004 64 3]0.003 64 3
baseline 128 8 | 0.02 128 9 | 0.01 128 9| 0.0056 128 9| 0.004 128 9| 0.003 128 9

0.005 256 18 0.003 256 18

0.005 512 36 0.003 512 36




Except for the baseline problem, with its different mesh, the number of empty subdomains depended solely
on the number of subdomains total, and not at all on the problem size. Naively, one might expect that
as refinement increased, cells would grow smaller everywhere, and the number of empty subdomains would
decrease, but this is not the case. Inspecting the rendered mesh (for example, in the Gmsh GUI) reveals that
there are significant differences in cell size between the center of domain and the area around its edges; it is
possible that this overwhelms the general decrease in cell size. Using a different decomposition method (such
as the ‘Scotch’) might or might not ameliorate this. Regardless, the presence of multiple empty subdomains
implies that many more have only a few cells, further decreasing the effectiveness of decomposition.

However, the poor performance is certainly also due to GPU contention.
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Figure 6: Time to completion (s) vs ranks (#) for 8-GPU (0.003) and 0-GPU (0.003c) AEFoam (refinement
0.003, 1 node).

Disabling GPU usage actually resulted in better scaling at the high end: although 8-GPU AEFoam performed
better than 0-GPU AEFoam through 64 ranks, 0-GPU was better—mnot just relatively, but absolutely—at
128 ranks.

This is supported by the results for scaling performance across multiple nodes. (mpiexec’s -npernode option
maps ranks to nodes by block, so the striping of ranks to GPUs still distributes them appropriately to all
GPUs on a given node. This is confirmed by -displaymap and GPU usage metrics such as power draw.)
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Figure 7: Time to completion (s) vs ranks (#) for 1, 2, and 4 nodes (8 GPUs, refinements 0.005 and 0.003).



Increasing the number of nodes for a given rank count provides little or no benefit up to 16 ranks (there is
little or no detriment, either, suggesting that data transfer between nodes is not a significant issue—mnot too
surprising, since this need only occur at subdomain boundaries and is therefore limited), but does show some
benefit at 32 ranks and above, although not enough to improve scaling past 64. This suggests that contention
becomes an issue at approximately 2—4 autoencoders per GPU, which is consistent with preliminary results
from 1-GPU AEFoam:
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Figure 8: Time to completion (s) vs GPUs (#) for 1-128 ranks (refinement baseline, 1 node). Data could
not be collected for 64 or 128 ranks on 1 GPU because the amount of memory required exceeds that available
on a single GPU.

The size of the training dataset for each autoencoder should approximately halve for each doubling of the
rank count, but this evidently does not translate to maintaining a constant training speed.

This is also illustrated by GPU power draw data.

On one node, from 1 to 8 ranks, the power spikes of the training intervals not only come closer together (as
the CFD simulation on the CPU speeds up) and are themselves shorter (as the total complexity of training
decreases with the input width), but draw less power (as the input decreases in size).
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Figure 9: Power draw (W) vs time (100 ms) for 1-8 ranks. All power data was collected at refinement 0.005.
GPU 0 is shown as representative. Measurement error may result in large baseline differences between time
series.



From 8 to 16 ranks, the spikes still come closer together (as additional resources are still being added on the
CPU side), but the improvements in duration and amplitude are less clear.
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Figure 10: Power draw (W) vs time (100 ms) for 8-16 ranks.

Above 16 ranks, the spikes are increasingly smeared out, appearing to decrease in amplitude but not area-
under-curve. (Unfortunately, this power data is likely too noisy to calculate total draw accurately; collection
additional data at higher time resolutions could prove helpful here.) This cannot be explained by training
intervals desyncing; neighboring processes must communicate during each iteration to exchange data at
subdomain boundaries, and AEFoam’s output confirms that all ranks always enter and leave the training
phases together. It is a genuine increase in the duration of the training itself.
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Figure 11: Power draw (W) vs time (100 ms) for 1664 ranks.



