
J. Parallel Distrib. Comput. 84 (2015) 1–14
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Quantitative modeling of power performance tradeoffs on extreme
scale systems
Li Yu a, Zhou Zhou a, Sean Wallace a, Michael E. Papka b, Zhiling Lan a,∗

a Illinois Institute of Technology, Chicago, IL 60616, United States
b Argonne National Laboratory, Argonne, IL, 60439, United States

h i g h l i g h t s

• A colored Petri net was developed for tradeoff analysis of power and performance.
• Trace based validation demonstrated that the model is highly accurate and scalable.
• The model was used to analyze different power capping methods on petascale systems.

a r t i c l e i n f o

Article history:
Received 26 June 2014
Received in revised form
7 May 2015
Accepted 25 June 2015
Available online 3 July 2015

Keywords:
High performance computing
Power performance analysis
Colored Petri net
Extreme scale systems
Power capping

a b s t r a c t

As high performance computing (HPC) continues to grow in scale and complexity, energy becomes a crit-
ical constraint in the race to exascale computing. The days of ‘‘performance at all cost’’ are coming to an
end.While performance is still a major objective, future HPCwill have to deliver desired performance un-
der the energy constraint. Among various power management methods, power capping is a widely used
approach. Unfortunately, the impact of power capping on system performance, user jobs, and power-
performance efficiency are not well studied due to many interfering factors imposed by systemworkload
and configurations. To fully understand power management in extreme scale systems with a fixed power
budget, we introduce a power-performance modeling tool named PuPPET (Power Performance PETri net).
Unlike the traditional performance modeling approaches such as analytical methods or trace-based sim-
ulators, we explore a new approach – colored Petri nets – for the design of PuPPET. PuPPET is fast and
extensible for navigating through different configurations. More importantly, it can scale to hundreds of
thousands of processor cores and at the same time provide high levels of modeling accuracy. We validate
PuPPET by using system traces (i.e., workload log and power data) collected from the production 48-rack
IBM Blue Gene/Q supercomputer at Argonne National Laboratory. Our trace-based validation demon-
strates that PuPPET is capable of modeling the dynamic execution of parallel jobs on the machine by
providing an accurate approximation of energy consumption. In addition, we present two case studies of
using PuPPET to study power-performance tradeoffs on petascale systems.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Production petascale systems are being designed and deployed
to meet the increasing demand for computational cycles made by
fields within science and engineering. With their growing perfor-
mance, energy consumption becomes an important concern. It is
estimated that the energy cost of a supercomputer during its life-
time can surpass the equipment itself [1]. This introduces the need

∗ Corresponding author.
E-mail addresses: lyu17@hawk.iit.edu (L. Yu), zzhou1@hawk.iit.edu (Z. Zhou),

swallac6@hawk.iit.edu (S. Wallace), papka@anl.gov (M.E. Papka), lan@iit.edu
(Z. Lan).

http://dx.doi.org/10.1016/j.jpdc.2015.06.006
0743-7315/© 2015 Elsevier Inc. All rights reserved.
for energy-efficient computing. A number of power management
technologies have been presented [30,38], and power capping
(i.e., limiting the maximum power a system can consume at any
given time) is a well-known approach. For instance, power-aware
job allocation and dynamic voltage and frequency scaling (DVFS)
are two common power capping mechanisms. To control the peak
powerwithin a predefined threshold, the former controls the over-
all system power by dynamically allocating available resources
to the queued jobs according to their expected power require-
ments [50], while the latter limits the overall system power by
adaptively adjusting processor voltage and frequency (DVFS) [23].

While power-aware job allocation and DVFS control the maxi-
mum system power through different mechanisms, they both in-

http://dx.doi.org/10.1016/j.jpdc.2015.06.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.06.006&domain=pdf
mailto:lyu17@hawk.iit.edu
mailto:zzhou1@hawk.iit.edu
mailto:swallac6@hawk.iit.edu
mailto:papka@anl.gov
mailto:lan@iit.edu
http://dx.doi.org/10.1016/j.jpdc.2015.06.006


2 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
evitably degrade performance such as system utilization rate, job
wait time, etc. Understanding the performance impact of different
capping methods is critical for the development of effective power
management methods, especially in a system of unprecedented
size and complexity. Important questions arising in this context
include: for a given system and workload, which is an appropriate
method? And what is the potential impact of power management on
performance? These questions must be answered and their impor-
tance grows with the increasing scale of high performance com-
puting. Nevertheless, these are intrinsically difficult questions for
many reasons. The optimal power management scheme depends
on many factors, such as job arrival rate, workload characteristics,
hardware configuration, power budget, and scheduling policies.
For DVFS, other relevant factors include the processor power-
to-frequency relationship and the workload time-to-frequency
relationship. For power-aware job allocation, perhaps the most
important factor is the ratio between power at idle processor state
versus that at full processor speed. Moreover, these factors are
often interrelated, making the analysis even harder. It is simply
impossible to examine all these factors via experiments on pro-
duction systems. To fully understand the impact different power
capping mechanisms have on performance, we have developed a
new analysis approach, which we describe in this paper, to predict
system performance as a function of these factors.

Models are ideal tools for navigating a complex design space
and allow for rapid evaluation and exploration of detailed what-
if questions. This motivates us to look for a modeling method
that satisfies three basic requirements: (1) scalability—it should be
capable of modeling extreme scale systems with low overhead;
(2) high-fidelity—it should be accurate enough to quantify the
power-performance tradeoffs introduced by different external
factors; (3) extensibility—it should be flexible for easy expansion
such as adding different system configurations and/or new
functionalities.

Existing modeling methods can be broadly classified into three
categories: analytical modeling, simulation and/or emulation, and
queuing modeling [21]. Unfortunately, none of them meets the
above three requirements. Analytical modeling methods are fast,
but they only provide rough predictive results, thus do not sat-
isfy the second requirement (i.e., high-fidelity). Further, analytical
modeling cannot capture dynamic changes (e.g., dynamic job sub-
mission and execution, dynamic frequency tuning). Trace-based
simulators can provide highly accurate representations of system
behaviors such as dynamic job scheduling [34,49]. However, no ex-
isting simulator has been extended to study power-performance
tradeoffs on large-scale systems. Such a functional extension is not
trivial, and would require a significant amount of engineering ef-
forts. In other words, this approach does not satisfy the third re-
quirement (i.e., extensibility). The conventional queuing methods
(e.g., Markov modeling) have been investigated to deal with com-
plicated programs; however, they suffer from the state explosion
problem, thus cannot satisfy the first requirement (i.e., scalability).

