
3-Dimensional Root Cause Diagnosis via Co-analysis

Ziming Zheng
Department of Computer

Science
Illinois Institute of Technology

zzheng11@iit.edu

Li Yu
Department of Computer

Science
Illinois Institute of Technology

lyu17@iit.edu
Zhiling Lan

Department of Computer
Science

Illinois Institute of Technology
lan@iit.edu

Terry Jones
Oak Ridge National

Laboratory
Oak Ridge, TN 37831
trjones@ornl.gov

ABSTRACT
With the growth of system size and complexity, reliability

has become a major concern for large-scale systems. Up-
on the occurrence of failure, system administrators typically
trace the events in Reliability, Availability, and Serviceabil-
ity (RAS) logs for root cause diagnosis. However, RAS log
only contains limited diagnosis information. Moreover, the
manual processing is time-consuming, error-prone, and not
scalable. To address the problem, in this paper we present
an automated root cause diagnosis mechanism for large-scale
HPC systems. Our mechanism examines multiple logs to
provide a 3-D fine-grained root cause analysis. Here, 3-D
means that our analysis will pinpoint the failure layer, the
time, and the location of the event that causes the problem.
We evaluate our mechanism by means of real logs col-

lected from a production IBM Blue Gene/P system at Oak
Ridge National Laboratory. It successfully identifies failure
layer information for 219 failures during 23-month period.
Furthermore, it effectively identifies the triggering events
with time and location information, even when the triggering
events occur hundreds of hours before the resulting failures.

Keywords
Diagnosis, Co-Analysis

1. INTRODUCTION

1.1 Motivation
Recognizing the growing impact of failures on today’s pro-

duction HPC systems and the projected trends for the sys-
tems of tomorrow, resilience is identified as a critical chal-
lenge, among the other three challenges (power, concurren-
cy, and memory/storage), for extreme-scale computing [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC-12, September 16-20, 2012, San Jose, CA, USA.
Copyright 2012 ACM 978-1-59593-998-2/09/06 ...$10.00.

Root cause diagnosis plays a critical role for improving sys-
tem resilience. Studies have shown that the average failure
repair time ranges from a couple of hours to nearly 100 hours
in production systems due to complications of various root
causes [24, 31]. A timely and accurate diagnosis can signif-
icantly reduce failure repair time, thereby reducing the loss
of processing cycles and maintenance cost [9].

Nevertheless, root cause diagnosis becomes increasingly
challenging as systems continue to increase in scale and com-
plexity. Despite of considerable studies on fault diagnosis,
it remains an open problem, in particular on large-scale sys-
tems composed of hundreds of thousands of components. We
identify two major issues with existing approaches. First, ex-
isting works mainly focus on a single data source, e.g., RAS
(Reliability, Availability, and Serviceability) log [32, 23] or
performance log [18], to trace fault-related information. The
problem is that a single data source typically contains only
limited information about the system and its operating en-
vironment, and consequently the information is inadequate
to identify the actual root causes in many circumstances
[24, 9, 34, 25]. Second, most studies provide coarse-grained
diagnosis such as pinpointing the faulty node [32, 18] or
suspicious events [7, 29]. There are many cases where such
a coarse-grained root cause identification is not sufficient
for effective fault management. For example, system man-
agers are unable to assign appropriate recovery mechanism
without knowing failure layer information [8, 9]; more de-
tailed location information of the problematic component is
essential for hardware replacement, especially given that a
node may associate with number of hardware devices [9];
and accurate time information is necessary to understand
time-delayed effects [23].

In this paper we present a novel root cause diagnosis mech-
anism for large-scale HPC systems. Distinguishing from ex-
isting studies, our method has two distinct features. First,
it synthesizes fault related information from multiple data
sources, rather than relying on one specific system log. In
this study we examine three system logs, i.e., RAS log, job
log, and environmental log. Here RAS log lists the fault re-
lated events, job log records job execution information, and
environmental log typically provides numeric status values
from the underlying hardware devices, such as temperatures,
clock frequency, fan speeds, and voltages. They are repre-
sentative system logs that are commonly collected on HPC

systems. For instance, IBM Blue Gene comes with a dedicat-
ed monitoring and logging system to collect these logs [17];
the OVIS monitoring tool developed from Sandia National
Lab can collect these data on various large-scale clusters [3].
Co-analysis of these logs can not only help us to understand
the failure impact on different layers, but also assist us to
pinpoint the root causes of failures. Second, it provides three
dimensional fine-grained root cause information. Here, three
dimension means that our root cause analysis can identify
the failure layer (i.e., hardware, system software, or appli-
cation), the time and the location of the events that cause
the failures.

1.2 Technical Challenges
Before presenting our detailed method, we list key chal-

lenges in the design of the proposed 3-D diagnosis mecha-
nism.

• Data volume. Due to the tremendous system size, data
collected for analysis are characterized by their huge
volume [24]. These data generally often contain noises
and redundant records. Hence, it is difficult to extract
important diagnosis information from a large amount
of data.

• Data diversity. As a single log alone does not contain
sufficient information for failure analysis, we have to
study multiple logs generated from multiple sources.
However, these logs often have different formats and
contexts, thereby making them hard to integrate.

• System complexity. Due to the complicated error prop-
agation among components in different layers, it is dif-
ficult to distinguish the failure layer information [8, 33].
Furthermore, due to the lack of priori knowledge of
system structure and component dependencies, it is
infeasible to apply the well-known techniques based
on causality graphs or dependency graphs for failure
layer identification on large-scale systems [11, 4, 21].