On two and four nodes, behavior similar to that of one node is apparent at equivalent rank-per-node counts:
at first a rapid increase in speed and decrease in power consumption, giving way to stagnation at ap-
proximately 16 ranks per node (again, 2-4 autoencoders per GPU), followed by large increases in training

duration.
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Figure 12: Power draw (W) vs time (100 ms) for various ranks (2 and 4 nodes).

Distributing the same number of ranks across increasing numbers of nodes decreases power draw per GPU—
as expected, since although the size of the training datasets are unchanged, fewer of them are being processed

on each GPU.
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Figure 13: Power draw (W) vs time (100 ms) for 1-4 nodes (32 ranks).



Perhaps more surprisingly, distributing the same number of ranks per GPU across increasing numbers of
nodes still decreases power draw per GPU: it seems that the decrease in dataset size alone is sufficient to
reduce demand.
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Figure 14: Power draw (W) vs time (100 ms) for 1, 2, and 4 nodes (16, 32, and 64 ranks).

Of course, the effect of increased decomposition on total power draw is unlikely to be as good as constant,
never mind better (even assuming that GPUs are never turned off if not in use). Again, the noisiness of
these data make it difficult to measure this accurately.

Finally, GPU trace data were collected for 1-8 ranks on 8 GPUs, refinement 0.005, 1 node. (Attempts to
trace at higher rank counts hanged for unclear reasons.)
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Figure 15: Data transferred host-to-device and device-to-host (MB), by ranks.

Device-to-device movement was negligible. The steadily decreasing ratio of host-to-device to device-to-host



movement is expected: the total input size summed over all autoencoders remains the same (so the host-to-
device movement increases only by the overhead of additional autoencoders), whereas the total output size
is a multiple of the number of autoencoders (so the device-to-host movement increases almost linearly, less
any overhead). However, the cause of the faltering of this pattern at 8 ranks is unclear.

The memory time summary showed results similar to the size summary. The CUDA API summary had
host-to-device and device-to-host memory copies as the second and third biggest runtime contributors,
respectively, behind cuEventRecord at #1 (typical of a TensorFlow workload); together these three calls
made up 96.1% of the CUDA API call runtime. The kernel summary was much more long-tailed, with
TensorFlow’s ApplyAdamKernel at just 18.6% of total kernel runtime.

Complete datasets are available in the Mantis format.

4 Future work.

The immediate next step is the collection of more targeted metrics (likely using both the perf[13] and Nsight
Systems|[14] Mantis collectors) to better understand the costs of data transfer between hosts and devices,
among hosts, and between cache levels.

Beyond that, one possible future direction is a comparison of the current AEFoam architecture, with its iso-
lated autoencoders, to a distributed ML model. Although TensorFlow itself implements distributed training
strategies for multiple GPUs, and third-party wrappers like Horovod[15] allow training to be distributed
over multiple nodes, neither of these features can easily be grafted onto AEFoam, because OpenFOAM’s
domain decomposition paradigm is a poor fit for the type of parallelism useful in distributed training. Each
OpenFOAM process has a small piece of every snapshot; a distributed learning model would rather have a
small sample of complete snapshots. However, this is not insurmountable. mpi4py[16] provides the primitives
necessary to redistribute data, and AEFoam could be rewritten to train one model per GPU, one model per
node, or—with the use of Horovod—one model in toto. (The technical problem of getting OpenFOAM to
run under the MPI threading level required to safely combine Horovod with mpidpy is complex but solved.)
Although it may have seemed like a poor fit a priori, the results presented here show that AEFoam is not
making the best possible use of its GPUs.

Alternatively, the very tight Python-C++ coupling—efficient, but awkward to prototype and difficult to
generalize—might be compared to an application using one of the emerging libraries designed for simula-
tion/ML interaction, such as SmartSim[17]. Such tools have inevitable overhead, but programmers have
been trading efficiency for expressive power since the assembler. The future of Al-enabled science is quite
likely to involve general-purpose frameworks such as these, and quantifying the costs involved will be crucial
for good architectural decision-making in software and hardware alike.