In this paper, we explore a newmodeling approach by present-
ing a colored Petri net named PuPPET (Power Performance PETri net)
for quantitative study and predictive analysis of different power
managementmechanisms on extreme-scale systems. Colored Petri
net (CPN) is a discrete event modeling formalism combining the
strengths of Petri nets with the expressive power of programming
languages [25,19]. Petri nets provide the graphical notation for sys-
tem abstraction, whereas the programming languages offer the
primitives for data definition and data value manipulation. Here,
we list several reasons why PuPPET is able to satisfy the aforemen-
tioned requirements and leave more detailed descriptions of CPN
in Section 2.1.
• Scalability. The hierarchy and color supports offered by colored
Petri net make it possible to model large systems in a modu-
lar way. Unlike conventional queuingmethods, PuPPET’s model
size does not grow dramatically as the number of system com-
ponents increases. This feature is critical for the modeling of
extreme-scale systems targeted in this work. As we will show
later in our experiments, PuPPET can model peta-scale systems
with low modeling overhead.

• Accuracy. By combining the capabilities of Petri nets with high-
level programming languages, PuPPET can provide a very pre-
cise abstraction of system behaviors, thus enabling an accurate
simulation of real systems. Job related factors such as job arrival
time, job size and job runtime can be described by language pa-
rameters directly, whereas the interactions among these factors
can be captured by the graphical notation in an intuitive way.

• Extensibility. PuPPET enables us to add, modify or remove the
functional modules and their interactions easily. Moreover, the
availability of various well-developed Petri net simulation tools
allows us to build models at a high level, hence making the
model construction and extension much more convenient and
faster.

We validate the accuracy of PuPPET by using the system traces
(i.e., workload log and power data) collected from the production
10-petaflops IBM Blue Gene/Q system namedMira at Argonne Na-
tional Laboratory. Our experiments show that PuPPET can effec-
tively model batch scheduling and system energy consumption
with a high accuracy, e.g., an error of less than 4%. The emulation of
executing four-month jobs on Mira took a couple of minutes on a
local PC. Given thatMira is a petascalemachinewith 49,152 nodes,
this result demonstrates that PuPPET is highly scalable.

We also present two case studies to explore the use of PuP-
PET for power performance analysis. We study the performance
impact of different power capping strategies under a variety
of system configurations and workloads. PuPPET enables us to
study the effects of a variety of factors, such as workload char-
acteristics, processor power-to-frequency relationship, workload
time-to-frequency relationship, as well as the idle-to-full power
relationship, in a unified analysis environment. These case studies
provide us useful insights of using power capping on extreme scale
systems. For example:

• Given a fixed power cap, both power-aware allocation andDVFS
can effectively restrict the overall system power within the
limit. While both mechanisms trade performance for power
saving, the degrees of performance degradation are not the
same. AlthoughDVFS seems to cause less impact on systemper-
formance, it could significantly impact hardware lifetime relia-
bility, as high as up to 3X higher failure rate [36]. Hence, unless
in case of a tight power cap and high system utilization, power-
aware allocation is a preferred power capping solution due to
its comparable performance with DVFS and no impact to sys-
tem reliability.

• Workload characteristics influence the power-performance
efficiency of power capping. In our experiments, greater per-
formance impact is observed in the months where system uti-
lization is relatively high.

• Although batch scheduling policy does not cause substantial
power-performance difference when applying power capping,
we observe that the scheduling policy adopted by Mira is
more robust to system performance degradation caused by
power management than the well-known first-come, first-
served (FCFS) policy, especially with respect to job wait time.

While this paper focuses on power-performance analysis of
power capping methods, PuPPET is extensible and can be easily
augmented to analyze other architectures, different power man-
agement mechanisms, other hardware scaling like memory, or



L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 3
Fig. 1. Basic elements used in Petri nets. The left figure indicates the system state
before the firing of the transition, and the right figure indicates the state after the
firing. Note that the arc weight 1 is not labeled explicitly.

adding new constraints such as reliability. The extension can be
achieved by adding newmodules. Thesemodules can be integrated
or individually disabled for studying different scenarios, thereby
providing a very powerful tool formodeling and analyzing extreme
scale systems.

The rest of the paper is organized as follows. Section 2 presents
background information. Section 3 describes our model design.
Section 4 presents model validation by means of real traces.
Section 5 presents two case studies of using the model. Section 6
discusses related work. Finally, we conclude the work in Section 7.

2. Background

Before presenting our model, we provide the necessary back-
ground information in this section.

2.1. Colored Petri net

Petri nets are a modeling formalism for describing systems
that are concurrent, asynchronous, distributed, parallel, or stochas-
tic [2]. It combines an intuitive graphical notation with a number
of analysis techniques based on a solid mathematical foundation.
Petri nets are depicted by weighted and directed graphs, consist-
ing of places and transitions connected by arcs, with tokens in places.
Places are used to represent system states, whereas transitions are
used to represent system events. To indicate the change of system
states, tokens (represented as black dots) move from one place to
another via the firing of a transition. The firing of a transition trans-
fers tokens from its pre-places to its post-places according to the
weights of the outgoing arcs. A transition is ready to fire onlywhen
each of its pre-places contains at least the number of tokens spec-
ified by the weight of the corresponding arc. Fig. 1 illustrates the
basic elements used in Petri nets.

Colored Petri net (CPN) is a recent advancement in the field of
Petri nets [20]. By taking advantage of high-level languages, CPN
features several extensions over the traditional Petri nets. First, it
allows tokens to have a data value attached to them. This attached
data value is called token color. As such, tokens become distin-
guishable according to their colors. Moreover, the transitions in
CPN can add, remove or change the color of tokens. These two fea-
tures improve the expressibility of Petri nets greatly, thus enabling
CPN to model complicated system behaviors (e.g., the change of
job attributes such as job size, job runtime, job power, etc.) in HPC.
Second, tokens or transitions in CPN can be associated with time.
Timed transitions can fire according to a deterministic delay or
a stochastically distributed random variable. This extension pro-
vides an accurate control of timing for systemmodeling. Third, CPN
allows a hierarchical design, in which a module at a lower level can
be represented by a transition at a higher level. This feature pro-
vides a compact model design, and also enables a higher level of
scalability. Additional details about CPN can be found in [20]. Fig. 2
presents an example to illustrate the major differences between
the traditional Petri nets and colored Petri nets.