• Long latency. For large-scale systems, triggering even-
t may occur far away from the resulting fatal event,
and as such a large amount of data may be recorded
between the triggering event and its resulting failure
event [7, 10, 20]. Hence, static and fixed approach is
infeasible due to the long latency.

1.3 Paper Contribution
To address the above challenges, our design is based on

co-analysis of multiple system logs, and it contains four in-
terrelated steps as shown in Figure 1. First, preprocessing
tackles the challenge of data volume by significantly reducing
the amount of data for following data analysis. It removes
redundant records and noises from raw logs and extracts
important information for subsequent analysis. Second, to
address the second challenge — data diversity, information
fusion is utilized to synthesize the information from RAS
log, job log and environmental log. Third, layer identifica-
tion narrows down the search space by locating the layer
(i.e., application, system software, or hardware) where the
failure is generated. This step aims to address the third
challenge — system complexity— by co-analyzing multiple
logs on different layers, rather than analyzing the problem
at each layer separately. Finally, time and location identi-
fication pinpoints the triggering event via dynamic tracing

Figure 1: Overview of our root cause diagnosis mechanism.

window and probabilistic causality pruning. The key fea-
ture of dynamic tracing window is that it can trace back to
the triggering event that occurred days or even weeks ahead
of the resulting failure, which is infeasible by using conven-
tional fixed window methods. Hence, this step tackles the
fourth challenge listed above, i.e., long latency.

We evaluate our methodology by means of real logs col-
lected from a production IBM Blue Gene/P system at Oak
Ridge National Laboratory. Our method is capable of clas-
sifying the root causes of 219 fatal events into three layers.
Furthermore, it successfully identifies the triggering events
for these fatal events, even in case that the trigger event oc-
curs several weeks before the resulting failure. For example,
it pinpoints a trigger event as an unstable current output in
a faulty power module, which was reported 452 hours before
the resulting failure. While our case studies are contributed
to failure diagnosis in Blue Gene/P system, we believe our
diagnosis methodology can discover more root cause infor-
mation for variety HPC systems since it uses representative
system logs.

1.4 Paper Outline
The rest of the paper is organized as follows. A brief

discussion of related works is presented in Section 2. In
Section 3, we provide background information about the
Blue Gene/P system at Oak Ridge National Laboratory, and
three system logs collected from this machine. In Section 4
we present the detailed description of our methodology. Sec-
tion 5 discusses the case studies. Finally, we conclude the
paper in Section 6.

2. RELATED WORK
To mitigate the impact of failures, increasing attention

has been dedicated for automated root cause identification.
Existing works mainly focus on node level fault localization
[22, 18, 32, 13] and parallel programm debugging [11, 6, 4].
For example, the nodeinfo algorithm compares the frequen-
cy of message terms in each node to localize the faulty nodes
[32]. In [18], PCA and ICA based methods are adopted to
extract important features from system and application per-
formance metric, and cell-based outlier detection is used to
pinpoint the abnormal nodes. In [13], peer comparison diag-
nosis approach compares the I/O related metrics to identify
the faulty node across I/O servers. In terms of parallel pro-
gramm debugging, both [4] and [22] analyze the function call
traces to identify the trace that is most different from others
and pinpoint the suspect functions. In [11], DMTracker com-
pares the frequency of data movement on process chain to
identify abnormal data movements in MPI program. These

methods generally analyze specific jobs or assume similar
workloads. Our proposed method can work with them to
identify the notorious jobs and workloads, then trigger the
proper debugging progress. Meanwhile, our method can rec-
ognize faults unrelated to the applications such as hardware
problem, thus avoid unnecessary debugging overhead.
In distributed systems, common solutions for diagnosis

include fault propagation models (FPM) [15, 6] and trace
comparison [5, 30]. These solutions typically assume that
the system can be perturbed. Nevertheless, instrumentation
is often prohibitive in production HPC systems [23]. Thus
it is difficult to generate and maintain an accurate model,
especially given the unprecedented system size and dynamic
workload.
Statistical analysis is widely adopted to identify the symp-

toms associated with the failure. In [29], the message is high-
lighted for system administrator if it has more instances in
the log than the expected value for computer system in nor-
mal status. In [20], GIZA infrastructure is designed to use
several statistical data mining techniques to troubleshoot
the problems in IPTV systems. In [7], Pearson correlation is
adopted to extract relevant events from the system logs, and
tupling heuristic method is used to construct the episode in
event sequence. Distinguished from these studies, this paper
not only uses correlation analysis, but also studies the job
log and environmental log for triggering events identifica-
tion. Furthermore, we use the probabilistic causation based
method to screen off false triggering events.
Considerable research has demonstrates the effectiveness

of co-analysis of multiple data sources [25, 18, 34]. For
example, both [25] and [18] collect the data from OS lev-
el and application level for anomaly analysis. In [2], fine-
grained events generated by kernel, middleware and appli-
cation components are monitored to construct concise work-
load models. In our previous work [34], we present a co-
analysis method to study RAS logs and systemwide job logs
in Blue Gene/P system. In this paper, we extend [34] by
integrating the environmental data for root cause diagnosis.
Research in this paper is inspired by the work of Oliner

[23]. In [23], Oliner et.al. present a Structure-of-Influence
Graph (SIG) to isolate system misbehavior [23]. They calcu-
late the anomaly signal in each component and use statistical
correlation with time-delayed effect to identify the potential
faulty components. Our work fundamentally distinguishes
from Oliner’s work in three key aspects. First, their work
mainly focused on analyzing RAS events for root cause anal-
ysis. However, RAS logs only contain limited information,
which is inadequate in understanding failures and system be-
haviors [24]. Our work integrates the RAS information with
job log and environmental data to understand the underly-
ing system operating environment and the impact of failures
on multiple layers. Second, we explore different methods to
provide three dimensional fine-grained root cause informa-
tion. Especially, our study considers much larger range of
time delay between the triggering event and the resulting
fatal event, which may vary from seconds to days [10].

