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ABSTRACT
High performance computing (HPC) is undergoing significant changes.
The emerging HPC applications comprise both compute- and data-
intensive applications. To meet the intense I/O demand from emerg-
ing data-intensive applications, burst buffers are deployed in pro-
duction systems. Existing HPC schedulers are mainly CPU-centric.
The extreme heterogeneity of hardware devices, combined with
workload changes, forces the schedulers to consider multiple re-
sources (e.g., burst buffers) beyond CPUs, in decisionmaking. In this
study, we present a multi-resource scheduling scheme named BB-
Sched that schedules user jobs based on not only their CPU require-
ments, but also other schedulable resources such as burst buffer.
BBSched formulates the scheduling problem into a multi-objective
optimization (MOO) problem and rapidly solves the problem using
a multi-objective genetic algorithm. The multiple solutions gen-
erated by BBSched enables system managers to explore potential
tradeoffs among various resources, and therefore obtains better uti-
lization of all the resources. The trace-driven simulations with real
system workloads demonstrate that BBSched improves scheduling
performance by up to 41% compared to existing methods, indicating
that explicitly optimizing multiple resources beyond CPUs is essential
for HPC scheduling.
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1 INTRODUCTION
The exponential growth in computing power has enabled high-
performance computing (HPC) systems to attack scientific prob-
lems that are much larger and more complex. HPC applications
have diverse resource requirements. For them, CPU is not neces-
sarily the main resource determining the required performance,
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but the allocation with respect to other resources like I/O and
network bandwidth becomes more critical. A typical example is
data-intensive applications. These applications have extremely high
demand for storage systems. As the growth in computing power
continues to outpace the increase in network bandwidth between
compute nodes and parallel file system (PFS), PFS fails to rapidly
consume bursty data produced by HPC applications. As such, pro-
duction supercomputers are deployed with burst buffers to bridge
the performance gap between compute nodes and PFS. Burst buffer
is an intermediate storage layer positioned between compute nodes
and storage systems. It is typically built from solid-state drive (SSD),
offering one to two orders of magnitude higher I/O bandwidth than
PFS. Cori [2] at National Energy Research Scientific Computing
Center (NERSC) and Trinity [8] at Los Alamos National Laboratory
(LANL) are deployed with shared burst buffers.

As burst buffers are incorporated into HPC systems, it is cru-
cial for HPC schedulers to schedule user jobs based on their CPU
as well as burst buffer demands. Note that this study targets at
HPC schedulers that are responsible for allocating user jobs onto com-
pute nodes and other system-level schedulable resources, e.g., burst
buffers. The terms CPU and compute node are used interchange-
ably in this paper. The well-known schedulers in HPC include
Slurm, Moab/TORQUE, PBS, and Cobalt [1, 4, 5, 24]. Depending
on the site mission, HPC facilities deploy different scheduling poli-
cies to achieve certain goals [10]. For instance, first come, first
served (FCFS) with EASY backfilling is a default scheduling policy
deployed at many production systems [29]. Despite the use of dif-
ferent scheduling policies, a common goal for HPC scheduling is to
optimize resource utilization. Existing HPC schedulers are mainly
CPU-centric. They often disregard diverse resource requirements
and make scheduling decisions solely based on the application’s
processor footprint. Such a CPU-centric scheduling can easily result
in poor application performance and waste of system resources.

Slurm is a well-known scheduler that supports burst buffer sched-
uling [23]. Slurm allocates the jobs from the waiting queue in se-
quence until either CPU or burst buffer is exhausted. We denote
it as naive method in this study. This approach has a limited effi-
ciency: the depletion of one resource can prevent the queued jobs
from allocation, causing under-utilization of the other resource.
Two optimization approaches for solving multi-resource schedul-
ing problems may be applicable for co-scheduling CPU and burst
buffer. One approach is to optimize utilization of one resource and
treat other resources as constraints (denoted as constrained method)
[31, 36, 38]. Another approach is to combine utilizations of mul-
tiple resources into one objective by a weighted sum (denoted as
weighted method) [21, 22, 33]. Both optimization methods convert a
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Table 1: An illustrative example of scheduling multiple resources using different scheduling methods.
(a) Job waiting queue

Job Nodes Burst Buffers (TB)
J1 80 20
J2 10 85
J3 40 5
J4 10 0
J5 20 0

(b) The scheduling decisions made by different scheduling methods

Solution Selected
Jobs

Node
Utilization

Burst Buffer
Utilization

Naive
Method

Constrained
Method

Weighted
Method

Bin
Packing

Pareto
Set

1 J1, J4 90% 20% ✔

2 J1, J5 100% 20% ✔ ✔ ✔ ✔

3 J2, J3, J4, J5 80% 90% ✔

multi-resource scheduling problem into a single-objective optimiza-
tion problem. Such a conversion leads to the loss of a prominent
characteristic of multi-resource scheduling, i.e., trade-offs between
competing resources. Bin packing is discussed in the literature to
improve resource utilization for cluster scheduling [17, 30]. It mod-
els machines as bins and tasks as balls. Balls of different volumes are
packed into bins of certain capacities iteratively and the goal is to
minimize the number of bins used. This simple heuristic selects jobs
in a one-by-one manner, which may miss the best job combination
that maximizes resource utilization.

An Illustrative Example: Here we give a simple example to
show the limitations of the existing scheduling methods for sched-
uling CPU and burst buffer on HPC. Consider a system with 100
nodes and 100TB of burst buffers. Five jobs are in the queue, each
having different resource demands as shown in Table 1(a).

Table 1(b) compares the scheduling results of different meth-
ods. A naive method selects J1 and backfills J4 (explained in Sec-
tion 2.1) for execution, resulting in node utilization of 90% and burst
buffer utilization of 20%. Such a scheduling wastes 80TB of burst
buffers and prevents other jobs from being scheduled. A constrained
method may optimize node utilization under the constraint of the
burst buffers. A weighted method may use a linear combination of
node utilization with 80% weight and burst buffer utilization with
20% weight as the objective. A bin packing method may pick jobs
with the maximum dot product between the demands of the job and
the remaining amount of resource iteratively. The constrained, the
weighted and the bin packing methods select J1 and J5 for execution,
achieving node utilization of 100% and burst buffer utilization of
20% (Solution 2). While these methods improve node utilization,
they still leave 80% of the burst buffers wasted.