Although CPNs have been widely used for modeling large scale
systems like biological networks [29], to the best of our knowl-
edge this is the first attempt of applying CPN for quantitative power-
performance modeling in high performance computing.
(a) Petri nets. (b) Colored Petri net.

Fig. 2. An example of comparing Petri nets with colored Petri nets. They are used
to model three jobs running on a 6-node system. In the left model, three jobs are
represented by three tokens in different places, and their requested numbers of
nodes are represented by the weights of arcs from Nodes to the transitions. In the
rightmodel, the jobs in CPN are distinguished by their colors, i.e., denoted by a value
(1), (2), and (3). Also, CPN allows the control of timing (expressed by ‘‘@+’’).

2.2. Power consumption

For a computing node in a system, the power is mainly con-
sumed by its CMOS circuits, which is captured by

P = V 2
× f × CE, (1)

where V is the supply voltage, f is the clock frequency, and CE is the
effective switched capacitance of the circuits. According to differ-
ent environments, the power consumption can be approximated
by

P ∝ f α, (2)

where the frequency-to-power relationship α typically falls into the
scope from one to three [28]. This implies that lowering the CPU
speed may significantly reduce the power consumption of the
system. However, lowering the CPU speed also decreases the max-
imum achievable clock speed, which leads to a longer time to
complete an operation. Thus, the time to finish an application is
inversely proportional to the clock frequency and can be repre-
sented as

t ∝
1
f β

(3)

where β is the frequency-to-time relationship.
Note that the change of CPU speed only affects the time con-

sumed by the frequency-dependent part (e.g., computation) of the
application, and the time consumed by the frequency-independent
part (e.g., communication) remains unchanged [27]. In the case
that an application is 100% frequency-dependent,β can be approx-
imated by 1.0. Studies have shown that the frequency-independent
portion could be as high as 40% [7]. According to this ratio, in this
study, we set the default value of β to 0.5, and a sensitivity study
of β will be provided in Section 5.1

It is worth noting that Eq. (2) is only a core-level power model.
For an application running on a machine, besides the power con-
sumed by cores, other components such as memory, network, I/O
and so on also consume power. For typical applications running on
Mira at Argonne, our recent study has found that chip cores con-
tribute to more than 60% of the power consumption [44]. In this
study, the change of CPU frequency only influences the power con-
sumed by chip cores, and the default ratio of chip core power to the
total power is set to 65%.

2.3. Batch scheduling

Batch scheduling is typically used for resource management
and job scheduling in HPC, where parallel jobs are assigned to dis-
joint processor resources (i.e., space-sharing) according to resource
availability and certain job ordering. Fig. 3 illustrates typical batch



4 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
Fig. 3. Batch scheduling in HPC.
scheduling on supercomputers. The resource manager is responsi-
ble for obtaining information about resource availability, waiting
queue, and the running status of compute nodes. It runs several
daemon processes on the master nodes and compute nodes to col-
lect such information. The job scheduler communicates with the
resource manager to make scheduling decisions based on the cur-
rent system status. The job waiting queue receives and stores jobs
submitted by users. Users can query the resource manager to get
the status of their jobs.

The job scheduler periodically examines the jobs in the waiting
queue and the available resources via the resource manager, and
determines the order in which jobs will be executed. The order
is decided based on a set of attributes associated with jobs such
as job arrival time, job size (i.e., the number of nodes needed),
the estimated runtime, etc. First-come, first-served (FCFS) with
EASY backfilling is a commonly used scheduling policy in HPC [11].
Under FCFS-EASY, jobs are served in first-come, first-served order,
and subsequent jobs continuously jump over the first queued job
as long as they do not violate the reservation of the first queued job.

In this paper we also study another scheduling policy named
WFP (named for the United Nations World Food Programme),
which is designed to avoid large job starvation on IBM Blue Gene
systems including the current Blue Gene/Q at Argonne [40,39]. Un-
like FCFS that determines job ordering based on their arrival times,
WFP uses a utility function as defined in Eq. (4) to determine job or-
dering. It favors large and old jobs, adjusting their priorities based
on the ratio of wait time to their requested wall clock times. WFP
with EASY back-filing works as follows: when a job arrives at or
leaves from the system, all the queued jobs are sorted according to
Eq. (4); subsequent jobsmay be scheduled over the first queued job
as long as they do not violate the reservation of the first queued job.

job_size ×


job_queued_time

job_runtime

3

. (4)

3. PuPPET design

PuPPET consists of three interacting modules, namely, batch
scheduling, power-aware allocation and CPU scaling, to model user
jobs from their submission to their completion. Fig. 4 shows the top
level design, in which these modules are connected through five
states (i.e., places). Batch scheduling orders the jobs in the queuing
state according to a scheduling policy, e.g., job arrival time (FCFS)
or utility score (WFP), and allows small jobs to skip ahead provided
they do not delay the job at the head of the queue (i.e., backfilling).
Power-aware allocation provides coarse-grained power capping by
allocating queued jobs onto computer nodes based on the overall
system power status and job power requirement. In this work, we
develop anet to describe twopower-aware allocation strategies for
power capping.1 CPU scaling dynamically adjusts the processors’

1 In this paper we distinguish job scheduling from job allocation: job scheduling
focuses on ordering user jobs, whereas job allocation is dedicated to assigning the
queued jobs onto available resources.
Table 1
Major inscriptions used in the PuPPET modules.

Inscriptions Type Description

job Variable A job has six attributes: js, rt, jp, et, pf
and st.

jobs,ws Variable A job list.
pow,old_pow Variable System power level at the current and

the previous time steps.
P1,. . . ,Pm Variable Processor power rates.
f,pf,new_f,f1,. . . ,fm Variable Processor frequency rates.
[expr] Symbol A guard on a transition that is able to

fire if expr evaluates to true.
@+ expr Symbol A time delay specified by expr.
T() Function The current model time.
WFP() Function Job scheduling using WFP.
Backfill() Function Job scheduling using backfilling.
PowAllocate() Function Search for jobs satisfying power cap

from the wait queue.
Update() Function Updating job execution time when CPU

speed changes.

clock frequency for fine-grained power capping. It interacts with
the jobs in the running state. Dynamic system states are modeled
by job submission, job queuing, job allocation, node allocation, and
power state changing.