3. BACKGROUND
In this section, we briefly describe Blue Gene/P and the

system logs used in our experiments.

3.1 Eugene: Blue Gene/P System at ORNL
Eugene is a 2-rack Blue Gene/P system laid in two rows

Figure 2: The hierarchy of hardware components and naming
convention in Eugene.

(i.e., R0 to R1). The system consists of 8,192 compute n-
odes with a total number of 32,768 cores, offering a peak
performance of 27.9 TFlops [1]. In Eugene, each rack has
two midplanes (i.e., M0 to M1), which consists of 16 node
cards, 4 link cards, 1 service card, 1 clock card, 9 bulk power
supplies, and 10 fan assemblies. In each node card, there are
32 compute nodes connected into a 3D torus for communica-
tion, which are served by 1 I/O node and 8 power modules.
In each link card, there are 6 link card chips and 2 power
modules. The service card is served by 7 power modules. In
summary, there are 12 types of hardware components in each
midplane. Figure 2 illustrates the hardware components and
their hierarchical relationship in the Eugene machine.

In Blue Gene/P, a dedicated CMCS (Core Monitoring and
Control System) is responsible for system monitoring and
error checking. It acquires specific software and hardware
information directly through the dedicated control network.
Monitored information is stored in a back-end DB2 reposi-
tory. Three logs generated by CMCS in Eugene during the
three-month period (i.e., from 2009-11-05 to 2010-02-05) are
used in this study, and they are environmental data, RAS
log and job log.

3.2 Environmental data
On Blue Gene/P, the environmental monitors read status

information from the cards monitored and store the data
in the environmental database in a frequency of every 300
seconds. The environmental data are stored in 12 tables,
each of which represents one type of hardware components
in Eugene (see Figure 2). For each hardware component,
the sensors collect several environmental features such as
temperature, current, and voltage. The total number of
features used in our experiments is 3214. An example of
environmental data is shown in Figure 3.

3.3 RAS Log
On Blue Gene/P, RAS records are generated when CM-

CS notices special events (e.g., when abnormal readings are
encountered) from compute nodes, I/O nodes, and various
networks. The entries in the RAS log include hard errors,
soft errors, machine checks, and software problems [17]. An
example of RAS events is shown in Table 1.

• RECID is the sequence number for an event record in
the log, which is increased when a new record is added
to the log.

• MSG ID indicates the source of the message.

Figure 3: Environmental data is stored in 12 tables correspond-
ing to 12 types of hardware components. Here we show an exam-
ple from fan assemblies. In Eugene, there are 40 fan assemblies,
and 10 features collected from each location, resulting in 400 fea-
tures in total.

Items Content

RECID 2457581
MSG ID MMCS 0101
COMPONENT MMCS
SUBCOMPONENT MMCS OPERATIONS
ERRCODE BGPMASTER STARTED
SEVERITY INFO
EVENT TIME 2009-09-09-10.28.03.006954
FLAGS DefaultControlEventListener
LOCATION R00-M1-N1
SERIANUMBER 44V4173YL11K8021017
MESSAGE BGPMaster has been started. · · ·

Table 1: RAS data from Eugene

• COMPONENT is the software component detecting
and reporting the event. The COMPONENT could be
APPLICATION, KERNEL, MC, MMCS, BAREMET-
AL, CARD, or DIAGS.

• SUBCOMPONENT indicates the functional area that
generated the message for each component.

• ERRCODE identifies the fine-grained event type in-
formation.

• SEVERITY can be DEBUG, TRACE, INFO, WARN-
ING ERROR and FATAL, with increasing severity.

• EVENT TIME specifies the start time of event.

• LOCATION refers to the location where the event oc-
curs.

• MESSAGE is a brief overview of the event condition.

3.4 Job Log
The job log of Eugene is collected by CMCS as well. An

example of job information from the Eugene job log is shown
in Table 2.

• JOB ID is the sequence number for a job.

Items Content

JOB ID 7
EXECUTABLE mpirun.26838.bgpsn
START TIME 2007-10-18-21.51.16.627593
END TIME 2007-10-18-21.51.21.789395
LOCATION R01-M0-N12-128
USERNAME bgpadmin

Table 2: Job log from Eugene

• EXECUTABLE indicates the directory and the name
of executable file.

• START TIME is the time when the job starts to run
on the nodes.

• END TIME is the time when the job exits. The job
could be finished or interrupted by a failure.

• LOCATION refers to the location of the execution.

• USERNAME is the user name.

4. METHODOLOGY

4.1 Preprocessing
Raw logs cannot be directly used because they general-

ly contain redundant records and noisy data. As a result,
preprocessing is applied on raw logs to generate clean logs
as well as to extract important information before further
analysis [34]. Given that different system logs have different
formats and characteristics, in this study, we apply different
preprocessing mechanisms on them. Specifically, we apply
wavelet transformation, temporal-spatial filtering, and cat-
egorization tree on environmental log, RAS log, and job log
respectively.