All these methods overlook an alternative solution: the selection
of J2-J5 for resource allocation by skipping J1 (Solution 3). Solution
3 achieves significantly higher burst buffer utilization, while slightly
lowering node utilization as compared to Solution 2. This simple
example highlights the importance of identifying a Pareto set1, each
solution in the Pareto set representing a tradeoff among different
objectives (i.e., the selection of different resources).

In this study, we present a multi-resource scheduling scheme
denoted as BBSched that allocates multiple resources to user jobs
based on their resource demands. Distinguishing from existing meth-
ods, BBSched aims to optimize the utilization of multiple resources
by providing a Pareto set for decision making. There are three key
obstacles to overcome in the design of BBSched. First, the design
has to be practical in the sense that it can make rapid scheduling
decisions. Current HPC systems typically require a scheduler to
respond in 15-30 seconds [9, 38]. Second, an efficient design has to

1Pareto set is a set of non-dominated solutions, being chosen as optimal, if no objective
can be improved without sacrificing at least one other objective [32]. For the example
shown above, the Pareto set contains Solution 2 and 3.

improve system-related performance with minimal impact on site
policies. Finally, HPC is dynamically evolving such that systems
are constantly expanded with new resources. Hence, the scheduler
is expected to be extensible to embrace emerging resources.

To tackle the above obstacles, several techniques are explored
for the BBSched design. First, BBsched is developed as a plugin to
existing HPC schedulers (denoted as base schedulers) to preserve
job priority according to a site’s policy. Unlike the traditional one-
by-one job selection used in the conventional scheduling, BBSched
leverages a window-based scheduling approach to dispatch a set of
jobs from the front of job waiting queue. Such a window-based de-
sign aims to maintain the job ordering given by the base scheduler.
Second, jobs are selected from the window for resource allocation,
with the objective to optimize resource utilization.We formulate the
multi-resource scheduling problem into a multi-objective optimiza-
tion (MOO) problem. Contrary to a single-objective optimization,
our MOO formulation simultaneously optimizes the utilizations of
multiple resources and returns a Pareto set. The Pareto set provides
a set of optimal solutions which enables system managers to make
a scheduling decision by considering the tradeoffs among different
optimal solutions. Considering that MOO is NP-hard [26], we ex-
plore a genetic algorithm as the MOO solver for meeting the rigid
time requirement.

We evaluate BBSched by means of extensive trace-based sim-
ulations with real workload traces collected from Cori at NERSC
and Theta [7] at Argonne Leadership Computing Facility (ALCF).
Additionally, we generate a series of workloads based on the real
traces to stress various resource usages. The goal is to extensively
evaluate BBSched under various scenarios, especially under the
cases of resource confliction and saturation. A series of experiments
are conducted to compare BBSched with existing methods (naive,
constrained, weighted, and bin packing methods) on scheduling
CPU and burst buffer. The results show that BBSched is capable of
improving resource utilization by up to 20% and reducing average
job wait time by up to 41%.

Furthermore, we present a case study to show BBSched can be
easily extended to schedule additional resources beyond CPUs and
burst buffer. The preliminary results clearly indicate that BBSched
outperforms existing methods in terms of both system-level and
user-level scheduling metrics. This demonstrates that explicitly opti-
mizing all resources is crucial to multi-resource scheduling.

The remainder of this paper is organized as follows. We start by
introducing background and related work in Section 2, including
HPC scheduling, burst buffer, and multi-resource scheduling. Sec-
tion 3 describes our design. The experimental results of scheduling
CPU and burst buffer are presented in Section 4. A case study of
incorporating more resources in BBSched is examined in Section 5.
Finally, we conclude the paper in Section 6.



2 BACKGROUND AND RELATEDWORK
2.1 HPC Scheduling
System-level HPC scheduling, also known as batch scheduling, is
responsible for assigning jobs to resources according to site poli-
cies and resource availability. It targets on scheduling compute
nodes along with other system-level resources. This is different
from core-level application scheduling or task scheduling that is
typically handled by operating systems. Well-known schedulers in
HPC include Slurm, Moab/TORQUE, PBS, and Cobalt [1, 4, 5, 24].
When submitting a job, a user is required to provide two pieces of
information: resources required by the job and runtime estimate
[15]. The jobs are stored and sorted in the waiting queue based on
a site’s policy. In the past, a number of scheduling policies have
been proposed, and one of the widely used policies is FCFS, which
sorts the jobs in the order of their arrivals. At ALCF, to support the
mission of running large-scale capability jobs, a utility-based sched-
uling policy, named WFP, is deployed which periodically calculates
a priority increment for each waiting job [10, 39]. EASY backfilling
is a commonly used strategy to enhance system utilization, where
subsequent jobs are allowed to skip ahead under the condition that
they do not delay the job at the head of the queue [29].

In this study, we denote the above schedulers that enforce job
priority according to a site’s policy as base schedulers. BBSched can
be used along with these base schedulers, for optimizing utilization
of multiple resources, without unnecessary impact of job priority
posed by the base scheduler.

2.2 Burst Buffer
HPC systems are facing the challenge of ever-growing gap between
compute power and I/O performance. Bridging this gap becomes
increasingly critical with the increasing data-intensive applications.
I/O behavior of data-intensive applications is characterized by in-
tense bursts of data access [28]. Burst buffers, an intermediate
storage layer between compute nodes and PFS, are designed to
absorb bursty I/O data effectively. They are typically built from
SSD, providing significantly higher bandwidth and lower latency
than PFS. A burst buffer can be either attached to compute nodes as
a local resource or configured as a global resource shared by com-
pute nodes. Cori at NERSC and Trinity at LANL adopt shared burst
buffers; Theta at ALCF and Summit [6] at Oak Ridge Leadership
Computing Facility (OLCF) are equipped with local SSDs.

Existing studies on burst buffer scheduling are mainly at applica-
tion level or at I/O server level. Little work has been done at system
scheduling level. Slurm supports co-scheduling of CPU and burst
buffer; however, it lacks optimization for CPU and burst buffer. This
study will address the co-scheduling of CPU and burst buffer with
the objective of optimizing the utilization of both resources.

