
Proceedings of the International Conference on Parallel Processing 2008

1

Dynamic Meta-Learning for Failure Prediction in Large-Scale Systems: A
Case Study

Jiexing Gu1, Ziming Zheng1, Zhiling Lan1

John White2, Eva Hocks3, Byung-Hoon Park4

Illinois Institute of Technology1
Revision3 Company2

San Diego Supercomputer Center3
Oak Ridge National Laboratory4

{jgu5, zzheng11, lan}@iit.edu1

jwhite@moltar.org2,hocks@sdsc.edu3
parkbh@ornl.gov4

Abstract

Despite great efforts on the design of ultra-reliable
components, the increase of system size and complexity
has outpaced the improvement of component
reliability. As a result, fault management becomes
crucial in high performance computing. The advance
of fault management relies on effective failure
prediction. Despite years of research on failure
prediction, it remains an open problem, especially in
large-scale systems. In this paper, we address the
problem by presenting a dynamic meta-learning
prediction engine. It extends our previous work by
exploring dynamic training, testing and prediction.
Here, the “dynamic” part is from two perspectives:
one is to continuously increase the training set during
the system operation; and the other is to dynamically
modify the rules of failure patterns by tracing
prediction accuracy at runtime. Our case study
indicates that the proposed predictor is promising by
being capable of capturing more than 70% of failures,
with the false alarm rate less than 10%.

1. Introduction

In the next few years production systems are
expected to contain tens to hundreds of thousands of
computing nodes and thousands of I/O nodes [35].
Such a scale, combined with the ever-growing system
complexity, is introducing a key challenge on fault
management in high performance computing (HPC).
Despite great efforts on the design of ultra-reliable
components, the increase of system size and

complexity has outpaced the improvement of
component reliability. Recent studies have pointed out
that the mean-time-between-failure (MTBF) of teraflop
and soon-to-be-deployed petaflop machines are only
on the order of 10 - 100 hours [19,22].

To address the above reliability problem,
considerable research has been done on improving
fault resilience of systems and their applications
through various technologies. Representative works
include failure-aware resource management and
scheduling [20], checkpointing [2,4,7,24,25], and run-
time resilience support [3,16,31]. Nevertheless, the
advance of these fault tolerant technologies is hindered
by the lack of fault prediction support in HPC. For
instance, proactive fault tolerant methods require
failure forecasting to enable cost-effective failure
prevention. For reactive fault tolerant methods such as
checkpointing, an efficient failure prediction could
substantially reduce their operational cost by telling
when and where to perform checkpoints, rather than
blindly invoking actions periodically with an unwisely
chosen frequency [18].

Previous work on failure prediction can be
classified into two categories: model-based and data-
driven. A model-based method derives an analytical or
probabilistic model of the system and then triggers a
warning when a deviation from the model is detected
[9,12,13,14,24,27,28]. Considering the size and
complexity of HPC systems, the model-based methods
are too complicated to be practical for failure
prediction in these systems. Data-driven methods, such
as those using data mining techniques, attempt to learn
and classify occurring failure patterns from historical

Proceedings of the International Conference on Parallel Processing 2008

2

data without building an a priori model ahead of time
[10,17,23].

Existing prediction studies mainly focus on static
analysis by applying one specific method. Here,
“static” means that the method generates rules in a
static manner, such as using a fixed training set.
Although they are effective in forecasting some
failures, they have three inherent drawbacks. First, the
sources of failures are numerous and complex in a
large-scale system, thus it is improper to expect a
single method to detect and capture all of them alone.
Second, in order to obtain sufficient failure patterns,
most of existing methods require a long training phase
(e.g. a year), thereby making failure prediction
unavailable for a long period of time. Considering that
most HPC systems at supercomputing centers only
have a couple of years in production, this requirement
must be removed. Lastly, existing studies mainly focus
on static analysis in which the training set remains
unchanged. Since the upgrade of hardware and
software is common in a typical HPC system, the
failure patterns obtained from static analysis may
become outdated very soon, thereby resulting in low
prediction accuracy.