With regard to environmental data, preprocessing has t-
wo main goals. First, as most features contain noisy sig-
nals, it is essential to filter out the noise and to extract
key tendencies of signals. Second, it is critical to identify
the timestamps of the abrupt change points, which gener-
ally indicate more diagnosis related information than stable
signals. In signal processing, wavelet transformation [28] is
a popular tool to serve these two purposes. The wavelet
transform decomposes the original data into approximation
coefficients and detail coefficients. The key tendencies are
stored in the approximate coefficients, while the information
of abrupt change points are stored in the detail coefficients.
An example of wavelet transformation based preprocessing
on environmental data is shown in Figure 4.

RAS log typically contains large volume of redundant record-
s, and temporal-spatial filtering is a widely adopted method
for removing its redundant data [24, 34]. The filtering method
presented in our previous work is used for preprocessing RAS
log [33]. Distinguishing from other temporal-spatial filtering
methods [24, 19], our filtering method is capable of preserv-
ing important diagnostic information, such as event start
time, event end time, and event locations.

With regard to job log, the execution history of user jobs
with the similar characters can provide important informa-
tion for diagnosis. As a result, the purpose of job log pre-
processing is to group the jobs via analyzing their principle
characters. In particular, we develop a categorization tree
based method to group the jobs. We first divide job records

0 50 100 150 200 250 300 350 400 450 500
20

40

60
Original signal from Bulk power temperature data on R01−M1−N05−P6

0 50 100 150 200 250 300 350 400 450 500
20

40

60
The de−noised signal presenting the key trendency of orignal signal

0 50 100 150 200 250 300 350 400 450 500
−10

0

10
The signal presenting the abrupt change points

Abrupt change point

De−noised

Abrupt change point

Noise

Figure 4: The wavelet based preprocessing of Bulk power tem-
perature data on R01-M1-N05-P6.

Figure 5: Job categorization tree.

into high-level classifications based on user names, and then
further group jobs into subcategories based on executable
files, job sizes, and job runtimes.
As shown in Table 2, user names, executable files, and job

sizes can be directly obtained from the job log. In terms
of job runtimes, further processing is needed for data dis-
cretization. The observation on job runtimes is that the
jobs from the same buggy application are usually interrupt-
ed after the similar execution periods [34]. As a result, we
use DBSCAN clustering algorithm [12] to divide the job run-
times into different groups. DBSCAN is a density-based al-
gorithm which identifies the clusters based on estimation of
the density distribution. One advantage of DBSCAN is that
we do not need to know the number of clusters at the begin-
ning of the process. After DBSCAN clustering, the ranges
of job runtimes are depicted on the lowest category level of
the categorization tree. An example of job categorization
tree is shown in Figure 5.

4.2 Information Fusion
After preprocessing, information fusion is applied to in-

tegrate multiple logs. For the purpose of failure diagnosis,
we consider the RAS fatal events as the central events and
connect them with the interrupted jobs and the subset of
environmental features related to the fatal events. Formally
speaking, for each fatal event F , information fusion gener-
ates a 3-tuple < F, JF , EF >, where JF is the set of jobs
interrupted by F and EF is the subset of environmental fea-
tures that are informative in depicting F .
In terms of job log, we can directly identify the job inter-

ruptions by matching the corresponding Event T ime and
Location attributes of the fatal events and jobs. In terms

Figure 6: An example of information fusion.

of environmental log, a simple strategy using time and loca-
tion matching is infeasible. Time delay is common between
hardware sensor readings and RAS recording because of the
different collection mechanisms. For instance, the records
in RAS log and job log are collected by event-driven mech-
anism, whereas environmental log is periodically collected
in every 300 seconds. Furthermore, with regard to location
dimension, there are 12 types of hardware components with
different location granularities in the environmental log (see
Figure 2), which is inconsistent with the location informa-
tion in RAS log.

To address these issues, we develop an algorithm to ex-
tract environmental features that are close to the fatal event
in both time and location dimensions (see Algorithm 1). In
the time dimension, a time window W is assigned to cov-
er the values of features in [TF −W,TF +W], where TF is
the start time of fatal event F . Due to the possible inter-
val caused by delay between hardware sensor readings and
RAS recordings, we set W as long as one hour to capture
the main tendencies of the environmental features nearby
TF . In the location dimension, for each type of hardware
component listed in Figure 2, our algorithm identifies the
specific components sharing the least common ancestor (L-
CA) with the fatal event. For example, if the location of
fatal event LF is R01-M0-N13-J23, all the node card power
modules from R01-M0-N13-P0 to R01-M0-N13-P7 are ex-
amined in our algorithm as they share LCA R01-M0-N13
with LF .

Note that Algorithm 1 only keeps the environmental fea-
tures with abrupt change points, which are more informative
in depicting fatal events than the other features.

Algorithm 1 Information fusion between RAS log and en-
vironmental log

Let TF and LF be the time and location of fatal event F
in RAS log.
Let Le be the location of environmental feature e.
EF ← ∅
for each component C do

if Le ∈ LCA(C,LF) then
if e has abrupt change point in [TF −W,TF + W]
then

EF ← EF

∪
e in C

end if
end if

end for

An example of information fusion is presented in Figure 6.

A BPC clock fatal event was reported in a computer code. It
interrupted job 36161. There are six environmental features
associated with it, one of which is the output current from
the node card power module.

