Co-analysis of RAS Log and Job Log on Blue Gene/P

Ziming Zheng, Li Yu, Wei Tang, Zhiling Lan
Department of Computer Science
Lllinois Institute of Technology
{zzhengll, lyul7, wtang6, lan} @iit.edu

Rinku Gupta,* Narayan Desai,* Susan Coghlan,” Daniel Buettner!
*Mathematics and Computer Science Division
tLeadership Computing Facility
Argonne National Laboratory
{rgupta, desai} @mcs.anl.gov, {smc, buettner} @alcf.anl.gov

Abstract—With the growth of system size and complexity,
reliability has become of paramount importance for petascale
systems. Reliability, Availability, and Serviceability (RAS) logs
have been commonly used for failure analysis. However, anal-
ysis based on just the RAS logs has proved to be insufficient in
understanding failures and system behaviors. To overcome the
limitation of this existing methodologies, we analyze the Blue
Gene/P RAS logs and the Blue Gene/P job logs in a cooperative
manner. From our co-analysis effort, we have identified a dozen
important observations about failure characteristics and job
interruption characteristics on the Blue Gene/P systems. These
observations can significantly facilitate the research in fault
resilience of large-scale systems.

Keywords-Co-Analysis; Blue Gene/P; Reliability; Log Anal-
ysis

I. INTRODUCTION

The performance offered by high-end computing (HEC)
systems has experienced tremendous growth. Petascale sys-
tems, such as the IBM Blue Gene and Cray XT series, are
already available. Systems offering exascale performance
are expected to become available in less than a decade.
These high-end computing systems comprise hundreds of
thousands of processing units and millions of hardware com-
ponents. With the increasing system size and complexity,
however, system failures have become a common scenario
rather than an exception, thus making system reliability an
important aspect in HEC [9].

When a system fails to function properly, Reliability,
Auvailability, and Serviceability (RAS) logs are the primary
source of information that a system administrator can use
to understand failures. Thus, RAS logs have received con-
siderable attention, resulting in research on log-filtering
algorithms, failed events correlation, failure statistics, and
practical and accurate failure prediction [9], [10], [11], [12].
These studies have facilitated fault management in large-
scale systems.

Nevertheless, RAS logs typically contain only limited
information about the system and the operating environment.

Thus, analysis relying just on RAS logs has been inadequate
in understanding failures and system behaviors [9]. HEC
systems have several logs. An approach for co-analysis of
multiple logs generated from the same system can substan-
tially overcome the shortcomings of analysis that has been
performed based simply on the RAS log. In this paper,
we present a co-analysis method to study RAS logs and
systemwide job logs in a cooperative manner. In particular,
for our coc-analysis study, we examine the logs collected
from the Intrepid Blue Gene/P system at Argonne National
Laboratory, one of the largest Blue Gene/P systems in the
world. Moreover, to spark interesting studies on co-analysis,
we will release these logs in public repositories [28], [29].

Our co-analysis of job logs along with the RAS logs
has three significant benefits. First, the impact of fatal or
catastrophic events on application performance cannot be
directly studied from RAS logs [9]. In this paper, fatal events
are defined as the critical events that may lead to system or
application crashes (system warnings or informative events
can be classified as nonfatal events). Although some events
in RAS logs are labeled as fatal events, not all of these
interrupt user jobs [7], [9]. A better understanding of fatal
events can greatly facilitate checkpointing, job scheduling,
and failure recovery. For example, if a fatal event continually
interrupts jobs, the system administrator should place high
priority on fixing the problem. In addition, some fatal events
may not be harmful to jobs while the system is idle or during
a maintenance period [9], whereas other fatal events may
interrupt multiple jobs as a result of failure propagation.
Unfortunately, this information is usually invisible in RAS
logs. Job logs can provide a straightforward way to identify
these factors.

Second, while fatal events may be caused by system
hardware or software errors or application bugs, the disparity
between these two interpretations is critical. If the source of
the fatal event is from system hardware or software, system
administrators can take action. If the source of the fatal event

is an application bug, however, the programmer must take
corrective or preventive action for the application. Unfortu-
nately, although RAS records can provide information such
as location, facility, and component [12], [1], they are too
vague to pinpoint the source of fatal events. The use of job
logs is helpful to identify this information.