2.3 Multi-Resource Scheduling
Considerable research exists in exploring optimization methods
for multi-resource scheduling. Constrained optimization is a com-
mon optimization method. For example, Wallace et al. addressed a
power-aware scheduling problem by optimizing node utilization
with a power limit [36]; Rao et al. examined the problem of reducing
the total electricity cost while guaranteeing the quality of service

in datacenters [31]; Xu et al. presented an energy-aware scheduling
framework which maximizes power consumption at off-peak time
with the constraint of nodes [38]. Weighted sum is another widely
adopted optimization method. For example, Ren et al. converted
an energy-aware cluster scheduling problem to optimization of the
weighted sum of energy cost and fairness [33]; Huang et al. treated
the problem of multi-resource allocation in geo-distributed clus-
ters as the minimization of the sum of the time spent on network
transfer and computation [21]; Jakob et al. formulated a workflow
scheduling problem in grid into optimizing a weighted sum of exe-
cution time, costs, and resource utilizations [22]. The above studies
basically convert multi-objective optimization problem into a single
objective optimization problem through a weighted combination or
a constrained approach. In contrast to these studies, we formulate
the problem as a MOO problem and use a multi-objective genetic
algorithm for solving the MOO problem. Unlike the constrained
or the weighted optimization that only provides a single solution
optimized for a first-class objective or a weighted sum of the objec-
tives, our method is capable of optimizing multiple objectives by
providing a Pareto set for decision making.

Multi-resource cluster scheduling is an active research area that
has received much attention in the past years. Cluster schedulers
typically emphasize fair resource allocation [12, 16, 17, 25, 37],
which distracts considerably from the goal of HPC scheduling,
i.e., high resource utilization. For example, dominant resource fair-
ness (DRF) allocates multiple resources satisfying strategy-proof,
envy-freeness, sharing incentive and pareto-efficiency [16]. Pareto
efficiency is defined as increasing the allocation of a user should not
decrease the allocation of at least another user [16], which is differ-
ent from the Pareto set targeted in this work. In practice, production
cluster schedulers also prefer fairness as their primary scheduling
goal [11, 20, 34, 35]. However, fairness and utilization are conflicting
goals and aggressively using fair sharing can hurt cluster utilization
[18]. In contrast, HPC systems are designed to run large jobs and
prefer users running large jobs [10]. Therefore, fair sharing is not a
concern in HPC scheduling. Some other cluster schedulers focus
on individual job performance, e.g., lowering job completion times
[30] and responding timely to latency-critical services [40]. Due to
the heterogeneous nature of cluster machines, job completion times
vary when jobs run on different machines. This assumption does
not hold on HPC systems. Moreover, to ensure timely response
to latency-critical services, clusters have to reserve resources for
unexpected load spikes, leading to low resource utilization [40].

A few studies in multi-resource cluster scheduling evaluated
the negative impact of fairness on utilization and made tradeoffs
between fairness and utilization [17, 18]. Owing to substantial
job arrival rate, cluster schedulers have to respond in seconds or
shorter. Hence, they seek quick but greedy methods for schedul-
ing. For instance, Grandl et al. have explored the potential of us-
ing multi-dimensional bin packing to improve resource utilization
for multi-resource clusters [17]. Although bin packing algorithms
are capable of making timely scheduling decisions, they allocate
jobs in a one-by-one manner based on individual job information
and therefore lead to less desirable performance as compared to
the MOO approach adopted in this study which jointly considers
resource requirements of multiple jobs. Altruistic scheduling im-
proves resource utilization as well as meets fair-share guarantees



by redistributing leftover resources, i.e., fractions of allocated re-
sources [18]. This is inapplicable to HPC scheduling because the
sizes of HPC jobs are fixed throughout their execution.

3 METHODOLOGY
In this section, we present BBSched for HPC scheduling under
multiple resource constraints. As shown in Figure 1, BBSched is
built as a plug-in to a base scheduler which enforces job prior-
ity according to a site’s policy. BBSched consists of two compo-
nents: a window-based scheduling and a scheduling optimization
scheme. BBSched begins with a window-based scheduling with the
aim to balance scheduling performance and enforcing site policies
(Section 3.1). The jobs in the window are selected to execute for
optimizing resource utilizations (Section 3.2). The optimization pro-
cess first formulates the multi-resource scheduling problem into
a multi-objective optimization (MOO) problem, which optimizes
node utilization and burst buffer utilization (Section 3.2.1). Given
that this MOO problem is NP-hard, we then develop an efficient
meta-heuristic for problem-solving (Section 3.2.2). We discuss how
to select the parameters in the solver in Section 3.2.3. The final
solution is chosen from multiple solutions by considering tradeoffs
among multiple resource usages (Section 3.2.4). Finally, we analyze
the computational complexity of BBSched in Section 3.3.

J1J2J6 J3J4J5

J1J2J3J4J5 Scheduling Optimization

HPC System

Jobs
Job Waiting Queue

Window-based Scheduling

First w jobs are copied to the 
window to enforce site policies.

Jobs in the window are selected for execution 
with the goal of optimizing resource utilizations

BBSched

Base Scheduler

Figure 1: The overview of BBSched.

3.1 Window-Based Scheduling
Rather than allocating jobs one by one from the front of the waiting
queue, we adopt the window-based scheduling which allocates
multiple jobs from a window at the front of the waiting queue [38].
In doing so, we balance the goals of optimizing system metrics
and enforcing site policies. Note that jobs with dependencies are
allowed to enter the window only if all the dependencies have
been completed. This restriction keeps dependent jobs in order and
preserves the priority of jobs with dependencies. Window size is
a tunable parameter. The selection of window size is dependent
on site policy and workload characteristics. A larger window size
means more jobs are considered for optimization; however, it also
means less preservation of the original job order. System managers
may choose a window size according to their preference for more
optimization or more preservation of job order. In addition, the
window size could be dynamically adjusted in response to system
status. Job queue length often changes. For instance, it is typically
longer during workdays and is shorter during weekends. In this
study, we use a static window size.

An issue with the window-based scheduling is job starvation,
meaning that a job may stay in the window without being selected
to execute. To prevent job starvation, we define an upper bound for

the number of iterations that a job can stay in the window. Once a
job passes the bound (e.g., 50), it must be selected to run.

3.2 Scheduling Optimization
3.2.1 Multi-ObjectiveOptimization (MOO) Formulation: The
optimization process determines which jobs are selected from the
window to execute so that node utilization and burst buffer uti-
lization are maximized. To achieve system performance goal, we
formulate the multi-resource scheduling problem into the following
MOO problem.

Suppose a system has N nodes and burst buffers of total B GB.
Assume that upon a scheduling invocation, the amounts of nodes
and burst buffers being used are Nused and Bused respectively.
Suppose J = {J1, . . . , Jw } is a set ofw jobs in the schedulingwindow:
job Ji requiring ni nodes and bi GB of burst buffers.