4.3 Failure Layer Identification
In this study, we distinguish the source of failure into three

different layers, i.e., application, system software, and hard-
ware. Application failures denote the fatal events introduced
by users, such as buggy codes or user operation mistakes.
System software failures denote the fatal events that are
generated from system software like the operating system
or middleware. Examples include kernel panic and network
packet error. Hardware failures denote the fatal events o-
riginated from hardware facilities, such as power module or
link card. Note that the accurate failure layer information
is not provided by the failure logs directly in many cases
[34, 32]
To identify failure layer, our method examines failures of

the same type. With regard to application failure, the key
rationale is that users tend to resubmit their problematic
job upon job interrupt, thereby resulting in a series of failure
events [34]. Specifically, we compare the jobs interrupted by
the failures of the same type and identify the application
failure if the interrupted jobs show similar characters, e.g.,
user names, executable files, job sizes, and job runtimes.
In this study, we use the categorization tree (see Figure 5)
to measure job similarity score JS(i, j) between job i and
job j. If two jobs are grouped in the same category at the
lowest level, i.e., with the same user, executable file, job size
and job runtime, they are considered as extremely similar
jobs with score of 3. On the other hand, if two jobs have
different executable files, job sizes, and job runtimes, they
have a score of 0.
Based on the pairwise value of JS(i, j), we further an-

alyze all the interrupted jobs caused by the same type of
fatal events together. Suppose there are n jobs interrupted
by a specific type of fatal events, we define the overall job
similarity score JSA as follows.

JSA =

∑n
i=1 maxj=1:n,j ̸=i JS(i, j)

3n
(1)

While application failure usually leads to high JSA, JSA
alone cannot be used to distinguish between application fail-
ure and system failure. For example, when a hardware fail-
ure occurs, a scheduler may keep assigning the failed node
to the interrupted job [34], which can also lead to a high
score of JSA. To avoid misclassification, our method also
examines location information for layer identification. A fa-
tal event is considered as application failure if both of the
following conditions are satisfied (1) JSA is close to 1.0 and
(2) there exist two associated interrupted jobs which exhibit
the highest similarity score of 3, but have different locations.
To distinguish hardware failures, our key rationale is that

hardware failures of the same type generally show similar
waveforms of environmental features from the correspond-
ing hardware component. Specifically, for each fatal event,
our method compares the environmental features associated
with it and the failures of the same type. In this study, the
normalized cross-correlation [23] is adopted to measure the
similarity of environmental features. For a pair of time se-
ries of environmental feature x(t) and y(t), the normalized
cross-correlation ES(x, y) is defined as

ES(x, y) =
E[(x(t)− µx)(y(t+ τ)− µy)]

σxσy
(2)

where µx and µy are the mean values of x(t) and y(t), σx

and σy are the the standard deviations of x(t) and y(t), and
τ is the time-lag. In this study, we calculate ES(x, y) only if
both x(t) and y(t) have abrupt change points. τ is decided
by the time difference between the abrupt change points in
x(t) and y(t).

Suppose n fatal events of the same type are reported be-
fore F , we extract the matched features associated with all
the n+1 events (i.e., F and n fatal events of the same type).
For example, if the temperature feature from fan assemblies
is identified to be associated with all the events, this fea-
ture is identified as a matched feature. Suppose there are
m matched features, for each feature we calculate the the
similarity score between the F and the n fatal events of the
same type. We then select the feature exhibiting the high-
est value on average to calculate the overall environmental
feature similarity score ESA as follows,

ESA = max
j=1:m

(

∑n
i=1 |ES(fFj , fij)|

n
) (3)

where fij is the ith feature associated with the jth event,
and fFj is the ith feature associated with the fatal event F .
We classify a fatal event as hardware failure if its ESA is
close to 1.0.

For a fatal event, which is not application failure or hard-
ware failure, we classify it as a system software failure. Note
that system software failure may also introduces high JSA
score if it only interrupts limited jobs from a few users. How-
ever, as one system software failure usually interrupts multi-
ple jobs from a number of users, the JSA of system software
failure is generally lower than JSA of application failure.

4.4 Time and Location Identification
To pinpoint the time and location of root cause, our method

aims at identifying the triggering event. To this end, our
method analyzes the failures of the same type and their
precursor events. In particular, our strategy consists two
parts: dynamic window generation to dynamically set the
time interval preceding the fatal event for diagnosing, and
probabilistic causality pruning to find the precursor even-
t causing the fatal event based on correlation analysis and
probabilistic causality analysis.

4.4.1 Dynamic Window Generation
Existing studies mainly use a fixed time window before

the fatal events for diagnosing (e.g., a couple of hours) [7,
20, 29]. Nevertheless, such a static and fixed approach is not
effective since the time delay between the triggering event
and the resulting fatal event may vary from seconds to days
[10]. To address this issue, we develop a dynamic window
generation scheme where the tracing window is dynamically
tuned based on event correlation analysis.

With regard to hardware failures and system software fail-
ures, the window size is dynamically adapted based on the
time interval between two adjacent fatal events. Two fa-
tal events A and B are adjacent if they are reported at the
same location, and no other fatal event occurring between
them at the same location. Further, the time window will
be dynamically extended if two adjacent fatal events have

Algorithm 2 Dynamic window generation for hardware
failure and system software failure

Let F1, F2, · · · , Fn be n fatal events of the same type.
Let TFi and LFi be the time and location of fatal event
F .
Let Ai be the adjacent fatal event of Fi, LAi = LFi , TAi <
TFi . Let CAi be the failure type of Ai.
for i=1:n do

WFi ← TFi − TAi

end for
Split RAS log by max(WFi)
for i=1:n do

if lift(CAi , F) > 1 then
WFi ←WFi +WAi

end if
end for
return WFi

different event types but show positive correlation (see Al-
gorithm 2). Here the correlation between event A and B is
measured by lift [33, 27] as follows.

lift(A,B) =
P (AB)

P (A)P (B)
(4)

To estimate the probabilities P (A), P (B), and P (AB),
we split the RAS log into different slices by the maximum
size of the time window. Suppose there are n windows, in
which m windows contain event A, k windows contain event
B, and r windows contain both A and B, then P (A) = m/n,
P (A) = k/n, and P (AB) = r/n. If lift is greater than 1.0,
A and B are positively correlated, which generally indicates
causal relationship between A and B. As a result, we extend
the time window between A and B for further analysis.
In terms of application failure, the window size is decided

by job execution time. In other words, all the events occur-
ring between the job start time and the fatal event time are
covered in the time window.