Third, RAS logs typically contain numerous redundant
records [9], [10], [11]. It is imperative to remove these
redundant records for subsequent failure diagnosis and pre-
diction [12], [7]. While temporal-spatial filtering [12] has
been widely adopted to remove redundant records, it cannot
identify the redundancy caused by jobs. For instance, a
sequence of jobs may be assigned to the failed nodes
repeatedly, and users tend to resubmit their buggy codes
multiple times [13]. Consequently, a single fatal event may
be reported multiple times in the RAS log. Without job
information, checking RAS logs alone cannot reveal these
correlations, thereby resulting in inaccurate failure models.

We present a co-analysis study based on a 273-day RAS
log and job log collected from Argonne National Laboratory.
Our co-analysis methodology consists of three tightly cou-
pled steps. First, by correlating RAS events and job interrup-
tions, we identify events that truly interrupt jobs. Second, we
distinguish the fatal events generated by system hardware or
software from the fatal events caused by application errors.
Third, we remove job-related redundant RAS records by
studying the correlations between job interruptions.

We have made several interesting observations about
the characteristics of failure and job interruptions. First,
high workload does not necessarily mean high failure rate.
Instead, wider jobs (i.e., jobs requesting a large number
of nodes) can significantly impact the failure rate. Second,
we have found that most fault events do not propagate
from one running job to other running jobs in different
locations. Third, most of the job interruptions caused by
application errors are reported early (i.e., less than one hour)
in the execution period. Fourth, job size has more significant
impact on job vulnerability on system failures, but longer
jobs do not necessarily mean higher interruption probability
than do shorter jobs in HPC.

The rest of the paper is organized as follows. In Section
II, a brief discussion of the related work is presented.
In Section III, we provide background information about
the system, namely, the Blue Gene/P system “Intrepid” at
Argonne National Laboratory. The logs are also described
in this section. In Section IV, we present our co-analysis
methodology. In Section V, we study failure characteristics,
and in Section VI, we analyze job interruption character-
istics. The key observations are highlighted at the end of
the subsections. In Section VII, we briefly discuss some
recommendations for system management. In Section VIII
conclude the paper with a look at future work.

II. RELATED WORK

Considerable research has been performed on system log
analysis for large-scale systems. Schroeder and Gibson [8]
studied the failure logs collected from 22 high-performance
systems at Los Alamos National Laboratory, including 18
SMP clusters and 4 NUMA machines. Their failure data
was stored in a dedicated remedy database, where system
administrators recorded the basic information of the failures.
Then they analyzed the statistical properties of the failures,
such as the root cause, the failure rate, and the time to
repair. Oliner and Stearley [9] examined the raw failure
logs directly collected from five supercomputers. Instead of
failure characteristics, their research focused on log structure
analysis, failure identification, and log-filtering algorithms.
Hacker et al. synthesized the methods in [8] and [9] to
analyze the RAS logs from an 8192-processor Blue Gene
system [10]. They designed a neural-gas filtering algorithm
to identify the independent fatal events and studied the
statistical properties of these events. Unlike these studies,
we analyzed the Blue Gene/P failure log and job log in a
cooperative manner. Not only do we provide effective fatal
event identification and filtering methods for more accurate
studies of failure characteristics, but we also analyze the
impacts of failures on jobs.

Log preprocessing is critical for log analysis in large-scale
systems. Liang et al. analyzed logs from an 8192-processor
Blue Gene/L prototype at IBM Rochester using a temporal-
spatial filtering algorithm [12]. In [9], temporal filtering and
spatial filtering are adopted simultaneously. Both [12] and
[9] use constant thresholds for filtering. A more adaptive
filtering is presented in [4] by exploiting semantic correlation
between the events with temporal gap. In [10], a neural-gas
filtering algorithm is designed to identify the clustering in
the spatial, temporal, and severity domains. In our previous
work, we presented a causality-related filtering method to
pinpoint the sets of fatal events co-occurring frequently and
filter them together [7]. Distinguished from these studies,
this paper uses the job information in preprocessing to
remove job-related redundant records.