To address the first problem, in our previous work
we have proposed the use of meta-learning to boost
prediction accuracy [10]. By integrating multiple data
mining techniques, meta-learning aims at discovering
various failure patterns and thus improving prediction
accuracy. While this work is promising, it is also
based on static analysis.

In this paper, we address the other two issues by
extending our previous work to dynamic meta-learning.
In particular, we present a dynamic meta-learning
prediction engine for large-scale systems. It does not
require a long training phase by dynamically
increasing the training set during system operation. As
we will show in Section 3-4, it can start to provide an
acceptable failure prediction service after only two
weeks of training. As the time goes by, it provides
better failure prediction by dynamically adjusting its
rules of failure patterns according to accuracy tracing
and dynamic re-training.

We demonstrate that the proposed failure predictor
can effectively forecast failures by evaluating it with a
130-week RAS log (about two and half years) from the
Blue Gene/L system at SDSC. Our results show that
the proposed predictor is capable of capturing more
than 70% of failures, with the false alarm rate less than
10%. Moreover, the proposed prediction engine can
adapt to the changing system environment by
dynamically adjusting its rules of failure patterns, even
after a major system reconfiguration.

The rest of the paper is organized as follows.
Section 2 discusses the related work on failure

prediction. Section 3 presents our dynamic meta-
learning prediction engine. The case study on a RAS
log is presented in Section 4. Finally, Section 5
summarizes the paper.

2. Related Work

Recognizing the importance of fault management,
the community has paid much attention to failure
prediction. Exiting predictive approaches can be
broadly classified as model-based methods or data-
driven methods. Model-based approach derives a
probabilistic or analytical model of the system and
triggers the warning when a deviation from the model
is detected [28]. For example, Gross et al. have
presented an adaptive statistical data fitting method
called MSET to forecast the system dependability [29].
In [12], a naive Bayesian based algorithm is used to
predict disk drive failures. In [26], a specific analytical
model is developed for quickly detecting anomalies in
I/O systems. While model-based methods are effective
for forecasting some failures, it is hard, if not
impossible, to construct a precise model for large-scale
HPC systems composed of tens of thousands of
components.

A data-driven method, such as using data mining
techniques, attempts to learn failure patterns from
historical data for failure prediction, without
constructing an accurate model ahead of time. For
example, the group at the RAD laboratory has applied
statistical learning techniques for failure diagnosis in
Internet services [33]. Sahoo et al. apply association
rules to predict failure events in a 350-node IBM
cluster [23]. In [17], Liang et al. examine several
statistical based prediction techniques for failure
forecasting in a Blue Gene/L system. In our own
previous works [10, 15], we have investigated a meta-
learning based method by adaptively combining the
merits of various data mining techniques. The above
studies mainly utilize statically learned rules for failure
analysis and prediction.

While this paper is built upon many previous studies,
it distinguishes from the above studies in that it
emphasizes dynamic training, testing and prediction.
By dynamically discovering failure patterns and
tracing prediction accuracy during the system
operation, the proposed predictor aims at finding an
optimal set of fault patterns, even when the patterns are
changing over time due to hardware or software
reconfigurations. Another benefit of using dynamic
training and prediction is that it does not require a long
training phase to start with. By gradually increasing
training data, the proposed predictor is able to build up
its knowledge base as time goes by. To the best of our

Proceedings of the International Conference on Parallel Processing 2008

3

knowledge, we are not aware of any such service for
failure prediction in HPC that can dynamically learn
failure patterns and further adapt to the changing
system state.

3. Dynamic Meta-Learning Prediction

Figure 1 presents a high level diagram of the
proposed dynamic meta-learning prediction engine. It
consists of two processing phases: one for data
preprocessing and the other for failure prediction.
Given that raw logs generally contain many repeated or
useless information, the data preprocessor takes the
raw logs from the underlying system as input and
produces clean data for online prediction [10]. Here,
the categorizer provides a standard categorization of
RAS events, and the filter removes redundant data by
conducting both a temporal compression at a single
location and a spatial compression across multiple
locations. Upon completion, the data preprocessor
intends to provide a list of unique events for failure
prediction.