The five states possess different system information. Queuing
keeps a list of queued jobs, whose order can be changed dynami-
cally by the batch scheduling module. Running holds a set of jobs in
the running state, where job execution is intercepted by the CPU
scaling module. Power indicates the current power level of the sys-
tem, based onwhich power-aware allocationmodule or CPU scaling
module is able to conduct power capping. Runtime Info provides
system resource information to the batch scheduling module.Nodes
represents the number of available computer nodes. We give the
details of these modules and states in the following subsections,
using the inscriptions summarized in Table 1.

3.1. Batch scheduling

This module is used tomodel batch scheduling on HPC systems.
Fig. 5 presents the net design for FCFS and WFP, along with EASY
backfilling. As mentioned in Section 2, FCFS-EASY is a widely used
batch scheduling policy, and it is estimated that more than 90% of
batch schedulers use this as default scheduling configuration [31].
WFP-EASY is the production batch scheduling policy used on a
number of production supercomputers at Argonne, including the
current 48-rack Blue Gene/Q machine.

As shown in Fig. 5, jobs leave from the place User in the net
according to their arrival times. Every job is described in the form
of (js, rt, jp, et, pf )@ + st , where js is job size, rt is job runtime, jp
is job power profile, st is job arrival time, et records the time when
a job enters a new place, and pf indicates the frequency rate of the
processor that a job runs on. Here, js and rt are supplied by users,
jp is an estimate that can be obtained from historical data [48], and
all others are maintained by PuPPET.

The job list in the placeQueuing accepts the jobs submitted from
users. Once a job enters or leaves the system (i.e., firing of Submit



L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 5
Fig. 4. Top level design of PuPPET. There are three hierarchical modules (denoted by double border boxes in blue) and five states (denoted by ellipses in green). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
or Finish), the place Trigger receives a signal and launches a job
scheduling process. For FCFS-EASY, the transition EASY fires and
uses the function Backfill to ‘‘backfill’’ jobs according to runtime
resource information from the place Runtime Info. For WFP-EASY,
jobs are sorted by their utility scores (i.e., firing of WFP) before
backfilling starts.

3.2. Power-aware allocation

This module intends to model coarse-grained power capping
by allocating queued jobs onto available nodes based on the
system power status and job power requirement. Specifically,
for each job at the head of the queue, if its estimated power
requirement makes the overall system power exceed the power
cap, the allocator either blocks job allocation or opportunistically
allocates subsequent less power-hungry jobs:

• BLOCK: the first queued job and its successors are blocked until
there is power available to execute it (e.g., when a job finishes
and leaves the system).

• WAIT: the first queued job is held in a wait queue and yields
to other less power-hungry jobs, until its wait time exceeds a
predefined value or the wait queue is full.

Fig. 6 presents the net design. We use Pcap to represent the
power cap imposed on the system, w to indicate the maximum
wait time of a job in the wait queue, and l to restrict the length of
the wait queue. The module is centered around three transitions:
Allocate, Wait and Allocate W. The head job in the place Queuing is
either being allocated onto nodes or being held in the wait queue.
The transition Allocate fires if the job’s power requirement does not
make the overall system power exceed the power cap; otherwise,
the transitionWait fires as long as thewait queue is not full. Jobs in
the wait queue can be allocated onto computer nodes by the firing
of the transition Allocate W which is set to a higher firing priority
than the transition Allocate.

To model the BLOCK strategy, we set the wait queue length l to
zero. If the head job in the place Queuing makes the total system
power exceed the power cap, it and its successors are blocked
until the power cap is satisfied. Similarly, the WAIT strategy is
modeled by setting l to a positive integer. If the head job breaks the
power cap, it ismoved to the placeWait Queue. Once systempower
changes, the transition Power Change fires and starts a selection
process for the jobs in the wait queue. The function PowAllocate
Fig. 5. Batch scheduling module.

selects some jobs that can be allocated under the current system
power andputs themat the head of thewait queue. However, if any
job in thewait queue exceeds themaximumwait time (denoted by
w), the job is kept at the head and a signal is sent to the place Block.
The successors are also blocked until the job at the head of thewait
queue is allocated.

Note that the original batch scheduling is modeled by simply
setting Pcap to ∞, indicating that the transition Wait will never



6 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
Fig. 6. Power-aware allocation module.
fire and the jobs in the place Queuing are allocated as long as there
are sufficient computer nodes.

3.3. CPU scaling

This module models fine-grained power capping through dy-
namic voltage and frequency scaling (DVFS). Specifically, in the
case that a job arrival makes the total system power exceed the
power cap, DVFS is explored to make the processors run at a lower
power state, thus limiting the power within the cap.

Fig. 7 presents the detailed net design. When system power
changes due to job arrival or leaving, the power indicated by the
place New Power will be updated. According to this new sys-
tem power and the power cap, one of the transitions in {T1, T2,
. . . , Tm} fires, meaning that the processors are going to run at
power rate Pi. At the same time, the processor frequency rate
and the remaining job execution time is updated according to the
power models listed in Section 2.2. Note that we assume there is
no latency involved in CPU scaling.

3.4. PuPPET implementation

We use CPN Tools to construct PuPPET. CPN Tools is a wide-
spread tool for editing, simulating, and analyzing colored Petri
nets [6]. It is free of charge, and has been in active development
since 1999. More importantly, it provides much faster simulation
capabilities as compared to other tools we have investigated. PuP-
PET can be downloaded from our server http://bluesky.cs.iit.edu/
puppet/. It is directly executable by an appropriate tool like CPN
Tools. Currently, PuPPET accepts job traces in the standard work-
load format adopted by the scheduling community [41]. PuPPET
can be simulated interactively or automatically. In an interactive
simulation the user is in control. It provides a way to walk through
the model, and checking whether the model works as expected.
Automatic simulations are similar to job execution.