Both [8] and [10] found that Weibull distribution provides
a good fit for the failure characteristic. Our work has the
same conclusion but also reveals the impact of the job-
related redundant records on the distribution parameters and
numerical characteristics. The relationship between work-
load and failure rate in large-scale systems was studied
in [17] and [8]. However, the systems in these studies
are heterogeneous servers or clusters or NUMA machines,
whereas we find a different conclusion in the Blue Gene/P
MPP system.

Some research has been performed on failure propagation
in large-scale systems. For instance, Xu et al. studied the
propagation across the network in a 503-server, heteroge-
neous, distributed system [22]. In [23], Fu and Xu traced

Table I: Summary of the RAS log and job log from the Intrepid machine.

Log Name | Days | Start Date End Date Log Size | No. of Records
RAS 237 2009-01-05 | 2009-08-31 | 1.1 GB 2,084,392
Job 237 2009-01-05 | 2009-08-31 | 125 MB | 68,794

the failure data from the LANL HPC coalition system to
study failure propagation between different nodes. However,
these systems are different from MPP systems such as
Blue Gene/P. Moreover, our study focuses on the failure
propagation across different jobs instead of nodes.

Research on the impacts of failures on applications is
limited. In [11], Taerat et al. analyzed Blue Gene/L logs for
six months. They used temporal filtering and studied the job
interruptions through simulation. The impacts of failures and
checkpointing on application efficiency were studied in [21].
However, these studies were based on simulations, while our
study uses the real job log. In [24], Jiang et al. studied the
characteristics of customer problem troubleshooting from
large-scale storage systems. Our study does not focus on
specific types of failures; instead, we analyze the impacts of
failures on the jobs in the whole system.

III. BACKGROUND

We briefly present here some background on the Intrepid
system and on RAS and job logs from that system.

A. Intrepid: Blue Gene/P System at Argonne

IBM Blue Gene/P is a low-power MPP system scalable
to 80 racks, with a peak performance above 1 petaflop.
Each rack has two midplanes, which consist of 512 quad
core PowerPC450 compute nodes, 1 service card, and 4
link cards. Compute nodes are connected into a 3D torus
for communication. In Blue Gene/P, 64 compute nodes are
served by an I/O node. A tree network is used to connect
compute nodes to dedicated I/O nodes. The I/O nodes are
connected through a 10-Gigabit Ethernet network to 136 file
servers that, in turn, connect to back-end, Infiniband-based
storage. More details of the system architecture are available
in [1].

Intrepid is a 40-rack Blue Gene/P system operated by
Argonne National Laboratory for the U.S. Department of
Energy. The 40 racks are laid in five rows (i.e., RO to R4).
It consists of 40,960 compute nodes with a total of 163,840
cores, which offer a peak performance of 556 TFlops. It
ranks #13 on the latest Top500 supercomputer list (as of
November 2010) [2].

Intrepid uses a partitioned strategy for each job, which
contains a distinct set of compute, I/O nodes, and the asso-
ciated 3D torus network for communication. The midplane
is the minimum partition for job scheduling, which can be
joined with other adjacent midplanes as a larger partition
[14]. Intrepid is a capability system, with single jobs fre-
quently occupying a substantial number of midplanes. Both
small jobs such as 1-2 midplanes and larger jobs such as 32

Table II: Example of event from Blue Gene/P RAS log.

RECID 13718190

MSG_ID CARD_0411

COMPONENT CARD

SUBCOMPONENT | PALOMINO_S

ERRCODE DetectedClockCardErrors

SEVERITY FATAL

EVENT_TIME 2008-04-14-15.08.12.285324

FLAGS DefaultControlEventListener

LOCATION R-04-MO-S

SERIANUMBER 44V4173YL11K8021017

MESSAGE An error(s) was detectedby the Clock card
: Error=Loss of reference input

midplanes are common. Jobs up to 64 midplanes run without
administrator assistance.

A particular feature of the Blue Gene/P system is that the
control system reboots the whole partition before the job
execution. The main purpose of this feature is to minimize
the amount of problematic states accumulated so far [15].
We are interested in whether this feature can impact the
failure characteristic.

B. RAS Log and Job Log from Intrepid

We analyze a 273-day RAS log and job log collected from
Intrepid. Table I summarizes these logs.