The scheduling problem can be transformed into the following
MOO: to determine a finite set of Pareto solutions X ; each Pareto
solution x ∈ X is represented by a binary vector x = [x1, . . . ,xw ],
such that xi = 1 if Ji is selected to execute and xi = 0 otherwise. A
Pareto solution optimizes the following two objectives:

(1) maximize node utilization: f1 (x ) =
w∑
i=1

ni × xi

(2) maximize burst buffer utilization: f2 (x ) =
w∑
i=1

bi × xi
Formally, the problem can be formulated as:

max ( f1 (x ), f2 (x ))

s.t.
w∑
i=1

ni × xi ≤ N − Nused , xi ∈ {0, 1}

w∑
i=1

bi × xi ≤ B − Bused , xi ∈ {0, 1}

where the constraints guarantee that assigned resources do not
exceed available nodes and burst buffers in a system.
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Figure 2: Impact of window sizes on average solution time.
Figure 2 and 4 were conducted with first 1000 jobs from a
Theta workload (see Table 2). Solutions above the red dash
line do not meet the time requirement of HPC scheduling.
3.2.2 MOO Solver: The above MOO problem is NP-hard. To find
all solutions, one has to exhaustively examine 2w possible solutions
and compare them to determine a Pareto set. As the window size
w increases, the number of possible solutions as well as the time-
to-solution increases exponentially (see Figure 2). Current HPC
systems typically require a scheduler to respond in 15-30 seconds
[9, 38]. To achieve fast decision making, we need a rapid solver to
solve the MOO problem. In this study, we explore a multi-objective
genetic algorithm [27] to solve the MOO problem. This genetic-
based algorithm approximates the true Pareto set iteratively, so it



requires much less time. It can be accelerated by leveraging parallel
processing [13]. A genetic algorithm attempts to mimic natural
selection: the population size is a constant P ; weak chromosomes
are extinct by natural selection, while strong chromosomes survive
and pass their genes to future generations.

0 1

0 0 1 1 0

1

Generation 
k

Crossover

Mutation

Selection

Generation
k+1

Parents: Children:

Set 1: Set 2:

Mutate some genes with 
probability Pm

Randomly pick chromosomes 
and perform crossover

Separate the chromosomes 
into two sets: 
Pareto solutions in Set 1 
and the rest in Set 2.  
Select chromosomes into 
the next generation. 
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0 0 1 1 0

1 0 1 0 0

0 1 0 1 0

1 11 0 0 1 0 0 0 1 1 0 0 1 00 1 0 1 0

Random Crossover Position

Figure 3: An example of the evolution process to solve the
MOO problem. MOO solver maintains a population of can-
didate solutions (4 chromosomes). A chromosome consists
of 5 genes, where each gene represents the selection of the
job at a specific location in the window and encodes as a bi-
nary number: 1 (selected) or 0 (not selected).

Figure 3 illustrates the process of solving the MOO problem. The
first generation is initialized randomly. Generations are evolved
iteratively via crossover, mutation, and selection operations. The
crossover operation generates two children by randomly selecting
two parents from the previous generation and swapping genes of
parents at a random position. The mutation is used to introduce
diversity and to prevent our solver from trapping in local optima.
With a low probability pm , the genes of the children are bit flipped.
A high mutation rate leads to a random search and results in poor
solutions. The selection operation constructs a new generation by
carrying over good chromosomes to the next generation. Specifi-
cally, we separate the chromosomes into two sets: Pareto solutions
in Set 1 and the rest in Set 2. A solution is chosen as a Pareto
solution, if improving one of its objectives would deteriorate at
least one other objective. If Set 1 has less than P chromosomes,
all the chromosomes in Set 1 are passed to the next generation
and then chromosomes in Set 2 (newer chromosomes have higher
priorities). If Set 1 has more than P chromosomes, we select those
with newer ages. Upon an evolution to new generation, the ages of
chromosomes are increased by 1.

When the number of generations reaches a predefined threshold
G, the above iterative process stops and the chromosomes in Set 1
in the final generation form a Pareto set.

3.2.3 Parameter Selection: The solver contains three parame-
ters: number of generations (G), population size (P ), and mutation
probability (pm ). According to the literature, pm is normally very
low, i.e., less than 0.1% [14, 19]. In our experiments, varying pm
has negligible effect on approximation accuracy. A larger value of
G and P means exploring a larger search space for optimization

but more time to solve the problem. Therefore, the selection of G
and P is a trade-off between performance and time-to-solution. The
widely adopted metric generational distance (GD) is used to measure
the accuracy of the solutions. GD is defined as:

GD (S ) = avдu ∈S (minv ∈S∗ (dist (u,v )))

where S is the solution set obtained by our MOO solver; S∗ is the
true Pareto set. GD computes the average distances between our
solution and its nearest true Pareto solution. The smaller the GD is,
the better the performance is.
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Figure 4: Impact of varying G and P parameters.
Figure 4 illustrates an example of the GD value and the time-to-

solution asG and P vary. Clearly, asG increases,GD decreases and
time-to-solution increases. For GD, the most significant improve-
ment is between 0 and 500 generations and the improvement slows
down after 500 generations. We also notice that increasing P leads
to a decrease inGD and increase in time. This example suggests that
our MOO solver is capable of achieving accurate approximations
with minimal overhead (less than 0.2 second). For the workloads
investigated in Section 4.1, setting G = 500 and P = 20 offers the
best tradeoff between accuracy and time-to-solution.

3.2.4 Decision Making: The output of the solver is a Pareto set,
and a decision maker needs to select one preferred solution. Differ-
ent HPC facilities may have different site policies and scheduling
priorities. System managers may use a site-specific metric for select-
ing a preferred solution out of the Pareto set. In this study, we use the
following rule. It first chooses the solution that maximizes node
utilization, and in case of multiple such solutions, it selects the
solution containing the jobs at the front of the window so as to
preserve the original job order. Next, it compares the solution with
other Pareto solutions for tradeoff analysis. The preferred solution
is replaced by another solution if the improvement on the burst
buffer utilization is more than 2x of the loss of the node utiliza-
tion. If more than one such solutions exist, the solution with the
maximum improvement is chosen.

The decisionmakingmay be adaptive, such that systemmanagers
dynamically adjust their selection policy according to scheduling
performance and user response. This adaptive decision making is
out of the scope of this work and is a topic of our future work.

3.3 Complexity Analysis
The window-based mechanism takes a constant time O (1). The
scheduling optimization iteratesG times. In each iteration, crossover,
mutation, and selection are operated on P chromosomes. In total,
the optimization requires O (G × P ) operations in the worst cases.
Therefore, the time complexity of our design isO (G × P ). This cost
can be further lowered via parallel processing of the MOO.