4. Model validation

We believe that the best way to validate PuPPET is by means
of real system traces including both workload log and power data
collected from production systems. Unfortunately, these data are
not generally accessible. By working with the operational team at
Argonne Leadership Computing Facility, we were able to gather a
workload log and a corresponding power data from its production
IBM Blue Gene/Q system named Mira. Mira is a US Energy Depart-
ment petascale resource in support of scientific research. It consists
of 48 racks, each containing two mid-planes, eight link cards, and
two service cards. A mid-plane contains 16 node boards and each
node board holds 32 compute cards. The entire system contains
49,152 nodes and 786,432 cores, offering a peak performance of 10
petaflops. The machine uses Cobalt for its resource management
and job scheduling [40]. Cobalt is an open-source, component-
based job management suite developed by Argonne and has been

http://bluesky.cs.iit.edu/puppet/
http://bluesky.cs.iit.edu/puppet/
http://bluesky.cs.iit.edu/puppet/
http://bluesky.cs.iit.edu/puppet/
http://bluesky.cs.iit.edu/puppet/
http://bluesky.cs.iit.edu/puppet/


L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 7
Fig. 7. CPU scaling module.

used on a number of production Blue Gene systems at Argonne. It
adopts the WFP policy described in Section 2 for batch scheduling.

We collected a job log from Mira between January and April
2013. In these four months, 16,044 jobs were executed on the ma-
chine. A summary of these jobs is presented in Fig. 8. During these
months, the machine was going through acceptance testing and
a large number of early science applications were submitted from
users, hence there are a large number of small sized jobs. As shown
in the figure, the least number of jobs were submitted in February.
While there are similar number of jobs in the other three months,
most of the jobs in January are small-sized jobs (i.e., less than
8k). In other words, a distinguishing workload difference for these
months is that system utilization is low in January and February
and high in March and April. More specifically, the system utiliza-
tion is about 35% higher in March and April, compared to January
and February. As we will show later in this paper, this workload
difference impacts the effect of power management. Furthermore,
Mirawas deployedwith powermonitoring sensors that collect and
store power-related data in its environmental database [44].

From the job log, we extracted job attributes including job size
js, job runtime rt, and job arrival time st of all the 16,044 jobs. For
each job, its power profile jp was obtained by correlating the job
log with the environmental log. We measured job size in number
of racks, job time in minutes, and job power profile in watts. We
also rounded these measured numbers to the nearest integers for
the purpose ofmodeling. The defaultmodel simulation time step is
set to 1min. The energy consumptionwithin the time step [t, t+1]
is approximated as the number of tokens in the place Power (see
Fig. 4) at time t . For example, if at the 5thmin the number of tokens
in Power is 600, then the energy usage during the following time
step is estimated as 600/1000 ∗ 1/60 = 0.01 kWh.

For model validation, we compared the modeled energy con-
sumption to the actual energy consumption extracted from the
Table 2
Impact of simulation time step on model accuracy and simulation overhead.

Simulation time step (min) Maximum energy error Simulation
overhead (min)

1 3.84% 5.40
5 5.03% 5.25

15 8.85% 4.95
30 15.32% 4.60
60 18.09% 4.40

environmental data. Fig. 9 plots the daily energy consumptions
obtained fromPuPPET and the actual power data from the environ-
mental database. Note that each data point in the figure indicates
the sumof the energy consumed in that day. The plot clearly shows
that PuPPET is highly accurate, with an average error of less than
4%. We also compared scheduling metrics (e.g., system utilization
rate, average job wait time, etc.) obtained from PuPPET and the job
log, which leads to similar results as energy consumption. We did
not show themhere due to the limit of space. Together these results
indicate that PuPPET can effectivelymodel dynamic job scheduling
and allocation with high fidelity.

Model accuracy and simulation cost are influenced by sim-
ulation time step. We have conducted a set of experiments to
evaluate the impact of different simulation time steps, and the
results are shown in Table 2. As shown in the table, we vary the
simulation time step from 1 to 60 min, and assess the maximum
energy error brought by PuPPET, along with the simulation cost.
Obviously, a smaller time step means higher accuracy; never-
theless, a smaller time step also introduces higher simulation
overhead. All the experiments were conducted on a local PC
that is equipped with an Intel Quad 2.83 GHz processor and 8 GB
memory, running Windows 7 Professional 64-bit operating sys-
tem. The table demonstrates that PuPPET is fast: for the emulation
of the 4-month workload on the 49,152-node machine, the simu-
lation takes a couple of minutes to complete. For the case of mod-
eling Mira, we believe that the selection of a time step between 1
and15 min provides a good balance between model accuracy and
simulation overhead.

5. Case studies

We have validated the proposed PuPPET model, and now
we proceed to use PuPPET for predictive analysis. In particular,
we present two case studies where PuPPET is used to study
power-performance tradeoffs under different power capping
mechanisms. We analyze both fine-grained (e.g., DVFS) and
coarse-grained (e.g., power-aware allocation) power capping
strategies. Our study evaluates these strategies by navigating
through different configuration spaces. Specifically, three power-
performance metrics are used for analysis:

• System utilization rate. This metric represents the ratio of node
hours used by user jobs to the total elapsed system node hours.
It is a commonly used metric for evaluating system perfor-
mance.

• Average job wait time. This metric denotes the average time
elapsed between themoment a job is submitted to themoment
it is allocated to run. This metric is used to measure scheduling
performance from the user’s perspective.

• Energy delay product (EDP). This metric is defined as the prod-
uct of the total energy consumption and themakespan of all the
jobs (i.e., the total length of the schedule when all the jobs have
finished processing). It is commonly used to measure power-
performance efficiency. Obviously, a lower value means better
power-performance efficiency [22].



8 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
Fig. 8. Summary of job traces.
Fig. 9. Model validation: daily energy consumption.
In our case studies, the default setting is as follows: the power
cap is set to 45,720 kW (i.e., 70% of themaximumpower 65,314 kW
in January),α is set to 2,β is set to 0.5, and the idle processor power
is set to be 30% of the power at the full speed. Note that the selec-
tion of power cap is based on the previous studies [50,3,5] which
generally set a power cap from 40% to 80% of the maximal power.

5.1. Case study 1: power capping via DVFS

In this study,we present a case study of using PuPPET to analyze
fine-grained power capping via DVFS. In our experiments, we as-
sume that there is no latency involved in DVFS tuning. The power-
performance efficiency of DVFS is influenced by many factors such
as workload characteristics, hardware configuration, and schedul-
ing policies. In order to investigate the impact of different factors
on DVFS, we conduct three sets of experiments.