RAS Log: The Blue Gene/P Core Monitoring and Control
System (CMCS) is responsible for monitoring the hardware
components, including compute nodes, I/O nodes, and vari-
ous networks. Monitored information is reported by CMCS
as RAS event records. RAS records are stored in back-
end DB2 databases, and the event stream from the back-
end databases is used to provide efficient failure prediction
facilities.

An example of an event record from the Intrepid RAS log
is shown in Table II.

e RECID is the sequence number for an event record in
the log, which is increased when a new record is added
to the log.

e MSG_ID indicates the source of the message.

o COMPONENT is the software component detect-
ing and reporting the event. The COMPONENT
could be APPLICATION, KERNEL, MC, MMCS,
BAREMETAL, CARD, or DIAGS. APPLICATION
indicates the running job; KERNEL indicates OS
kernel domain; MC designates machine controller;
MMCS designates control system on the service node;
BAREMETAL is service-related facilities; CARD in-
dicates card controller; DIAGS refers to diagnostic

Table III: Example of job information from Blue Gene/P job log.

Submission Time | 05/01/2008 00:00:43
Job ID 8935

Job Name N.A.

Execution File N.A.

Queuing Time 1209614949.07
Starting Time 1209618043.1

End Time 1209621636.96
Location R10-R11

User N.A.

Project N.A.

RAS Log & Job Log

Temporal-spatial,
RAS Causality-related
L

og Filtering

og

Figure 1: Co-Analysis methodology.

Fatal Events
Job
A Interruptions

Co-Analysis

Interruption-related
Fatal Event
Identification

System Failures,
Application Errors
Classification

Observations

Failure
Characteristics

JobInterruption
Characteristics

Job-related
Filtering

functions from the computing nodes or the service
nodes.

e SUBCOMPONENT indicates the functional area that
generated the message for each component.

e ERRCODE identifies the fine-grained event type infor-
mation.

e SEVERITY can be DEBUG, TRACE, INFO, WARN-
ING, ERROR, or FATAL. DEBUG and TRACE events
designate information to debug codes; these do not oc-
cur in our log. INFO, WARNING, ERROR, and FATAL
represent events following the order of increasing sever-
ity level. INFO events provide information about the
progress of system software, such as automatic recovery
progress. WARNING events are usually recoverable
“soft” errors, such as ECC correctable, single-symbol
error. ERROR designates harmful events that might still
allow the application to continue running, such as the
failure of a redundant component. Only FATAL severity
will presumably lead to application or system crash.
Therefore we focus on events with “FATAL” severity.

e EVENT TIME specifies the start time of event.

o LOCATION refers to the location where the event
occurs.

e MESSAGE is a brief overview of the event condition.
The information provided by this item includes com-
ponent, location, and type of error.

During the 237 days studied, the raw log had a total of
2,084,392 records. In this study, we are interested in the
33,370 records with FATAL severity, which are reported with
82 types of ERRCODE from six types of COMPONENT.

Job Log: The job log of Intrepid is collected by the job
scheduler Cobalt [14]. An example of job information from
the Intrepid job log is shown in Table III.

e Job ID is the sequence number for an job.

o Execution File is the path of job execution file.

o Queuing Time is the time when the job is added in the
waiting queue.

e Starting Time is the time when the job starts to run on
the nodes.

o End Time is the time when the job exits. The job could
be finished or interrupted by a failure.

e Location refers to the location of the execution. The

minimum unit is one midplane.

o Location refers to the location of the execution. The

minimum unit is one midplane.

e User is the user name.

e Project is the project name.

During the 237 days there are 68,794 jobs (i.e., having
different job IDs). However, there are only 9,664 distinct
job execution files because 5,547 have been submitted more
than one time. We use the term distinct job in this paper and
consider the job with the same execution file as one distinct
job.

IV. Co-ANALYSIS METHODOLOGY

Before presenting our methodology, we list a set of terms
that are frequently used in the rest of the paper.

o An interruption-related fatal event denotes the critical
event that can interrupt running jobs.

o A system failure denotes the failure that results from
the system facilities instead of users, such as hardware
failures and system software failures.

e An application error denotes the failure introduced by
users, such as buggy codes and user operation mistakes.