4 EVALUATION
In this section, we evaluate BBSched through extensive trace-based
simulation using real workload traces collected from production
systems. We describe the two real workload traces collected from
Cori and Theta and the eight synthetic workloads with various
burst buffer demands derived from the real traces (Section 4.1).
We then list the system- and user-centric metrics for scheduling
evaluation (Section 4.2) and the multi-resource scheduling meth-
ods for comparison (Section 4.3). Finally, we quantify BBSched’s
performance improvements over existing methods (Section 4.4).

Table 2: Overview of Cori and Theta workloads.

Cori Theta
Location NERSC ALCF
Scheduler Slurm Cobalt
System Types Capacity computing Capability computing

Compute Nodes 12,076
(2,388 Haswell; 9,688 KNL)

4,392
(4,392 KNL)

Aggregated Memory 1,304.5TB 913.5TB
Shared Burst Buffer 1.8PB 1.26PB (projected)
Trace Period Apr. 2018 - Jul. 2018 Jan. 2018 - May. 2018
Number of Jobs 2,607,054 70,507
BB Data Source Slurm log Darshan log
BB Range [1GB, 165TB] [1GB, 285TB]

4.1 Workload Traces
Table 2 summarizes the real workload traces used in this study. They
represent two typical HPC workloads: one for capacity computing
and the other for capability computing. Note that both traces do
not include job dependency information and therefore we suppose
all jobs are independent in our experiment. The first workload is
a four-month job log on Cori from April to July in 2018. Cori is
deployed with a 1.8PB Cray Data Warp burst buffers. It uses Slurm
for job scheduling. The Slurm log records a number of information
per user job which include the requested number of nodes, the
requested burst buffer size, job runtime estimate, job submit time,
etc. Besides few extremely large requests (165TB), the burst buffer
requests are in the range of [1GB, 65TB]. Among all the jobs, 0.618%
of jobs request burst buffers and 0.204% of jobs request more than
1TB burst buffers. Burst buffers on Cori can be either assigned to
individual jobs or assigned to users as persistent reservations. One-
third of burst buffers on Cori are reserved persistently and their
lifetimes are independent of jobs.

The second workload is a half-year job log on Theta from Jan-
uary to May in 2018. While Theta is currently not deployed with
any shared burst buffer, we enhance the trace with burst buffer
requests by assuming there was a shared burst buffer of 2.16PB.
This assumption is based on the ratio of aggregated memory to the
total burst buffer volume on Cori and the aggregated memory on
Theta. The trace from Theta contains all the necessary information
except for the requested burst buffer size. To address this problem,
we use a corresponding Darshan [3] trace to extract the amount of
data moved between PFS and nodes and consider this amount to
be the potential burst buffer requests. In the half-year workload,
40% of jobs on Theta have Darshan I/O recording. 17.18% of the
jobs have more than 1GB data transferred and we set the amount
of transferred data as the corresponding job’s burst buffer request.
The requested burst buffer sizes are in the range of [1GB, 285TB].

One issue with both traces is that burst buffers are not heavily
used. There are two possible reasons. First, some jobs have burst
buffer demands but are currently not recorded in the system logs.
Second, burst buffer is a relatively new resource for users. As users
are getting more exposure to it, we expect significant increases in
requests for burst buffers. Having this log limitation in mind, in
addition to the two original workloads, we create eight synthetic
workloads, four workloads (S1-S4) for each machine, by expanding
the percentage of jobs requesting burst buffers to 50% (S1 and
S3 workloads) and 75% (S2 and S4 workloads). In these synthetic
workloads, the assigned burst buffer request is randomly selected
from the original burst buffer requests in a certain range. S1 and
S2 select requests from original requests greater than 5TB, while
S3 and S4 choose from requests greater than 20TB. Figure 5 shows
the distributions of burst buffer requests for all the ten workloads
(two systems, each with five workloads). As we can see, S3 and
S4 workloads have larger burst buffer requests than S1 and S2. S1
and S2 have similar distributions, but more jobs in S2 request burst
buffers. The similar pattern is observed in S3 and S4.
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Figure 5: Histograms of burst buffer distributions on Cori
(left) and Theta (right). The bin size is 10TB. The number in
the parenthesis is the aggregated volume of requested burst
buffers in each workload.

4.2 Evaluation Metrics
There are two classes of metrics for evaluating job scheduling: one is
to evaluate system-level performance from the perspective of system
managers, and the other is to evaluate the quality of service from the
perspective of users. In our experiments, we use four well-established
metrics:
• Node usage 2 measures the ratio of the used node-hours for
useful job execution to the elapsed node-hours.
• Burst buffer usage measures the ratio of the used burst
buffer hours to the elapsed burst buffer hours.

2Usage is a metric measuring resource utilization without considering availability.



• Jobwait timemeasures the interval between job submission
to job start time.
• Job slowdown measures the ratio of the job response time
(job runtime plus wait time) to its actual runtime. It is used to
gauge the responsiveness of a system. We filter out abnormal
jobs in calculating average slowdown, because many abnor-
mal jobs end abruptly at beginning of execution leading to
extremely high slowdowns.

Note that the first two metrics are system-level performance
metrics, whereas the last two are user-level performance metrics.

In the rest of the paper, the 1st half month data is used to “warm
up” the system and the last half month data is used to “cool down”
the system. We present the results in the remaining months.

4.3 Scheduling Methods
We compare eight multi-resource scheduling methods:
• Baseline: Baseline represents the naive method for multi-
resource scheduling (e.g., the one adopted in Slurm for burst
buffer scheduling).
• Weighted: This method aims to maximize a weighted com-
bination of multiple objectives. The weights are site tunable
parameters and system administrators can adjust them based
on the importance of different resources. For this method,
the weights of node utilization and burst buffer utilization
are set to 50% and 50% respectively. These weights present
the case where CPU and burst buffer are considered equally
important.
• Weighted_CPU: In this weighted method, the weights of
node utilization and burst buffer utilization are set to 80%
and 20% respectively. These weights present the case where
CPU is considered more important.
• Weighted_BB: In this weighted method, the weights of
node utilization and burst buffer utilization are set to 20%
and 80% respectively. These weights present the case where
burst buffer is considered more important.
• Constrained_CPU: It aims to maximize node utilization
under the constraints of burst buffers.
• Constrained_BB: It aims to maximize burst buffer utiliza-
tion under the constraints of node utilization.
• Bin_Packing: This method is analogous to the bin packing
method used in [17]. We compute alignment score (a dot
product between the vector of machine’s available resources
and the job’s requested resources) for jobs in the window and
then allocate jobs with highest alignment score recursively
until the machine cannot accommodate any further jobs.
• BBSched: The scheduling scheme presented in this work.
By default, we set the window size to 20, the number of
generation to 500, the population size to 20, and the mutation
probability to 0.05%.