Appendix: Bus errors

Some runs of AEFoam ended in bus errors like the following:

[thetagpu05:3649915:0:427126] Caught signal 7 (Bus error: nonexistent
physical address)
==== backtrace (tid: 427126) ====

0

libucs.

1
libucs
2

libucs.

3
4

libucs.

5

libucs.

6

libucs.

7

libucm.

8
libucm

/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
so.0(ucs_handle_error+0x77) [0x7fdcd513c5fc]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.

.50.0(+0x363b6) [0x7fdcd513c3b6]

/1lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
50.0(+0x364b2) [0x7fdcd513c4b2]
/1ib/x86_64-1linux-gnu/libpthread.so.0(+0x14420) [0x7fdcde78b420]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
$0.0(+0x14480) [0x7fdcd511a480]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
s0.0(+0x3dafd) [0x7fdcd5143afd]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
s0.0(+0x3£308) [0x7£fdcd5145308]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.
s0.0(ucm_event_dispatch+0x4d) [0x7fdcdc00e282]
/lus/theta-fs0/software/thetagpu/ucx/ucx-1.12.1_cuda-11.4_gcc-9.4.

.s0.0(ucm_vm_munmap+0x£f0) [0x7fdcdc00e958]

0/1ib/

0/1ib/

0/1ib/

0/1ib/

0/1ib/

0/1ib/

0/1ib/

0/1ib/

9 /lus/theta-fsO/software/thetagpu/openmpi/openmpi-4.1.4_ucx-1.12.1_gcc
-9.4.0/1ib/libopen-pal.so.40(opal_mem_hooks_release_hook+0x7c) [0x7fdcdcc7d3dc]

10 /lus/theta-fs0/software/thetagpu/openmpi/openmpi-4.1.4_ucx-1.12.1_gcc
-9.4.0/1ib/libopen-pal.so.40(+0x813d0) [0x7fdcdccd03d0]

11
12

/1ib/x86_64-linux-gnu/libpthread.so.0(+0x88aa) [0x7fdcde77f8aal
/1ib/x86_64-1linux-gnu/libc.so.6(clone+0x43) [0x7fdcdf8bb133]

[thetagpu05:3649915] #*** Process received signal x*x*
[thetagpu05:3649915] Signal: Bus error (7)
[thetagpu05:3649915] Signal code: (-6)
[thetagpu05:3649915] Failing at address: 0x89f70037b17b
[thetagpu05:3649915] [ 0] /1ib/x86_64-linux-gnu/libpthread.so.0(+0x14420) [0
x7fdcde78b420]
[thetagpu05:3649915] [ 1] /lus/theta-fsO/software/thetagpu/ucx/ucx-1.12.1
_cuda-11.4_gcc-9.4.0/1ib/libucs.so.0(+0x14480) [0x7fdcd511a480]
[thetagpu05:3649915] [ 2] /lus/theta-fsO/software/thetagpu/ucx/ucx-1.12.1
_cuda-11.4_gcc-9.4.0/1ib/libucs.so.0(+0x3dafd) [0x7fdcd5143afd]
[thetagpu05:3649915] [ 3] /lus/theta-fsO/software/thetagpu/ucx/ucx-1.12.1
_cuda-11.4_gcc-9.4.0/1ib/1libucs.so.0(+0x3£308) [0x7fdcd5145308]
[thetagpu05:3649915] [ 4] /lus/theta-fsO/software/thetagpu/ucx/ucx-1.12.1
_cuda-11.4_gcc-9.4.0/1ib/libucm.so.0(ucm_event_dispatch+0x4d) [0x7fdcdc00e282]
[thetagpu05:3649915] [ 5] /lus/theta-fsO/software/thetagpu/ucx/ucx-1.12.1
_cuda-11.4_gcc-9.4.0/1ib/libucm.so.0(ucm_vm_munmap+0xf0) [0x7fdcdc00e958]
[thetagpu05:3649915] [ 6] /lus/theta-fsO/software/thetagpu/openmpi/openmpi
-4.1.4_ucx-1.12.1_gcc-9.4.0/1ib/1libopen-pal.so.40(opal_mem_hooks_release_hook+0
x7c) [0x7fdcdcc7d3dc]
[thetagpu05:3649915] [ 7] /lus/theta-fsO/software/thetagpu/openmpi/openmpi
-4.1.4_ucx-1.12.1_gcc-9.4.0/1ib/libopen-pal.so.40(+0x813d0) [0x7fdcdccd03d0]