Figure 1. Dynamic Meta-learning Prediction Engine

The online predictor consists of three major

components: the meta-learner, the predictor, and the
reviser. It first triggers the meta-learner on the clean
data to discover various fault patterns by applying
multiple predictive methods. The generated rules,
including both statistical rules and association rules,
form the base for online prediction. These rules are
subjected to modifications done by the reviser at
runtime. The reviser monitors prediction accuracy by
comparing the predicted results and the actual failures,

and then constructs an effective rule set for failure
prediction. Note that the effective rule set is
dynamically adjusted to reflect the current state of the
system and the prediction accuracy. The predictor
continuously examines the runtime data collected by
system monitor tools. In case that it discovers a
matching pattern in the effective rule set, it will trigger
a warning.

Figure 2. Dynamic training, testing and prediction.
The grey and black boxes together represent the
training set, the black box indicates the testing set, and
the white box denotes the prediction set. According to
the results on the testing set, the reviser dynamically
modifies the rules generated by the meta-learner.

In the proposed dynamic meta-learning prediction

engine, the “dynamic” feature comes from two
perspectives: one is to continuously increase the
training set during the system operation; and the other
is to dynamically modify the rules of failure patterns
by tracing prediction accuracy at runtime. Figure 2
gives an illustrative example on dynamic training,
testing and prediction. Specifically, assume that
dynamic retraining is triggered every W weeks
(denoted as dynamic window size) and it is the start of
the [(1)]thk W+ ⋅ week:

1. The meta-learner first generates rules using the
training set composed of date from the
previous k W⋅ weeks (i.e. the training set);

2. The reviser constructs an effective rule set by
verifying the rules on the []thk W⋅ week (i.e. the
testing set). This includes adding new rules and
removing those rules resulting in high false
alarm.

3. Once the effective rule set is obtained, the
predictor uses it for failure prediction on the
[(1)]thk W+ ⋅ week (i.e. the prediction set).

Meta-Learner. We have presented a meta-learning
method to improve failure prediction in large-scale
systems, as shown in Figure 3 [10]. Meta-learning,
also known as ensemble-learning, can be loosely
defined as learning from learned knowledge [21]. It is

Proceedings of the International Conference on Parallel Processing 2008

4

a technique that deals with the problem of computing a
“global” predictor from the separately learned “base
predictors” to boost overall predictive effectiveness. In
particular, it learns to identify preferable combinations
of based classifiers as well as their quantitative
performance effects from previous results.

Figure 3. Meta-learner

In our case study, our meta-learner integrates two

predictive techniques, i.e. the statistical based method
and the association rules, with the objective to
improve the coverage and accuracy of failure
prediction. The statistical based method generates the
statistical characteristics of fatal events, e.g. how often
and with what probability will the occurrence of one
failure influence subsequent failures. It is in the form
of { ,...., },k i jf f f conf→ , where f is a fatal event
and conf is the corresponding confidence value.
Association rules examine the causal correlations
between non-fatal and fatal events. For example, an
association rule is in the form of

1 2{ , ,..., } ,ke e e f conf→ , where ie is a nonfatal event,

f is a fatal event and conf is the corresponding
confidence value.

Reviser. The reviser is responsible for modifying

the rules generated by the meta-learner on the training
set to construct an effective rule set. The principle is
based on a key observation of failure characteristics in
large-scale systems. In [5], Song et al. show that
failures have temporal locality, meaning that a failure
may re-appear multiple times before its root problem is
solved. Hence, the data set from the latest period is
crucial for representing the failure patterns in the next
period. The reviser adjusts the rule set based on the
testing set (the data collected immediately before the
prediction set), thereby making it possible to better
capture failure patterns in the prediction set.

The proposed reviser applies the ROC (Receiver
Operating Characteristic) analysis, and the detailed
algorithm is illustrated in Figure 4. ROC analysis aims
at selecting possibly optimal models and discarding
suboptimal ones independently from the class
distribution [11].