In our experiments, each of these multi-resource scheduling
methods runs along with a base scheduler. With the Cori work-
loads, FCFS is used as the base scheduling method. With the Theta
workloads, WFP (described in Section 2.1) is used as the base sched-
uling method. To make fair comparisons, we use the same window
size for all methods. In addition, all the methods use EASY backfill-
ing [29] to mitigate resource fragmentation.

4.4 Results

Figure 6: Comparison of node usage on Cori traces
(top) and Theta traces (bottom). The performance of the
methods favoring CPU resource (Weighted_CPU and Con-
strained_CPU) are presented by the bars with lines on them,
while the performance of themethods biasing towards burst
buffers (Weighted_BB and Constrained_BB) are presented
by the bars with cycles on them.

Impact on Node Usage: Figure 6 compares node usage ob-
tained by different scheduling methods. Among all the methods,
BBSched yields the best node usage for 7 out of 10 workloads. The
most noticeable gains happened on Theta-S4 and Cori-S4. In the
other 3 out of 10 workloads, namely Cori-Original, Theta-S1, and
Theta-S2, Constrained_CPU method achieves the best node usage.
However, the performance difference between Constrained_CPU
and BBSched is negligible. When burst buffer is abundant, Con-
strained_CPU method obtains good performance on node usage
because it only optimizes node usage, whereas BBSched has to make
trade-offs between node usage and burst buffer usage. When burst
buffer becomes scarce, BBSched outperforms Constrained_CPU
method in terms of node usage. This is because burst buffer short-
age has become the bottleneck of allocation of CPU resource to jobs
with burst buffer requests. BBSched considers both resources and
therefore eases the burst buffer contention between jobs and miti-
gates resource wastage on CPU. We also notice that Weighted_BB
and Constrained_BB have very poor performance on node usage
with the worst reductions in 6.11% and 4.84% respectively com-
pared with the baseline. Considering that Weighted_BB and Con-
strained_BB favor burst buffers, they prioritize jobs that can make
better use of burst buffers, and as a result, waste CPU resources.

Impact on Burst Buffer Usage: Figure 7 shows burst buffer us-
age obtained by the eight scheduling methods. It is clear that all the
methods except Constrained_CPU improve burst buffer usage. The
unsatisfactory performance obtained by Constrained_CPU method
is because this method puts node usage as its sole optimization



objective and ignores burst buffer usage. This result clearly shows
that exploiting job’s complementary resource demands is crucial
for multi-resource scheduling. Although BBSched, Weighted and
Weighted_BB consider both node and burst buffer utilizations in
scheduling, weighted methods can only find one solution, while
BBSched can produce multiple solutions. Therefore, BBSched is
more likely to find a better solution frommultiple solutions, leading
to higher resource utilization. In summary, BBSched yields the best
performance on burst buffer usage for all the workloads, and the
performance improvement is as high as 15.46% over the baseline.

Figure 7: Comparison of burst buffer usage on Cori traces
(top) and Theta traces (bottom).

Node usage and burst buffer usage are correlated. Under the
scenarios that burst buffer usages are under 80% (Theta-Original,
Theta-S1, Theta-S2, Cori-Original, and Cori-S1), optimization meth-
ods can keep the node usage around 80%. But in the remaining
scenarios with heavy burst buffer requests, we observe the notice-
able drops in node usage in comparison to the original workloads.
This phenomenon indicates that heavy burst buffer requests cause
wastage in node resources. Among all the optimization methods,
Constrained_CPU suffers the most from the increase in burst buffer
requests. The node usage drops more than 15% from Cori-S3 to
Cori-S4 and from Theta-S2 to Theta-S3. We attribute this to Con-
strained_CPU that ignores burst buffer usage and is, therefore,
incapable of ease burst buffer contention between jobs. In contrast,
BBSched markedly improves node utilization on Theta-S3 (12.69%),
Theta-S4 (20.03%) and Cori-S4 (16.28%) compared to the baseline,
and reduces the differences in node usage among workloads. This
is because when workloads are shifting from node-bound to burst-
buffer-bound, plenty of nodes will be left unused, which provides
more room for optimization. We also find that the biased optimiza-
tion methods are effective in improving the usage of their favorite
resource, but are at the risk of decreasing the usage of other re-
sources. For example, Weighted_BB and Constrained_BB increase

burst buffer usage by 10.54% and 12.09% at the cost of decreasing
node usage by 6.11% and 4.84% respectively on Theta-S1. Similarly,
Constrained_CPU improves node usage by 0.18%, but reduces burst
buffer usage by 1.33% on Cori-S1. In contrast, unbiased optimiza-
tion methods, e.g., Weighted method, are more likely to improve
utilization of both resources. In addition, although Bin_Packing
is capable of improving both node and burst buffer usage, the im-
provement is no more than 3.72%, which is significantly less than
the gains of the optimization methods. This is because Bin_Packing
selects jobs iteratively based on individual job information, but not
attempts to find the best job combination which can optimize sys-
tem performance. This demonstrates that optimization is necessary
for improving system performance in multi-resource scheduling.

Figure 8: Comparison of average jobwait time onCori traces
(top) and Theta traces (bottom). The lower the average job
wait time is, the better the performance is.

Impact on Job Wait Time: In Figure 8, we compare average
wait time of the eight scheduling methods. It is clear that all meth-
ods improve average job wait time in comparison to the baseline.
BBSched achieves the most significant reductions on average job
wait time, by up to 33.44% on Cori and up to 41% on Theta compared
with the baseline. The second best method, Weighted_BB, improves
average job wait time by less than 26% on both machines. We also
notice that average job wait time increases dramatically as the burst
buffer requests increases. For example, when using the baseline
method, the average job wait time on Cori-Original is less than 6
hours, compared to 19 hours on Cori-S4. Additionally, the surge
of burst buffer requests provides more opportunities for the opti-
mization methods to reduce job wait time. For instance, BBSched
reduces the average job wait time by 21.30% on Theta-Original,
while it reduces the average job wait time by 41% on Theta-S4.