4.4.2 Probabilistic Causation Pruning
To pinpoint the triggering event, our method first deter-

mines a list of candidate events within the tracing-back win-
dow via correlation analysis, and then identify the event by
applying probabilistic causality analysis. The list of candi-
date events is determined as follows. First, our method finds
out potential triggering events based on the failure layer in-
formation. In terms of application failures, it finds out the
precursor events associating with the same job as the fatal
event. In terms of hardware failures, it identifies the pre-
cursor events exhibiting similar waveforms of environmental
features as the fatal event. In terms of system software fail-
ures, we collect the events from the culprit nodes where the
interrupted job is executed. Next, our method selects the
events positively correlated with the fatal event, i.e., its lift
with the fatal event is greater than 1.0.
Next, our method explores probabilistic causality to iden-

tify the actual triggering event by removing other false trig-
gering events from the candidate list. Here false trigger-
ing event indicates the event sharing common cause of fatal
event [14]. For example, in our case study, a kernel problem
causes the network error, and finally leads to the network
failure. While the network error event shows positive cor-

Table 3: JSA scores of all the 59 fatal events. It is clearly
shown that JSA is a good metric to distinguish application
failures from other failures.

JSA 0-0.2 0.2-0.5 0.5-0.7 0.7-0.8 0.8-1
Application 0% 0% 0% 23% 77%
Hardware 76% 24% 0% 0% 0%
System software 13% 58% 29% 0% 0%

Table 4: ESA scores of all the 59 fatal events. It is clearly
shown that ESA is a good metric to distinguish hardware
failures from other failures.

ESA 0-0.2 0.2-0.5 0.5-0.7 0.7-0.8 0.8-1
Application 100% 0% 0% 0% 0%
Hardware 0% 0% 0% 24% 76%
System software 93% 7% 0% 0% 0%

relation with the resulting failure, it is not the triggering
event. Based on probabilistic causality theory [26], we de-
termine the actual triggering event as follows. Suppose both
A and B are candidate events, our method sorts them based
on their time stamps. If the ordering of A and B is not fixed,
both A and B are kept as actual triggering event. If A al-
ways occurs before B and the occurrence of B does not raise
the probability of F , i.e., P (F |AB) ≤ P (F |AB̄), then B is
removed as the false triggering event.

5. CASE STUDIES
In this section, we present case studies of using our diag-

nosis method on real system logs collected from a production
Blue Gene/P system at Oak Ridge National Lab. The de-
tails of these system logs are described in Section 3.

5.1 Failure Layer Identification
During the 23-month period, there are 219 fatal events.

To verify our layer identification, we get the layer informa-
tion from experts and split these events into training set and
testing set. The training set consists of 7 hardware failures,
36 system software failures, and 16 application failures. We
examine job similarity scores (JSA) and environmental fea-
ture similarity scores (ESA) of the fatal events in training
set in Table 3 and 4. Based on the results from training, we
classifying the failure layers in testing set, which consists of
13 hardware failures, 127 system software failures, and 20
application failures.

As shown in Table 3, in training set, JSA is a good metric
to distinguish application failures from hardware failures be-
cause 100% application failures show JSA > 0.7 and 100%
hardware failures show JSA < 0.5. However, JSA may lead
to misclassification of system software failures because 27%
system software failures with JSA > 0.5. This is because
the scheduler may keep assigning failed nodes to a series of
similar jobs [34]. Nevertheless, our mechanism cooperates
the location information with the job similarity score for ap-
plication failure identification, thus avoids misclassification
of system software failures.

As shown in Table 4, in training set, 100% hardware fail-
ures show high environmental feature similarity score, i.e.,
ESA > 0.7. Meanwhile, all of system software failures and
application failures have ESA < 0.7. As a result, ESA does
a good job of distinguishing hardware failures from other

Figure 7: Diagnosis of BPC clock chip failure from hardware layer. The root cause is due to the unstable current output in the power
module, which is reported 452 hours before the resulting failure.

failures.
Based on the training results, 0.7 of JSA and ESA are

used to classify failure layers in testing set. In terms of appli-
cation failure and hardware failure, our mechanism achieves
100% accuracy for all the 33 failures. In terms of system soft-
ware failures, we successfully classify 87.4% failures. There
are 16 failures with JSA > 0.7. However, the jobs interrupt-
ed by these 16 failures are reported from the same location-
s. By cooperating the location information, our mechanism
avoids classification of them as application failures.

5.2 Time and Location Identification
Our mechanism analyzes the triggering events for the 219

fatal events. Here we list four case studies to illustrate the
effectiveness of our time and location identification mecha-
nism.