In the first set, we consider various scenarios in which the pro-
cessors have different frequency-to-power relationships (i.e., α in
Eq. (2)). According to the literature and industry reports [13,47],we
found that for most modern processors, the relationship typically
falls between linear and cubic. Hence, we examine three different
cases: linear (α = 1), square (α = 2) and cubic (α = 3). Fig. 10
presents the results, from which we make several interesting ob-
servations. First, as expected, in the case of cubic relationship, volt-
age and frequency tuning has the smallest impact on job execution
time, thereby leading to less impact on system performance.
Second, with both batch scheduling policies (FCFS and WFP),
DVFS improves system utilization and energy delay product, while
increasing average job wait time. In order to limit the overall sys-
tem power within the cap, DVFS extends job execution times (as
the processors do not run at full speed), thereby prolonging job
wait time and improving system utilization. Although extending
job execution times increases the scheduling makespan, DVFS re-
duces the amount of energy required for jobs at the same time
(note that for linear relationship, energy consumed by jobs does
not change). Further, as DVFS improves system utilization rate, the
energy consumed by idle nodes is reduced. This offsets the cost
introduced by the makespan extension, thus resulting in better
power-performance efficiency. Third, the amount of system per-
formance impact caused byDVFS is greatly influenced byworkload
characteristics. Specifically, more performance change is observed
in March and April than in January and February. As stated earlier,
the system utilization rate is higher in March and April.

By comparing the top plots with the bottom plots, we can see
that the trend of performance change is similar by using FCFS and
WFP. An interesting observation is that the increase of average job
wait time using WFP is not as significant as that using FCFS, or in
other words, WFP is more robust to system performance impact
caused by DVFS than FCFS. One reason is that as shown in Eq. (4),
WFP considers job queued time when ordering jobs for execution.

In the second set, we study the impact of different power
caps, i.e., from 80% to 40% of 65,314 kW (the maximum power



L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 9
(a) FCFS-EASY w/ DVFS.

(b) WFP-EASY w/ DVFS.

Fig. 10. Power-performance impact under varied frequency-to-power relationships (i.e., varying α of Eq. (2) from 1.0 to 3.0) by using DVFS for power capping. (1) Top:
FCFS-EASY, all the results are normalized to FCFS-EASY w/o DVFS. (2) Bottom: WFP-EASY, all the results are normalized to WFP-EASY w/o DVFS. Note that in these plots,
when normalized system utilization is higher than 1.0, it means that the system utilization is increased after applying power capping.
(a) FCFS-EASY w/DVFS.

(b) WFP-EASY w/DVFS.

Fig. 11. Power-performance impact under varied power caps (i.e., varying the power budget from 80% to 40% of the maximum power) by using DVFS for power capping.
(1) Top: FCFS-EASY, all the results are normalized to FCFS-EASY w/o DVFS. (2) Bottom: WFP-EASY, all the results are normalized to WFP-EASY w/o DVFS.
in January). Fig. 11 presents the normalized results to the cases
without applying DVFS. Here, we use the default square frequency-
to-power relationship. DVFS tends to increase system utilization
rate when a tighter power cap is imposed. Similar to the first
set of experiments, workload characteristics influence power-
performance efficiency caused by DVFS (e.g., higher performance
impact in March and April than that in January and February).
An important observation we make from this set of experiments
is that tighter power budget (e.g., 40%) could lead to worse EDP,
especially in the case of high system utilization.



10 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
(a) FCFS-EASY w/DVFS.

(b) WFP-EASY w/ DVFS.

Fig. 12. Power-performance impact under varied frequency-to-time relationships (i.e., varying β of Eq. (3) from 0.5 to 2) by using DVFS for power capping. (1) Top: FCFS-
EASY, all the results are normalized to FCFS-EASY w/o DVFS. (2) Bottom: WFP-EASY, all the results are normalized to WFP-EASY w/o DVFS.
In the third set, we consider the scenarios where the workload
has different frequency-to-time relationships (i.e., β in Eq. (3)).
Fig. 12 presents the results. As we can see, a higher β value does
not increase EDP as excepted. As shown in Eq. (3), a higher β
value means a longer execution delay when CPU frequency is
lowered, thus increasing the scheduling makespan. On the other
hand, a longer execution delay increases system utilization and
hence saves the energy consumed by idle nodes. This observation
implies that the idle power (which is set to 30% of the node power
in active state) is a dominant factor for system power-performance
efficiency (e.g., EDP here).

5.2. Case study 2: power capping via power-aware allocation

In this part, we present a case study of using PuPPET to ana-
lyze coarse-grained power-aware allocation. Similar to DVFS, the
power-performance efficiency of power-aware job allocation is in-
fluenced bymany factors includingworkload characteristics, hard-
ware configuration, and scheduling policies.We conduct three sets
of experiments to examine performance changes under a variety of
factors relevant to power-aware job allocation.

As described earlier, in the current PuPPET, we have developed
two power-aware allocation strategies: BLOCK and WAIT. In the
first set of experiments, we compare BLOCK and WAIT using the
same power cap. The parameters for WAIT are set to w = 500 and
l = 10. Fig. 13 presents our results. First of all, it is clear that WAIT
always outperforms BLOCK across all the metrics. This is quite ob-
vious because theWAIT strategy seeks to improve scheduling per-
formance by opportunistically allocating less power-hungry jobs
without violating the power cap.

Unlike DVFS, we find that power-aware allocation results in
lower system utilization and higher EDP, especially in the case of
March and April. Power-aware allocation intentionally delays the
allocation of some power-hungry jobs, thus leading to lower sys-
temutilization and longer schedulingmakespan. A lowered system
utilization rate indicates more energy consumed by idle nodes. Be-
cause power-aware allocation does not change the total energy re-
quired by the jobs, the extended makespan and the larger amount
of energy needed for idle nodes result in an increased EDP. When
system utilization rate is low (e.g., in Jan. and Feb.), the probabil-
ity that the power budget will be violated is low, which implies it
is less likely for the job allocator to delay job execution. Further,
a lower system utilization rate often implies a longer interval be-
tween job arrivals, thus delaying a job allocation hardly affects its
successors. Similar to Case Study 1, we observe that WFP is more
robust to system performance degradation caused by power man-
agement than FCFS.

In the second set, we study the impact of different power caps,
i.e., from 80% to 40% of 65,314 kW (the maximum power in Jan-
uary). Fig. 14 presents the normalized results to the cases without
applying power-aware allocation. By comparing this figure with
the DVFS results shown in Fig. 11, we find that a tighter power
budget has a more severe impact on system performance by using
power-aware allocation. When the power cap is set to 80%–60%,
although system utilization, average job wait time, and EDP are all
affected by power-aware allocation, the impact isminor.When the
cap is lowered to 40%, the impact becomes very obvious. The higher
EDP value resulted by using power-aware allocation indicates that
it is not a good choice in the case of a tight power budget.