Figure 4. The Pseudo-code for the Reviser

Figure 5. The Pseudo-code for the Predictor

On the testing set:

For each rule r generated by the meta-learner {

1) count its true positives TP, false positives FP, and
false negatives FN on the testing set;

2) calculate precision(r) and recall(r) as described in
Section 4.2;

3) calculate ROC distance:
2 2() () ()ROCd r precision r recall r= +

4) put the rule r into the effective rule set if its ROC
value is larger than a predefined threshold
MinROC. For example, we only put those rules
outside of the grey area into the effective rule set.

}

Based on the effective rule set, first create two lists:
1 2

1 2

{ { , , ..., } : 1 }

{ { , , ..., } : 1 }
i i i ik f

m m m m n e

F L is t f e e e i N

E L is t e f f f m N

− = → ≤ ≤

− = → ≤ ≤
Where fi is a fatal event and ej is an event (nonfatal or fatal)

During prediction, when an event e occurs:

(1) Append e into the prediction event set

1 2{ , ,...., , }nE e e e e= where the events are sorted
in an increasing order of their occurrence times,
and remove ei when _ie e predict windowT T T− >

(2) Obtain potential failures that may be triggered by
e according to the E-List: },,,{ 21 kfffe K→

(3) For each failure in the set of },,,{ 21 kfff K , go
through its event list according to the F-List:

},,,{ 21
i
ik

i
i

i
i

i eeef K→

(4) If 1 2{ , ,..., }i i i
i i ike e e E⊆ , then produce a

warning that the failure if may occur within

_predict windowT

Proceedings of the International Conference on Parallel Processing 2008

5

Predictor. The predictor actively monitors runtime
events and triggers a warning when a rule is observed
within a fixed time window _predict windowT (i.e.
prediction window). The specific prediction method is
presented in Figure 5.

The online prediction engine is implemented in
Java. It is connected to Weka [32] for generating
association rules, and is also connected to an Oracle
database for storing and querying the knowledge base.

4. Case Study

In this section, we evaluate the proposed online

predictor by testing it with a RAS log collected from
the production Blue Gene/L system at SDSC. We first
describe the RAS log, followed by presenting the
results. We conduct three sets of experiments. The first
set is to examine prediction accuracy by using different
dynamic window sizes; the second set is to study the
benefit brought by using the reviser; and the last set is
to analyze the number of rules changed by using
dynamic training and testing.

4.1. The Blue Gene/L RAS Log

The Blue Gene system at SDSC (San Diego
Supercomputing Center) consists of three racks with
3,072 compute nodes (4,144 processors) and 384 I/O
nodes. The configuration is chosen to support data-
intensive computing. Each node consists of two
PowerPC processors that run at 700 MHz and share
512 MB of memory, giving an aggregate peak speed of
17.2 teraflops and a total memory of 1.5 TB [34]. We
have acquired a 130-week RAS log (i.e. about two and
half years) from this production system.

In Blue Gene/L, the Cluster Monitoring and
Control System (CMCS) service is implemented on the
service nodes for the purpose of system monitoring and
error checking. The service node, which is available in
each midplane, acquires specific device information,
such as RAS (Reliability, Availability and
Serviceability) events, directly through the control
network. Runtime information is collected from
computer and I/O nodes by a polling agent running on
each BLC, reported to the CMCS service, and finally
stored in a centralized DB2 repository. This system
event logging mechanism works in a granularity of less
than 1 millisecond. More details of the system
architecture can be found in published literature [6].

The entries in the RAS log include hard errors, soft
errors, machine checks, and software problems.
Information about scheduled maintenance, reboot, and
repair is not included. Each record of the logs has a
number of attributes, including event type, event time,

job ID, location, facility, entry data, and severity. Here,
the SEVERITY attribute can be one of the following
levels - INFO, WARNING, SEVERE, ERROR,
FATAL, or FAILURE - which also denotes the
increasing order of severity. Our primary focus in this
study is to predict FATAL and FAILURE events
(denoted as fatal events, while other events are denoted
as non-fatal events).

Table 1 summarizes the RAS log from the Blue
Gene/L system at SDSC. The raw log has more than
one million entries. By applying data preprocessing,
i.e. temporal compression at a single location and
spatial compression across multiple locations where
the threshold for compression is set to 300 seconds, we
have obtained a cleaned log, whose information is
listed in Table 1.