5.2.1 Hardware Failure
On December 9th 2009, a BPC clock failure BpcClksNo-

tAllOn is reported in node card R01-M0-N13. The message
shows that not all of the BPC clocks are turned on. As
shown in Figure 7, our information fusion step identifies the
interrupted job 36161 and 6 associated environmental fea-
tures, such as output current and node card voltage. In
failure layer identification step, this fatal event is classified
as a hardware failure because ESA > 0.7.
In time and location identification step, dynamic window

generation mechanism obtains the maximum time window
of 656.7 hours. Then probabilistic causation pruning identi-
fies two types of events with positive correlation with BPC
clock chip failure, namely node power error and card power
error. Next, the card power error is removed as a false trig-
gering event because it always occurs after the node power
error and does not raise the probability of BPC clock chip
failures. Finally, the node power error from power module
R01-M0-N13-P2 is identified as the triggering event. This
type of error was continually reported 14 times and the ear-
liest one occurred 452 hours before the resulting BPC clock
chip failure.
Both triggering event and the BPC clock failure asso-

ciate the environmental feature of output current from power
module R01-M0-N13-P2. As a result, we believe the unsta-
ble output current is the root cause. This conclusion is con-
sistent with the knowledge from hardware experts. When
the power module cannot maintain proper outputs, a power
good signal will be generated. When the BPC clock chip re-
ceives this signal, it will automatically shut down, thus lead
to the occurrence of BPC clock chip failure.

5.2.2 Application failure

On June 2th 2009, a fatal event bg code oom is reported in
R01-M0-N11-J00, which indicates an out of memory failure.
As shown in Figure 8, our information fusion mechanism
identifies the interrupted job 27487, which has executable
file pstg2r.x. In failure layer identification step, this fatal
event is classified as a application failure because JSA > 0.7
and there exist two associated interrupted jobs with highest
similarity score but from different locations.

In time and location identification step, our dynamic win-
dow generation mechanism obtains the time window up to
707 hours. Then probabilistic causation pruning mechanism
identifies the trigger event as an error of insufficient mem-
ory introduced by pstg2r.x, which was reported 669.7 hours
before the resulting failure.

Obviously, it necessary to analyze the memory related
functions in pstg2r.x for debugging. While debugging is
outside of our study, our mechanism still provides useful
information. The results from information fusion show a
successful execution from the executable file pstg1r.x. As a
result, user can compare the difference between these two
versions to identify the potential bugs.

5.2.3 System Software Failure
On February 20th 2008, a torus sender failure is reported

in 16 I/O nodes. The message shows that data was sent in
torus network but not received. As shown in Figure 9, our
information fusion mechanism identifies that the interrupted
job 8406. In failure layer identification step, this fatal event
is classified as a system software failure because ESA < 0.2
and JSA < 0.5.

In time and location identification step, dynamic window
generation mechanism generates the maximum time window
of 42.6 hours. Then probabilistic causation pruning identi-
fies three types of events showing positive correlation with
the torus sender failure, namely torus receiver warning, torus
sender retransmission, and invalid memory address error.

While torus receiver warning and torus sender retransmis-
sion seem like more related to the torus sender failure based
on the contexts, these two events are identified as false trig-
gering events because they do not increase the probability of
torus sender failure if invalid memory address error occurs.
Finally, invalid memory address error is identified as the
triggering event. This error was from Linux kernel, which
was reported 42.3 hours before the resulting failure. When
the receiver tried to receive the packet from torus network,
it accessed invalid memory address thus dropped the data,
which finally leaded to the occurrence of torus sender failure.

To diagnose torus sender failure, system administrators
executed 135 testing programs in 506 hours. Our automat-
ed diagnosis method can significantly reduce the diagnosis

Figure 8: Diagnosis of out of memory failure from application layer. The root cause is an application bug that exceeds the limits of
memory, which is reported 669.7 hours before the resulting failure.

overhead, thereby reducing the impact of failure on system
resilience.

5.2.4 Rare Failure
While our methodology assumes multiple failures with the

same type have occurred in history, it still can provide par-
tial diagnosis information for rare failure via co-analysis. For
example, on July 22nd 2009, a new failure bg code panic
is reported, which indicates a kernel panic. Because it is
a new failure, we can neither calculate the JSA/ESA nor
adopt probabilistic causation analysis. To address the is-
sue of rare failure, we simply use information fusion and
dynamic window generation mechanisms. Our information
fusion identifies that the bg code panic failure interrupted
job 29780. In dynamic window generation step, we identify
a machine check error from DDR controller, which is asso-
ciated with the same job 29780 as the failure. As a result,
the memory related operations in job 29780 are suspicious
triggering event for further analysis.

6. CONCLUSIONS
In this paper, we have presented an automated mechanis-

m for root cause diagnosis in HPC systems. Distinguishing
from existing studies, our work effectively integrates infor-
mation from multiple logs, and provides three dimensional
fine-grained diagnosis information. Our case studies on a
production Blue Gene/P system have demonstrated the ef-
fectiveness of our mechanism in terms of discovering failure
layer information and triggering events with time and loca-
tion information.
As a part of our future work, we plan to further test this

diagnosis mechanism on more production HPC systems, in-
cluding Cray XT5 and general HPC clusters.

References
[1] S. Alam, R. Barrett, M. Bast, M. Fahey, J. Kuehn,

C. McCurdy, J. Rogers, P. Roth, R. Sankaran, J. Vet-
ter, P. Worley, and W. Yu. Early evaluation of IBM
BlueGene/P. Proc. of Supercomputing, 2008.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload mod-
elling. In Proceedings of OSDI, 2004.

[3] J. Brandt, A. Gentile, C. Houf, J. Mayo, P. Pebay,
D. Roe, D. Thompson, and M. Wong. OVIS 3.2 user’s
guide. SAND 2010-7109, Sandia National Laboratories,
October 2010.