In the third set, we study the impact of idle power on power
management. We vary the idle power from 0% to 50% of node
power in active state. Given that this factor only affects EDP, Fig. 15
presents the results regarding energy delay product. First, the use
of power-aware allocation does not decrease EDP, which is also
depicted in Fig. 13. The reason is while power-aware allocation
does not change the total energy required by the jobs, it may cause
an extended makespan and larger amount of energy required for
idle nodes. Furthermore, we observe that this idle power factor
has a more significant impact on EDP when the system utilization
rate is high (e.g., in March and April). As shown in Fig. 13, when
the system utilization rate is high, power-aware allocation may



L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 11
(a) FCFS-EASY w/power-aware allocation.

(b) WFP-EASY w/power-aware allocation.

Fig. 13. Power-performance impact under different power-aware allocation strategies. (1) Top: FCFS-EASY, all the results are normalized to FCFS-EASY w/o power-aware
allocation. (2) Bottom: WFP-EASY, and all the results are normalized to WFP-EASY w/o power-aware allocation.
(a) FCFS-EASY w/power-aware allocation.

(b) WFP-EASY w/power-aware allocation.

Fig. 14. Power-performance impact under varied power caps (i.e., varying the power budget from 80% to 40% of the maximum power) by using power-aware job allocation
for power capping. (1) Top: FCFS-EASY, all the results are normalized to FCFS-EASY w/o power-aware allocation. (2) Bottom: WFP-EASY, and all the results are normalized
to WFP-EASY w/o power-aware allocation.
decrease system utilization for the purpose of limiting the peak
power. A lower system utilization means more energy is required
for idle nodes and longer makespan, thus leading to a higher EDP.
In addition, the idle power has more significant impacts on WFP
than on FCFS in terms of EDP. This is because WFP affects system
utilization rate more obviously than FCFS (see Fig. 13 WAIT). This
results inmore remarkable changes of energy consumedby the idle
nodes.



12 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
(a) FCFS-EASY w/power-aware allocation. (b) WFP-EASY w/power-aware allocation.

Fig. 15. Energy delay product under varied idle power rates by using power-aware job allocation for power capping. (1) Top: FCFS-EASY, all the results are normalized to
FCFS-EASY w/o power-aware allocation. (2) Bottom: WFP-EASY, and all the results are normalized to WFP-EASY w/o power-aware allocation.
5.3. DVFS versus power-aware allocation

An interesting question is whether these power capping
mechanisms are capable of controlling the overall system power
within the limit and how they differ in terms of power change.
The answer is presented in Fig. 16, in which we plot the average
power within a day by applying different policies. Here power at
each time point is calculated as the average over the four months.
In this experiment, we use WFP-EASY for batch scheduling and
45,720 kW as the power cap. From the figure, it is clear that both
methods are able to limit the system power within the threshold.
We can also see that these power capping methods result in
different power curves. These curves do not exactly fit the straight
power cap line. Power-aware allocation controls the overall system
power by delaying job execution; however it cannot guarantee
the total power of all the running jobs will exactly match the
power cap. For DVFS, as the processors can only run at one of the
predefined power rates, there may exist a gap between the power
cap and the total power of all the resources. In general, the figure
clearly demonstrates that both DVFS and power-aware allocation
are effective power capping mechanisms.

6. Related work

Modern systems are designed with various hardware sensors
that collect power-related data and store these data for system
analysis. System level tools like LLView [26] and PowerPack [15]
have been developed to integrate the power monitoring capa-
bilities to facilitate systematic measurement, model and predic-
tion of performance. Goiri et al. used external meters to measure
the energy consumption of a node during its running time [17].
Feng et al. presented a general framework for direct, automatic
profiling of energy consumption on high-performance distributed
systems [12]. The performance API (PAPI) has been extended to
access internal power sensor readings on several architectures in-
cluding Intel SandyBridge chips andNvidia GPUs [46]. In our recent
work, we have developed a power profiling library called MonEQ
for accessing internal power sensor readings on IBM Blue Gene/Q
systems [45]. This work focuses on quantitative analysis of power
performance tradeoffs. The power data collected by the above
powermonitoring tools can be used as an input to PuPPET. In other
words, thiswork is complementary to the above powermonitoring
studies.

Power management policies are widely studied to achieve bet-
ter energy efficiency in a variety of systems. Ge et al. studied the
impacts of DVFS on application performance and energy efficiency
for GPU computing in [16]. Patki et al. demonstrated how an in-
telligent, hardware-enforced power bounds consistently leads to
greater performance across a range of standard benchmarks [32].
Fan et al. presented the aggregate power usage characteristics of
large collections of servers based on power capping [10]. Lefurgy
et al. presented a technique for high density servers that controls
the peak power consumption by implementing a feedback con-
troller [24]. In this study, we investigate two power capping strate-
gies, namely power-aware allocation and DVFS, and applied them
to our modeling tool.

Modeling power, performance and their tradeoffs has been
done on various systems. Analytical modeling is a commonly used
method, which mainly focuses on building mathematical correla-
tions between power and performancemetrics of the system. Chen
et al. proposed a system level powermodel for online estimation of
energy consumption using linear regression [4]. Curtis-Maury et al.
presented an online performance prediction framework to address
the problem of simultaneous runtime optimization of DVFS and
dynamic concurrency throttling (DCT) on multi-core systems [8].
Dwyer et al. designed and evaluated a machine learning model
that estimates performance degradation of multicore processors
in HPC centers [9]. Subramaniam et al. built a regression model for
the power and performance of scientific applications and used this
model to optimize energy efficiency [37]. Tiwari et al. developed
CPU and DIMM power and energy models of three widely used
HPC kernels by training artificial neural networks [43].While these
models provide good estimation of power and/or performance
metrics, they cannot capture the dynamic, complicated power-
performance interactions exhibiting in large-scale systems.

There are several studies of applying stochastic models for per-
formance or power analysis. B. Guenter et al. adopted a Markov
model for idleness prediction and also proposed power state
transitions to remove idle servers [18]. Qiu et al. introduced
a continuous-time and controllable Markov process model of a
power-managed system [33]. Rong et al. presented a stochastic
model for a power-managed, battery-powered electronic system,
and formulated a policy optimization problem tomaximize the ca-
pacity utilization of the battery powered systems [35]. Unlike these
studies relying on a Markov process, our model is built on colored
Petri nets, thus being more robust to the potential space explosion
problem that is commonly observed in Markov models.