 SDSC

Start date 12/6/2004
End date 06/11/2007

No. of records after data
preprocessing 559,211

Size of cleaned log 704 MB

Table 1. The RAS log from the production Blue Gene/L
System at SDSC

4.2. Evaluation Metrics

 Two evaluation metrics are used to measure
prediction accuracy:

• Precision: defined as the proportion of correct
predictions to all the predictions made

p

p p

T
precision

T F
=

+

• Recall: defined as the proportion of correct
predictions to the number of failures

p

p n

T
recall

T F
=

+

Here, Tp is number of correct predictions (i.e. true
positives), and Fp is number of false alarms (i.e. false
positives), and Fn is number of missed failures (i.e.
false negatives). Obviously, a good prediction engine
should achieve a high value (closer to 1.0) for both
metrics.

4.3. Results

In our experiments, the support and confidence
values used in the meta-learner are set to 0.01 and 0.1
respectively. The MinROC value used in the reviser is
set to 0.7. The prediction window is set to 300 seconds.

Proceedings of the International Conference on Parallel Processing 2008

6

Figure 6 presents our prediction results by using
different dynamic window sizes (2 weeks, 4 weeks, 6
weeks, 8 weeks, and 10 weeks). The x-axis shows the
sequence number of the week, which is up to 130.
Each plot has two curves, one for precision and the
other for recall. We can see that both precision and
recall are not stable during the first 10 weeks. In most
cases, precision monotonically increases to 0.9,
whereas the recall monotonically increases to 0.7. The
reason is that during the initial phase, the effective rule
set may not well capture failure patterns due to the
limited size of the training set. We shall point out that
even when the training set is two weeks, the predictor
is still capable of capturing more than 47% of failures.

After the initial phase, we notice that both precision
and recall become stable. In general, after the initial
phase (i.e. the first ten weeks), no matter how frequent
the online predictor re-train its rule set, the recall value
is maintained around 0.7-0.8, whereas the precision
value is between 0.9-1.0. It indicates that the online
predictor is capable of capturing more than 70% of
actual failures, with the false alarm rate less than 10%.

Further, we notice that both precision and recall
decrease more than 10% during the 64th week.
According to our record, the system went through a
major system reconfiguration around this time. As a
consequence, failure patterns are changed, thereby
resulting in lower prediction accuracy during this
period of time. Nevertheless, our predictor is capable
of capturing newly discovered failure patterns. As we
can see, both precision and recall are changed back to
0.9 and 0.7 on the next prediction set.

Comparing these plots generated by using different
adaptation windows, we have made a key observation.
In the initial phase, a small window size is needed for
training and re-training. This can help the reviser to
rapidly build up the effective rule set for online
prediction. Once entering a stable phase, we can start
to use a large window size to reduce the re-training
cost.

In the second set of experiments, we investigate the
benefit introduced by using the reviser. Specifically,
we compare prediction accuracy produced by using
and not using the reviser. Note that the main
functionality of the reviser is to dynamically adjust the
rules of failure patterns according to accuracy tracing.
Figure 7 presents our results where the dynamic
window size is set to four weeks.

Figure 6. Prediction accuracy using different dynamic
window sizes (2 weeks, 4 weeks, 6 weeks, 8 weeks, and
10 weeks)

Proceedings of the International Conference on Parallel Processing 2008

7

(a)

(b)

Figure 7. Prediction results W/ and W/O the reviser.
Figure 7(a) plots the prediction results for the entire
log, whereas Figure 7(b) highlights the period between
the 52nd week – the 76th week. We have observed
similar results for other window sizes, so we omit
them.

In the third set of experiments, we analyze the
number of rules changed by using dynamic training
and testing, and the result is presented in Figure 8
where the dynamic window size is set to four weeks.
As expected, the effective rule set always changes and
the change becomes less significant with time. At the
beginning, there are 310 rules and 392 rules added into
the effective rule set in the 4th week and the 8th week
respectively. Starting from the 16th week, the number
of rules in the effective set is stabilized. For instance,
only 17 rules are added and 19 rules are removed from
the effective rule set in the 128th week. We notice a
substantial change occurs during the 64th week, where
76 rules are added and 85 rules are removed. During
this period of time, a system reconfiguration occurs,
thereby resulting in significant rule changes.