To understand the origin of the gains, Figure 9 shows the break-
down of average job wait time by job sizes on Theta-S4. We observe
that the most significant gain comes from small jobs. BBSched re-
duces average wait time by 48.29% on 1-8 node jobs, compared to



31.59% of reduction on 1024-4392 node jobs. The baseline method
on Theta (WFP) prefers large jobs. However, small jobs on Theta
wait less time than large jobs owing to EASY backfilling. The great
wait time reductions on small jobs suggest that the optimization
methods are more effective than EASY backfilling in avoiding re-
source fragmentation in multi-resource scheduling. We observe the
similar results on all other workloads, and thus we only present
the representative results on Theta-S4.

Figure 9: Breakdown of average job wait times by job sizes
on Theta-S4.

Figure 10: Breakdown of average job wait times by burst
buffer requests on Theta-S4.

To show the impact of burst buffer requests, Figure 10 presents
the breakdown of average wait time by burst buffer requests on
Theta-S4. Clearly, jobs with burst buffer requests wait longer times
than jobs without burst buffer requests. For example, when using
the baseline method, jobs with more than 200TB burst buffer re-
quests wait, on average, 10.25 hours as opposed to 2.5 hours of jobs
without burst buffer requests. We also observe that BBSched and
weighted methods make more significant reductions on average
jobs wait time of jobs with burst buffer requests. This is because
they are designed to optimize both node and burst buffer utilization
and therefore jobs with both node and burst buffer requests benefit
more from these methods. In contrast, Constrained_CPU fails to im-
prove average wait time of jobs with burst buffer requests, because
it only focuses on optimization CPU usage. For example, although
Constrained_CPU decreases the average wait time of jobs without
burst buffer requests by 32.43%, it increases the average wait time of
jobs with 100-200TB burst buffer requests by 17.21%. Under heavy
burst buffer requests, such as Theta-S4, Constrained_CPU optimizes
node utilization by allocating jobs without burst buffer requests.
But once jobs with burst buffer requests go over the threshold in
the window, they are forced to run leaving a fraction of the nodes
unused. Such inefficient job selections lead to poor performance
on both node and burst buffer utilizations and job wait times. Con-
strained_BB, on the hand, jeopardizes jobs without burst buffer
requests to improve wait times of jobs with burst buffer requests.

Figure 11: Breakdown of average job wait times by job run-
times on Theta-S4.

Figure 12: Comparison of average slowdown on Cori traces
(top) and Theta traces (bottom). The lower the average slow-
down is, the better the performance is.

If we look at the breakdown of average job wait time by job
runtimes in Figure 11, we find that jobs wait times increase signifi-
cantly with job runtimes. The reasons why short jobs wait less than
long jobs are the baseline policy (WFP) and EASY backfilling. In
WFP, shorter jobs get higher priorities to run. In EASY backfilling,
jobs can be backfilled if it does not delay the first job in the queue.
Hence, short jobs are more likely to be backfilled than long jobs. It is
interesting to notice that all optimization methods reduce average
wait time of long jobs, but increase the average wait time of short
jobs. This is because the optimization methods only take job’s re-
source requirement into consideration, which does not include job
runtimes. As the optimization methods improves resource usage,
less idle resources are left for backfilling. As a result, compared with
the baseline, the optimization methods lead to longer wait times for
short jobs owing to fewer opportunities for backfilling and shorter
wait times for long jobs due to improvement in resource usage.

Impact on Slowdown: Figure 12 compares average slowdown
of the scheduling methods. We find that the trends on average
slowdown are similar to that on average wait time. Additionally, the
performance of average slowdown is related to resource usage. The
average slowdowns of Theta-S4 and Cori-S4 are evidently higher
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Figure 13: Overall scheduling performance comparison using Kiviat graphs: Cori traces (top) and Theta traces (bottom). The
larger the area is, the better the overall performance is.

than other workloads. These workloads are also characterized by
low node usage and high burst buffer usage. In these scenarios,
even though more jobs are waiting to be scheduled, the severe
burst buffer contention prevents jobs with burst buffer requests
from being allocated, leaving a fraction of the nodes unused.

Holistic PerformanceComparison:To provide a holistic view
of the performance of different methods, we present the scheduling
results using Kiviat graph (see Figure 13). We use the reciprocal of
average job wait time and the reciprocal of average slowdown in
the plots. All metrics are normalized to the range of 0 to 1. 1 means
a method achieves the best performance among all methods and
0 means a method obtains the worst performance. For all metrics,
the larger the area is, the better the overall performance is.

Clearly, BBSched achieves the best and the most balanced perfor-
mance, as it improves all the metrics significantly. Weighted meth-
ods and constrained methods make improvement on some metrics.
Their overall performance, however, is unbalanced and is much
lower than BBSched. Besides the baseline method, Bin_Packing
obtains the poorest performance, as it is an aggressive approach
which makes scheduling decision based on isolated job information
rather than information of multiple jobs. We also find that as the
intensity of burst buffer requests increases, the areas of all meth-
ods except BBSched are shrinking. This suggests that BBSched can
make notable performance improvement even under heavy burst
buffer requests.

Sensitivity Analysis: Several parameters are used in the BB-
Sched design. The selection of the number of generations (G) and
population size (P ) is discussed in Section 3.2. The window size is
another parameter in BBSched. Tuning the window size enables us
to balance scheduling performance and preservation of the original
job order. A larger window size leads to better resource utilization
at the expense of higher computation overhead. Although window
size does not directly affect computational complexity of BBSched
(described in Section 3.3), a larger window size expands the search
space and thus need more generations and larger population sizes

Table 3: BBSched performance under different window sizes.
There are twonumbers per cell: the top is forCori-S4 and the
bottom is for Theta-S4.

Metrics
Window Size 10 20 50

CPU Usage 60.18% 64.90% 65.06%
67.12% 73.29% 74.34%

Burst Buffer Usage 92.53% 94.74% 94.65%
84.23% 89.54% 89.63%

Average Job Wait Time (s) 55,732 51,028 50,871
10,402 8,847 8,792

Average Slowdown 162.37 154.43 153.20
8.93 8.16 8.08

to achieve acceptable approximation. Table 3 shows the sensitivity
study on Cori-S4 and Theta-S4. As we can see, the most significant
improvement is obtained when the window size is between 10 and
20. The improvement slows down with further increase in window
size. Note that the Cori and the Theta workloads represent two
types of HPC computing, namely capacity computing and capability
computing. Considering that a larger window size can cause more
disturbance to the original job order as well as higher computation
overhead, we believe a window size of around 20 is an appropriate
option for typical HPC workloads.

SchedulingOverheads: Formethods other than BBSched, sched-
uling overhead depends on window size (w). As we increasew , the
scheduling overhead increases. For BBSched, the number of gener-
ation (G) is the main factor that affects scheduling time.