Our co-analysis methodology is shown in Figure 1. We
first trace RAS records to identify the events with the
FATAL severity. These RAS messages cannot be directly
used because they generally contain too much redundant
information. Temporal-spatial filtering is a widely adopted
method to remove redundant records [12], [9]; temporal fil-
tering removes multiple events being reported from the same
location within a threshold, and spatial filtering removes the
same type of events being reported at different locations
within a threshold. In this paper, we also adopt temporal-
spatial filtering methods to remove redundant records. Fur-
thermore, we apply a causality-related filtering to identify
the sets of fatal events co-occurring frequently and filter
them together [7]. After the filtering process, the number
of records with FATAL severity is reduced from 33,370 to
549, with a compression ratio of 98.35%.

Based on filtering results, we identify the job interruptions
by matching the RAS events with the job termination
information in the job log. Since both the RAS log and the
job log provide the time and the location information, we can
trace the End Time and Location of the job and match the

corresponding Event_Time and Location of RAS events
to examine whether the job is interrupted by a fatal event.
Through this method, we obtain 308 jobs (167 distinct jobs)
interrupted by fatal events.

After obtaining the fatal events and the job interruptions,
we apply our three-step method to correlate 549 RAS events
with FATAL severity with 306 job interruptions. The details
of these steps are described below.

A. Identification of Interruption-related Fatal Events

In RAS logs, a record with FATAL severity usually
indicates a critical event [12]. The problem is that some
events with FATAL severity may not interrupt any user jobs
[9], [11]. Currently system administrators have to manually
identify these false alarms [9], [7], a task that is time-
consuming and tedious.

Fortunately, the information from job logs can help us
identify fatal events that truly interrupt jobs. To identify
these interruption-related fatal events, we consider three
possible cases by correlating fatal events with jobs: (1) an
RAS event with FATAL severity interrupts one or more jobs,
(2) an RAS event with FATAL severity does not interrupt any
job since no job runs on its location, and (3) an RAS event
with FATAL severity does not interrupt any job running
atop. For each event type, that is, the events with the same
Errcode, we trace the job interruptions and identify the
interruption-related fatal events using the following rules:
(1) If only case 1 and case 2 are observed from the set of
all events that have the same Errcode, then this Errcode
indicates a type of interruption-related fatal event; (2) if
only case 2 and case 3 are observed, then the corresponding
Errcode indicates a type of nonfatal event for applications;
(3) if only case 2 is observed or both case 1 and case 3 are
observed, this type of events is undetermined, and further
analysis is required.

In our case study, 31 types of RAS events with FATAL
severity are identified as interruption-related fatal events.
Two types of events are identified as nonfatal events:
BULK_POWER_FATAL and _bgp_err_torus_fatal_sum.
BULK_POWER_FATAL is a hardware-related alarm. It
indicates an error in a bulk power module, which is detected
by reading environmental data. However, the controller
can only partially disable the rack and run hardware
diagnostics on the bulk power modules. On Intrepid, the
BULK_POWER_FATAL events are just transient errors,
so the jobs can keep running after the diagnostics process.
_bgp_err_torus_fatal_sum is a network-related alarm, which
is reported as a hardware error in our log. These errors can
be solved in a higher-level protocol, so the running jobs
are protected. There are 49 types of events with FATAL
severity that are undetermined because no job is running on
the same location. In this study, we pessimistically consider
these events as interruption-related fatal events [11].

Observation 1: Co-analysis can identify so-called fatal
RAS events that do not really impact user jobs. In our case
study, 20.84% of the RAS events belong to this category.

B. Classification of System Failures and Application Errors

Root cause analysis is of paramount importance for ef-
fective fault managements, especially for petascale systems
such as Blue Gene/P [15]. A goal of root cause analysis is
to distinguish system failures from application errors [20].

In RAS logs, the COMPONENT field tells where the
event occurs. However, we found that 75% of fatal events
are reported from the KERNEL, but no fatal event is
reported from the APPLICATION domain. As a result, the
COMPONENT field is insufficient to distinguish system
failures from application errors. For example, we found
two fatal events, _bgp_err_cns_ras_storm_fatal and Ciod-
HungProxy, reported from the KERNEL domain. However,
_bgp_err_cns_ras_storm_fatal is a system failure caused by
L1 data cache parity error, while CiodHungProxy is an
application error caused by a user operation mistake in the
file system.