Figure 8. Number of rules changed by using our
dynamic meta-learning prediction engine where the
dynamic window size is set to four weeks. Similar
patterns are observed with other window sizes.

5. Summary

In this paper, we have presented a dynamic meta-
learning prediction engine for large-scale systems. It
does not require a long training phase by dynamically
increasing the training set during system operation. For
instance, it can start to provide an acceptable failure
prediction service after only two weeks of training
phase. Our case study on a 130-week RAS log from
the production Blue Gene/L system at SDSC has
shown that it can effectively forecast failures with a
precision of 0.9-1.0 and a recall of 0.7-0.8 by
dynamically modifying its rule set according to
accuracy tracing and dynamic re-training.

Our study has some limitations that remain as our
future work. First, in the current design, the dynamic
window size is fixed. Our on-going work includes
adaptively changing this window size such that the
system can automatically tune its size to reduce the
training cost, without sacrificing the prediction
accuracy. Second, we plan to investigate different
revising algorithms to further improve prediction
accuracy. Lastly, more case studies with a variety of
HPC systems are needed. We are in the process of
acquiring RAS logs from supercomputing centers, such
as the Cray XT3 at ORNL, for the purpose of
evaluating the proposed prediction engine.

Proceedings of the International Conference on Parallel Processing 2008

8

Acknowledgement

This work is supported in part by US National
Science Foundation grants CNS-0720549, CCF-
0702737, and a TeraGrid Compute Allocation. The
work of B.H. Park is supported by the U.S. Dept. of
Energy, Office of Science, Advanced Computing
Science Research Division.

References

[1] R. Agrawal, R. Srikant, “Fast Algorithms for Mining
Association Rules”, VLDB. Sep 12-15 1994, Chile, 487-99
[2] A. Bouteiller, T. Herault, et al. , “MPICH-V: A
Multiprotocol Automatic Fault Tolerant MPI”, International
Journal of High Performance Computing and Applications,
2005.
[3] S. Chakravorty, C. L. Mendes and L. V. Kale, “Proactive
Fault Tolerance in Large Systems”, Proc. of HPCRI
Workshop in conjunction with HPCA, 2005.
[4] E. Elnozahy and J. S. Plank, “Checkpointing for Peta-
Scale Systems: A Look into the Future of Practical Rollback-
Recovery”, IEEE Transactions on Dependable and Secure
Computing, Volume 1, Number 2, 2004, pp. 97-108.
[5] S. Fu, C. Z. Xu, “Exploring Event Correlation for Failure
Prediction in Coalitions of Clusters”, Proc of SC 2007, 2007.
[6] A. Gara, M. A. Blumrich et al., “Overview of the Blue
Gene/L System Architecture”, IBM J. Res. & Dev. 49,
No. 2/3, 195–212, 2005.
[7] E. Gabriel, G. Fagg, and et al., “Open mpi: Goals,
concept, and design of a next generation mpi
implementation,” in Proc. of The 11th European PVM/MPI
Users’ Group Meeting, 2004.
[8] R. Gioiosa, J. Sancho, S. Jiang, F. Petrini, K. Davis,
“Transparent Incremental Checkpointing at Kernel Level: A
Foundation for Fault Tolerance for Parallel Computers”,
Proc. of SC2005, 2005.
[9] A. Goyal, S. Lavenberg, and K. Trivedi, “Probabilistic
Modeling of Computer System Availability”, Annals of
Operations Research, 1987.
[10] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A
Meta-learning Failure Predictor for Bluegene/L Systems,”
Proc. of ICPP’07, 2007.
[11] J. Han and M. Kamber "Data Mining: Concepts and
Techniques", 2nd Edition, Morgan Kaufmann, 2006.
[12] G. Hamerly and C. Elkan, “Bayesian Approaches to
Failure Prediction for Disk Drives”, Proc. of ICML, 2001.
[13] J. Hellerstein, F. Zhang, P. Shahabuddin, “A Statistical
Approach to Predictive Detection”, Computer Networks: The
International Journal of Computer and Telecommunications
Networking, 2001.
[14] R. K. Iyer, L. T. Young, V. Sridhar, “Recognition of
error symptoms in large systems”, Proceedings of 1986 ACM
Fall joint computer conference, 1986.
[15] Z. Lan, Y. Li, P. Gujrati, Z. Zheng, R. Thakur, and J.
White, "A Fault Diagnosis and Prognosis Service for
TeraGrid Clusters", Proc. of TeraGrid'07 , 2007.