[4] G. Bronevetsky, I. Laguna, S. Bagchi, R. Bronis, D. Ah-
n, and M. Schulz. AutomaDeD: Automata-based de-

bugging for dissimilar parallel tasks. In Proceedings of
DSN, 2010.

[5] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brew-
er. Pinpoint: problem determination in large, dynamic
Internet services. In Proceedings of DSN, 2002.

[6] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and
K. Vaswani. Holmes: Effective statistical debugging via
efficient path profiling. In Proceedings of ICSE, 2009.

[7] E. Chuah, S. Kuo, P. Hiew, W. Tjhi, G. Lee, J. Ham-
mond, M. Michalewicz, T. Hung, and J. Browne. Diag-
nosing the root-causes of failures from cluster log files.
In Proceedings of HiPC, 2010.

[8] N. DeBardeleben, J. Laros, J. Daly, S. Scott, C. Engel-
mann, and B. Harrod. High-end computing resilience:
Analysis of issues facing the HEC community and path-
forward for research and development. White Paper,
2009.

[9] N. Desai, R. Bradshaw, C. Lueninghoener, A. Cherry,
S. Coghlan, and W. Scullin. Petascale system manage-
ment experiences. In Proceedings of LISA, 2008.

[10] A. Gainaru, F. Cappello, F. J., and S. Trausan. Adap-
tive event prediction strategy with dynamic time win-
dow for large-scale HPC systems. In Proceedings of S-
LAML, 2011.

[11] Q. Gao, F. Qin, and D. Panda. DMTracker: Find-
ing bugs in large-scale parallel programs by detecting
anomaly in data movements. In Proceedings of Super-
computing, 2006.

[12] J. Han and M. Kamber. Data Mining:Concepts and
Techniques. Morgan Kaufmann, 2000.

[13] M. Kasick, J. Tan, R. Gandhi, and P. Narasimhan.
Black-box problem diagnosis in parallel file systems. In
Proceedings of FAST, 2010.

[14] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and
J. Han. Dustminer: troubleshooting interactive com-
plexity bugs in sensor networks. In Proceedings of Sen-
Sys, 2008.

[15] E. Kiciman and A. Fox. Detecting application-level fail-
ures in component-based internet services. IEEE Trans.
Neural Networks, 16(5):1027–1041, 2005.

[16] P. Kogge and et al. Exascale computing study: Tech-
nology challenges in achieving exascale systems. White
Paper, 2008.

Figure 9: Diagnosis of torus sender failure from system software layer. The triggering event is the invalid memory address error from
torus receiver, which is reported 42.3 hours before the resulting failure.

[17] G. Lakner and G. Mullen-Schultz. IBM BlueGene so-
lution: System administration. IBM Redbook, 2007.

[18] Z. Lan, Z. Zheng, and Y. Li. Toward automated anoma-
ly identification in large-scale systems. IEEE Trans. on
Parallel and Distributed Systems, 21(2):174–187, 2010.

[19] Y. Liang, Y. Zhang, A. Sivasubramanium, R. Sahoo,
J. Moreia, and M. Gupta. Filtering failure logs for a
BlueGene/L prototype. In Proceedings of DSN, 2005.

[20] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates,
Y. Zhang, and Q. Zhao. Towards automated perfor-
mance diagnosis in a large IPTV network. In Proceed-
ings of SIGCOMM, 2009.

[21] N. Maruyama and S. Matsuoka. Model-based fault
localization: Finding behavioral outliers in large-scale
computing systems. New Generation Comput, 28:237–
255, 2010.

[22] A. Mirgorodskiy, N. Maruyama, and B. Miller. Prob-
lem diagnosis in large-scale computing environments.
In Proceedings of Supercomputing, 2006.

[23] A. Oliner, A. Kulkarni, and A. Aiken. Using correlat-
ed surprise to infer shared influence. In Proceedings of
DSN, 2010.

[24] A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In Proceedings of DSN, 2007.

[25] X. Pan, J. Tan, S. Kalvulya, R. Gandhi, and
P. Narasimhan. Blind men and the elephant: Piecing
together hadoop for diagnosis. In Proceedings of ISSRE,
2009.

[26] J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[27] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. Iyer.
Improving log-based field failure data analysis of multi-
node computing systems. In Proceedings of DSN, 2011.

[28] X. Rao, H. Wang, D. Shi, Z. Chen, H. Cai, and Q. Zhou.
Identifying faults in large-scale distributed systems by
filtering noisy error logs. In Proceedings of DSNW, 2011.

[29] S. Sabato, E. Yomtov, and A. Tsherniak. Analyzing sys-
tem logs: A new view of what’s important. In USENIX
SysML workshop, 2007.

[30] R. Sambasivan, A. Zheng, M. Rosa, E. Krevat, S. Whit-
man, M. Stroucken, W. Wang, L. Xu, and G. Ganger.
Diagnosing performance changes by comparing request
flows. In Proceedings of NSDI, 2011.

[31] B. Schroeder and G. Gibson. A large-scale study of fail-
ures in high-performance computing systems. In Pro-
ceedings of DSN, 2006.

[32] J. Stearley and A. Oliner. Bad words: Finding faults
in spirit’s syslogs. In Proceedings of the Workshop on
Resiliency in High Performance Computing, 2008.

[33] Z. Zheng, Z. Lan, B. Park, and A. Geist. System log pre-
processing to improve failure prediction. In Proceedings
of DSN, 2009.

[34] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai,
S. Coghlan, and D. Buettner. Co-analysis of RAS log
and job log on Blue Gene/P. In Proceedings of IPDPS,
2011.