Again, co-analysis can help us distinguish system failures
from application errors. We use the following rules for this
purpose. First, if there is no job running on the same location
as the fatal event, it is a system failure. As shown in Section
IV-A, 49 types of fatal events belong to this case. Second,
if multiple jobs are interrupted by the same fatal event in
the same location, then this fatal event is a system failure.
In this case, when a system failure occurs and interrupts the
running job, the scheduler has no knowledge of this fatal
event and continues to assign new jobs to the failed nodes.
This fatal event tends to be continuously reported until the
failure is fixed. We identify four types of fatal events in this
scenario: LI cache parity error, DDR controller error, file
system configuration error, and link card error. Obviously,
these fatal events are closely related to the system platform.

To identify application errors, we use the following strat-
egy. When a fatal event occurs and interrupts a job at a
specific location, the user tends to resubmit the job after the
interruption. The scheduler may assign the previous location
to a different job and assign the resubmitted job to a different
location. If the fatal event is caused by an application error,
the same type of fatal event will be reported at the newly
assigned location, and the new job in old location will not
be interrupted by the same type of fatal event. Figure 2
gives a specific example from our study. We have identified
six types of application errors. Examples include invalid
memory address error, out-of-memory error, file system
operation error, and collective operation error.

For each unlabeled fatal event, we calculate and sort its
Pearson’s correlation coefficients [12] with existing catego-
rized fatal types. We assign the category of fatal event with
the highest correlation coefficient to these unlabeled fatal
events. Our separation of application errors from system

Job1
Fatal A

Midplanel Midplane2
Job2) Job1
] Fatal A
Midplanel Midplane2

Figure 2: Example of how to identify application errors. In this
example, job 1 is interrupted by fatal event A in both midplane 1
and midplane 2; job 2 has no interruption in midplane 1 during the
period. Hence, fatal A is an application error introduced by job 1.

failures was verified and agreed upon by experienced system
administrators at Argonne.

Observation 2: Co-analysis can distinguish system fail-
ures from application errors. In our case study, we identify
72 types of system failures and 8 types of application errors.
Further, we find that 17.73% of fatal events are application
errors.

C. Job-related Filtering

Although temporal-spatial filtering [12], [9] and causality-
related filtering [7] are helpful in identifying independent
fatal events, they fail to remove job-related redundancy. As
shown in Section IV-B, job-related redundancies occur when
the scheduler keeps allocating failed nodes for incoming jobs
or when users keep resubmitting the buggy codes. In both
scenarios, the same fatal events will be reported multiple
times until the problems are fixed.

Job-related redundancy cannot be removed through
temporal-spatial filtering, which sets a constant threshold
for redundancy detection. The time interval between two
job-related redundant system failures is determined by the
job arrival rate and the scheduling policy. When the job
arrival rate is low or the next executing is waiting for more
computing resources, the redundant record may be reported
with a long latency. In the case of application errors, the
redundant record will not be reported until the user resubmits
the job.

We have designed a simple job-related filtering strategy.
When a fatal event is reported, we trace the location of the
interrupted job. If another job is interrupted by the same type
of fatal event in the same location and if no job executed
between these two events, then this fatal event is considered
redundant. Further, the relation is transitive. For example, if
event B is redundant to event A and if event C is redundant to
event B, both B and C are redundant to event A. In the case
of application errors, the fatal event is considered redundant
if the job with the same execution file has been interrupted
by the same type of fatal event before.

In our case study, we identified 72 job-related redundant
records in 549 records after temporal-spatial filtering and

0.9F 7
[
>. 0.8 ’:
S o7l
© -
=2 s
O oe6f!f:
S /B
® 0.5h° = = = . data before job—related filtering
= : Weibull
S oall: 11 Exponential
= :
£ os3rf:
= :
O o2t
0.1 4
. T
ollL
o 2 4 B s 10
Time between fatal events (sec) x10°
(@)
1
0.9 =
= o8
= S
£ 071 o
S 4
=]
S o6 :
o
@ 05
=
© 04 — = = data after job—related filtering
g 05 : Weibull
g oor) ... Exponential
O o2l
0.1
ola
2 3 4 5 6 7 8 9 10
Time between fatal events (sec) x 10°

Figure 3: Expirical CDF for interarrival times of fatal events
(a) with job-related redundant records and (b) without job-related
redundant records.

causality-related filtering. Most of them come from the ap-
plication, the kernel software, and the card controller on the
service nodes. Our study demonstrates that the mechanism
of “reboot before execution” on Blue Gene/P cannot solve
these kinds of problems.