All experiments were performed on Intel Core i5 3.4GHz PC
with 4 GB of RAM. It is not surprised that, besides the baseline,
Bin_Packing uses the least time (0.1s whenw is 50) in making sched-
uling decision. This is because Bin_Packing is a greedy method
rather than an optimization method. Although other methods take
more time, they still satisfy the time requirement of HPC scheduling
(15-30 seconds). For example, if we set G to 2000 and w to 50 in
BBSched, the average scheduling time is less than 2 seconds.



5 INCORPORATING MORE RESOURCES
The design of BBSched is generally applicable to schedule other
shared or local resources. Local SSD is a representative local re-
source in HPC. Both Theta at ALCF and Summit at OLCF are
equipped with local SSDs. On Theta, each node is equipped with a
128 GB local SSD and some will be gradually replaced by 256GB
SSDs in the near future. In this section, we present a case study
to illustrate that BBSched can be easily extended to incorporate
additional schedulable resources.

Problem Formulation: Suppose a system has N nodes and B
GB burst buffer. Each node is equipped with either 128GB SSD or
256GB SSD. J = {J1, . . . , Jw } is a set of w jobs in the scheduling
window: job Ji requiring ni nodes, bi GB of shared burst buffer
and si GB of local SSD per node. For the j-th node assigned to job
Ji , its actual local SSD volume li j should be equal to or greater
than the requested amount si . The difference between assigned
SSD volume and requested SSD volume is considered as wasted
local SSD volume. In addition to the two objectives in Section 3.2,
we augment the MOO formulation with two additional objectives:

(3) maximize local SSD utilization: f3 (x ) =
w∑
i=1

si × ni × xi

(4) minimize wasted local SSD: f4 (x ) = −
w∑
i=1

(
ni∑
j=1

(li j − si )) × xi

The multi-resouce scheduling problem can be formulated as:

max ( f1 (x ), f2 (x ), f3 (x ), f4 (x ))

s.t.
w∑
i=1

ni × xi ≤ N − Nused , xi ∈ {0, 1}

w∑
i=1

bi × xi ≤ B − Bused , xi ∈ {0, 1}

si ≤ li j , li j ∈ {128, 256}

In the fourth objective, we minimize the wasted local SSD with the
constraint that the assigned local SSD volume li j is not less than
the requested amount si .

MOO Solver: The MOO solver basically remains the same and
the only change is the rule of selecting the preferred solution in
the decision maker. To accommodate one more resource, we adopt
the following rule. First, we choose the solution with the maximum
node utilization; next, we replace the preferred solution by another
solution if the sum of the improvement in burst buffer utilization,
local SSD utilization, and percentage of reduction in wasted local
SSD of another solution is more than 4x of the loss of the node
utilization. If we find more than one such solution, we choose the
solution with the maximum sum of improvement.

Workload Traces: In terms of the hardware configuration, we
assume 50% of nodes in the system are equipped with 128 GB local
SSDs, the rest of the nodes are equipped with 256 GB local SSDs. We
generate three workloads (S5-S7) on top of Cori-S2 and Theta-S2 by
creating job’s local SSD requests. In S5, 80% of jobs have 0-128GB
local SSD requests, and 20% of jobs have 129-256GB local SSD
requests. In S6, 50% of jobs have 0-128GB local SSD requests, and
50% of jobs have 129-256GB local SSD requests. In S7, 20% of jobs
have 0-128GB local SSD requests, and 80% of jobs have 129-256GB
local SSD requests. Jobs with more than 128GB local SSD requests
have to be allocated to nodes with 256GB SSD. Jobs with no more
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Figure 14: Overall scheduling performance comparison us-
ing Kiviat graphs: Cori (left) and Theta (right). Note that as
compared to Figure 13, the Kiviat graphs contain two addi-
tional metrics, that is, SSD utilization and the reciprocal of
wasted SSD.

than 128GB local SSD requests can be either allocated to nodes with
128GB or 256GB SSD. When assigning nodes to jobs with 0-128GB
local SSD requests, nodes with 128GB SSD are preferred over 256GB
SSD in order to mitigate wastage in local SSD.

Scheduling Methods: We compare seven scheduling methods,
i.e., Baseline, Weighted, Constrained_CPU, Constrained_BB, Con-
strained_SSD, Bin_Packing, and BBSched. Weighted method aims
to maximize the equally weighted sum of node, burst buffer, lo-
cal SSD utilization, and negative percentage of wasted SSD. Con-
strained_SSD method aims to maximize local SSD utilization under
the constraints of the other resources. The rest of the methods use
the same strategies as described in Section 4.3.

Results: Figure 14 shows a holistic view of scheduling perfor-
mance. We observe that BBSched achieves the best overall perfor-
mance on all workloads. After BBSched, Constrained_CPU and
Constrained_SSD methods have relatively good performance on
both node utilization and local SSD utilization. This indicates that
node utilization and local SSD utilization are correlated. Improving
the utilization of one type of the resource increases the utilization



of another resource. However, high local SSD utilization does not
necessarily mean low wasted local SSD resource. The constrained
methods and Bin_Packing method waste local SSD resource more
than the baseline, because they aggressively allocate nodes with
256GB SSD to jobs with 0-128GB SSD requests. Constrained_BB
obtains high burst buffer buffer utilization but low node and SSD
utilization. Both Weighted and BBSched methods yield balanced
performance. However, the improvement of Weighted method is
noticeably lower than BBSched.

6 CONCLUSION
In this paper, we have presented BBSched, a multi-resource sched-
uling scheme for HPC. In our design, the multi-resource scheduling
problem is formulated into a MOO problem and is rapidly solved
by a multi-objective genetic algorithm. BBSched generates a Pareto
set for decision making, which enables system managers to explore
potential tradeoffs among multiple resources for better utilization
of multiple schedulable resources.

We have compared BBSched with existing methods using two
real workloads and eight synthetic workloads. The extensive trace-
based simulations demonstrate BBSched outperforms the existing
methods in terms of both system-level and user-level metrics. Specif-
ically, BBSched is capable of improving the overall performance by
41% over naive method, 33% over bin packing method, 35% over con-
strained methods, and 20% over weighted methods. This indicates
that considering all resources in an explicit optimization is essential
for HPC systems with multiple schedulable resources.Moreover, we
have presented a case study to show that BBSched can be extended
to incorporate other resources (e.g., local SSDs in this case study).
Given the promising results demonstrated in this study, our future
work is to deploy and test BBSched on production systems.
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