[16] Y. Li, Z. Lan, “Exploit Failure Prediction for Adaptive
Fault-Tolerance in Cluster Computing”, Proc. of IEEE
CCGrid’06, 2006.
[17] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramanium, R.
Sahoo, “BlueGene/L Failure Analysis and Prediction
Models”, Proc. of DSN, 2006.
[18] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative
checkpointing theory,” in Proc. of the International Parallel
and Distributed Processing Symposium (IPDPS), 2006.
[19] A. Oliner and J. Stearly, “What Supercomputers Say: A
Study of Five System Logs”, Proc. of DSN 2007.
[20] A. Oliner, Ramendra K. Sahoo, José E. Moreira, Manish
Gupta, Anand Sivasubramaniam, “Fault-Aware Job
Scheduling for BlueGene/L Systems”, IPDPS, 2004.
[21] R. Polikar, “Ensemble Based Systems in Decision
Making”, IEEE Circuits and Systems Magazine,
vol.6, no. 3, pp. 21-45, 2006.
[22] D. Reed, C. Lu, and C. Mendes, “Big systems and big
reliability challenges,” in Proc. of Parallel Computing,
Germany, 2003.
[23] R.K. Sahoo, A.J. Oliner et al., “Critical event prediction
for proactive management in large-scale computer clusters”,
Proc. of KDD, 2003, pp. 426-435.
[24] Hoffmann, Salfner et al, “Advanced Failure Prediction
in Complex Software Systems”, Proc. of SRDS, 2004.
[25] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques,
K. Pingali, P. Stodghill, “Implementation and Evaluation of a
Scalable Application-level Checkpoint-Recovery Scheme for
MPI Programs”, Supercomputing 2004. November 6-12,
2004.
[26] Kai Shen, Ming Zhong, and Chuanpeng Li, “I/O System
Performance Debugging Using Model-driven Anomaly
Characterization”, 4th USENIX Conference on File and
Storage Technologies, 2005.
[27] D. Turnbull, N. Alldrin, “Failure Prediction in Hardware
Systems”, UCSD CSE221 Project, 2003.
[28] K. Trivedi and K. Vaidyanathan, “A Measurement-
based Model for Estimation of Resource Exhaustion in
Operational Software Systems”, Proc. of the 10th Int’l
Symposium on Software Reliability Engineering, 1999.
[29] K. Vaidyanathan and K. Gross, “MSET Performance
Optimization for Detection of Softtware Aging”, Proc. of
ISSRE, 2003.
[30] R. Vilalta and S. Ma, “Predicting Rare Events in
Temporal Domains”, Proc. of IEEE Intl. Conf. On Data
Mining, 2002.
[31] C. Wang and F. Mueller and C. Engelmann and S. Scott,
“A Job Pause Service under LAM/MPI+BLCR for
Transparent Fault Tolerance”, Proc. of IPDPS ,2007.
[32] Ian H. Witten and Eibe Frank (2005) "Data Mining:
Practical machine learning tools and techniques", 2nd Edition,
Morgan Kaufmann, San Francisco, 2005.
[33] RAD Lab: Reliable Adaptive Distributed Systems
Laboratory. http://radlab.cs berkeley.edu/
[34] SDSC Blue Gene/L Homepage.
www.sdsc.edu/us/resources/bluegene
[35] The TOP500 Supercomputer Sites. www.top500.org