Observation 3: Job-related redundancy is not negligible.
In our case study, we find that 57.4% of resubmitted jobs
were allocated to the same failed nodes by the scheduler.
In addition, users may keep submitting their buggy codes,
thereby leading to the same type of application errors at
different locations. Co-analysis can efficiently filter out these
job-related redundant records in RAS logs. In our case study,
we are able to remove the job-related redundant records with
a compression ratio of 13.1%.

V. FAILURE CHARACTERISTICS

Co-analysis of the RAS log and job log has also provided
many insights into failure characteristics and job interruption
characteristics. In this section, we present failure characteris-
tics at the systemwide and midplane levels. Job interruption
characteristics are presented in the next section.

A. Systemwide Failure Interarrival Distribution

Exponential distribution and Weibull distribution are two
popular models used to fit failure interarrival [13], [8], [10].
In our study, we use both models to study the distribution
of failure interarrival at the systemwide and midplane levels.
Maximum likelihood estimation is adopted to parameterize

Table IV: Comparison of the parameters and numerical charac-
teristics of Weibull distributions for fatal events before and after
job-related filtering.

Shape Scale Mean Variance
Before job-related | 0.387,187 | 8116.7 29585 9.6348e+09
filtering
After job-related 0.572,884 | 68465.9 | 109718 | 4.1818e+010
filtering

the two distributions [8], and a likelihood ratio test [16] is
adopted to evaluate the effectiveness of these two distribu-
tions. To study the impact of job-related redundancy, we
present in Figure 3 the fitting results with and without job-
related redundant records. As shown in both plots, Weibull
distribution give a better fitting than exponential distribution,
consistent with the results presented in [8], [10]. Table IV
presents the specific distribution parameters and numerical
characteristics corresponding to the two curves.

Comparing Figure 3a and Figure 3b, we find that the
two distribution curves are different. As shown in Table IV,
the MTBF (mean time between failures) after job-related
filtering is about three times larger than that without job-
related filtering. Moreover, although both distributions have
decreasing hazard rates (i.e., shape parameter <1), the value
of the shape with job-related preprocessing is much higher
than that without job-related preprocessing. Obviously, the
impact of job-related redundant records is nontrivial.

Observation 4: While Weibull distribution gives a good
fitting to represent failure interarrivals, the distribution pa-
rameters and numerical characteristics become significantly
different after job-related filtering. In other words, job-
related filtering is necessary for better understanding of
failure modes.

B. Midplane-Level Failure Characteristics

In this subsection, we further study the midplane-level
failure characteristics. Intrepid consists of 80 midplanes.
We find that Weibull distribution still fits midplane-level
failure interarrival distribution well. However, although Blue
Gene/P is a homogeneous MPP system, the failure rates
on different midplanes are significantly different. Figure 4a
presents the number of fatal events in each midplane. As
shown in Figure 4a, the midplanes from 33 to 64 have higher
failure rates than do other midplanes. According to [8], [17],
high workload (meaning the aggregated compute cycles are
great) generally means high failure rate. But this situation
is not true in our case study. In Figure 4b, we present the
workload in 80 midplanes. The midplanes 1 and 2 and the
midplanes in the range of 65 to 80 have higher workload than
do other midplanes. However, as shown in Figure 4a, the
number of fatal events in these midplanes is low. Instead, the
three midplanes having the highest numbers of fatal events
are 58, 61, and 60.

15

10

=0
Midplane

()

o 20 &0 =0

a0
Midplane

Number of Fatal Events
5

| 4 ’\“‘i‘;)\m

S0

Workload

(b)
) éi
:, (R
’ = Midplane -
©
Figure 4: (a) Number of fatal events on each midplane, (b)

workload on each midplane, and (c) workl