[thetagpu05:3649915] [ 8] /1ib/x86_64-linux-gnu/libpthread.so.0(+0x88aa) [0
x7fdcde77£8aal

[thetagpu05:3649915] [ 9] /1ib/x86_64-1linux-gnu/libc.so.6(clone+0x43) [0
x7£dcdf8bb133]

[thetagpu05:3649915] *** End of error message ***

Primary job terminated normally, but 1 process returned

a non-zero exit code. Per user-direction, the job has been aborted.

orterun noticed that process rank 17 with PID O on node thetagpuO5 exited on
signal 7 (Bus error).

This was extremely puzzling, particularly as it had no apparent precipitating event, was nondeterministic,
and appeared suddenly in mid-November despite no deliberate changes to the software or system.

However, I now suspect that it is related to a change in environment configuration. The builds of AEFoam
studied here (both the ‘stack’ and the ‘heap’ version) were linked against openmpi/openmpi-4.1.1_ucx
-1.11.2_gcc-9.3.0; this is confirmed by the Spack configuration files and the Spring report. The Spring
report further states explicitly that this is the version of openmpi that the conda/2021-11-30 module
depends on. However, the current module file for conda/2021-11-30 specifies that it depends on openmpi
/openmpi-4.1.4_ucx-1.12.1_gcc-9.4.0, a newer version. I cannot prove that this was the case, but I
believe that the conda module had its Open MPI dependency changed without being itself given a version
bump.

I have no specific evidence that the bus errors are related, but the coincidence is suspicious and I can
conjecture no other cause. (In the case of a segfault, I might contemplate an error in OpenFOAM or even—
given that this is still very new hardware—Open MPI, but a bus error is simply not a typical class of
bug.)

Due to time limitations, OpenFOAM and AEFoam were not recompiled against the newer Open MPI; failed
jobs were merely re-run. I am hopeful that the version mismatch does not otherwise affect the validity of
the results presented here.



References

[1] https://github.com/argonne-1cf/PythonFOAM

[2] https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
[3] https://arxiv.org/abs/2103.09389

[4] https://cfd.direct/openfoam/user-guide-v8/

[5] https://www.tensorflow.org/

[6] R. Maulik, private communication, Aug. 17, 2022.

[7] H.E. Greenblatt, et al, “Performance and Power Characterization of Al-enabled Applications on Hetero-
geneous System”. Unpublished.

[8] https://cfd.direct/openfoam/user-guide/v8-running-applications-parallel/
[9] https://www.tensorflow.org/guide/gpu

[10] R. Maulik, private communication, Nov. 8, 2022

[11] https://gmsh.info/

[12] https://github.com/mseryn/mantis-monitor

[13] https://perf.wiki.kernel.org/index.php/Main_Page

[14] https://docs.nvidia.com/nsight-systems/UserGuide/index.html

[15] https://horovod.readthedocs.io/en/stable/

[16] https://mpidpy.readthedocs.io/

[17] https://www.craylabs.org/docs/overview.html


https://github.com/argonne-lcf/PythonFOAM
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
https://arxiv.org/abs/2103.09389
https://cfd.direct/openfoam/user-guide-v8/
https://www.tensorflow.org/
https://cfd.direct/openfoam/user-guide/v8-running-applications-parallel/
https://www.tensorflow.org/guide/gpu
https://gmsh.info/
https://github.com/mseryn/mantis-monitor
https://perf.wiki.kernel.org/index.php/Main_Page
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://horovod.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/
https://www.craylabs.org/docs/overview.html

	Introduction.
	History.
	AEFoam.
	Modifications to AEFoam.
	Modifications to the case definition.
	Data collection.

	Results.
	Future work.