The studies closely related to ours are [14,42]. In [14],
Gandhi et al. used queuing theory to obtain the optimal energy-
performance tradeoff in server farms. In [42] Tian et al. proposed
a model using stochastic reward nets (SRN) to analyze the per-
formance and energy consumption under different power states.
Distinguishing from these studies, our work targets supercomput-
erswith unique batch scheduling and parallel workload.Moreover,
our model adopts the advanced feature of colored Petri nets which
provides amore accurate representation of the dynamic systembe-
ing analyzed. To the best of our knowledge, this is the first colored



L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14 13
Fig. 16. The average daily power trends by using different policies.
Petri netmodelingwork to study the power-performance tradeoffs
for high performance computing.

7. Conclusion

In this paper, we have presented PuPPET, a colored Petri net
for quantitatively modeling and analyzing power management
on extreme scale systems. By using the advanced features of
colored Petri nets, PuPPET is capable of capturing the complicated
interactions among different factors that can affect power-
performance efficiency on HPC systems. We have validated
the model accuracy by using system traces collected from the
10-petaflops IBM Blue Gene/Q machine at Argonne Leadership
Computing Facility. Our trace-based validation demonstrates that
PuPPET can effectively model the dynamic execution of parallel
jobs on the system by providing an accurate approximation of
energy consumption. A salient feature of the proposed PuPPET
is that it can scale to hundreds of thousands of processor cores
and at the same time provide high levels of modeling accuracy.
Such a feature is crucial for power-performance tradeoff analysis of
extreme scale systems. Moreover, we have explored the model to
analyze the power-performance tradeoffs under two well-known
power cappingmethods, i.e., power-aware job allocation andDVFS.
Our case studies provide us useful insights about using power
capping on extreme scale systems. PuPPET is implemented by
using the CPN tools, and is freely available for the community
research.

PuPPET provides a convenient modeling tool for users to set
different parameters and study power-performance tradeoffs on
extreme scale systems. We believe it has many other potential
usages, in addition to the case studies presented in this work.
For instance, it can be used to find the optimal power policy that
minimizes energy consumption under a time constraint. It can also
be extended to incorporate resiliency analysis by adding a module
for describing failure behaviors. The resultingmodel can be used to
study the key tradeoffs among performance, power, and reliability
for supercomputing. All these are part of our ongoing work.

Acknowledgments

This work was supported in part by the US National Science
Foundation grants CNS-1320125 and CCF-1422009. The research
used resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory whichwas supported by the Office of
Science of the US Department of Energy under contract DE-AC02-
06CH11357.
References

[1] S. Ashby, The Opportunities and Challenges of Exascale Computing. Technical
Report, DOE Office of Science, 2010.

[2] G. Balbo, Introduction to generalized stochastic Petri nets, in: Proceedings of
SFM, 2007.

[3] D. Bodas, J. Song, M. Rajappa, A. Hoffman, Simple power-aware scheduler to
limit power consumption by HPC system within a budget, in: Proc. of E2SC,
2014.

[4] X. Chen, C. Xu, R.P. Dick, Z.M. Mao, Performance and power modeling in a
multi-programmed multi-core environment, in: Proceedings of DAC, 2010.

[5] M. Chiesi, L. Vanzolini, C. Mucci, E. Scarselli, R. Guerrieri, Power-aware job
scheduling on heterogeneous multicore architectures, IEEE Trans. Parallel
Distrib. Syst. 26 (2015) 868–877.

[6] Cpn tools, 2013. http://cpntools.org/.
[7] M. Crovella, R. Bianchini, T. Leblanc, E. Markatos, R. Wisniewski, Using

communication-to-computation ratio in parallel program design and perfor-
mance prediction, in: Proc. of IPDPS, 1992.

[8] M. Curtis-Maury, A. Shah, F. Blagojevic, D.S. Nikolopoulos, B.R. de Supinski,
M. Schulz, Prediction models for multi-dimensional power-performance
optimization on many cores, in: Proceedings of PACT, 2008.

[9] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, J. Pei, A practical
method for estimating performance degradation onmulticore processors, and
its application to HPC workloads, in: Proceedings of SC, 2012.

[10] X. Fan, W.-D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized
computer, in: Proceedings of ISCA, 2007.

[11] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, P.Wong, Theory and
practice in parallel job scheduling, in: Proceedings of JSSPP, 1997.

[12] X. Feng, R. Ge, K.W. Cameron, Power and energy profiling of scientific
applications on distributed systems, in: Proceedings of IPDPS, 2005.

[13] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, et al., Introducing
the adaptive energy management features of the power7 chip, IEEE Micro 31
(2011) 60–75.

[14] A. Gandhi, M. Harchol-Balter, I. Adan, Server farms with setup costs, Perform.
Eval. 67 (2010) 1123–1138.

[15] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, K.W. Cameron, Powerpack: Energy
profiling and analysis of high-performance systems and applications, IEEE
Trans. Parallel Distrib. Syst. 21 (2010) 658–671.

[16] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, Z. Zong, Effects of dynamic
voltage and frequency scaling on a K20 GPU, in: Proceedings of ICPP, 2013.

[17] I. Goiri, L. Kien, M.E. Haque, R. Beauchea, T.D. Nguyen, J. Guitart, J. Torres,
R. Bianchini, Greenslot: Scheduling energy consumption in green datacenters,
in: Proceedings of SC, 2011.

[18] B. Guenter, N. Jain, C. Williams, Managing cost, performance, and reliability
tradeoffs for energy-aware server provisioning, in: Proceedings of INFOCOM,
2011.

[19] R. Harper, Programming in Standard ML, 2011. Available at: http://www.cs.
cmu.edu/∼rwh/smlbook/book.pdf.

[20] K. Jensen, L.M. Kristensen, Coloured Petri Nets—Modelling and Validation of
Concurrent Systems, Springer, 2009.

[21] S. Kale, K. Bergman, et al., Ascr Workshop on Modeling and Simulation of
Exascale Systems and Applications. Technical Report, DOE Office of Science,
2013.

[22] J.H. Laros III, K.T. Pedretti, S.M. Kelly, W. Shu, K.B. Ferreira, J.V. Dyke,
C.T. Vaughan, Energy-Efficient High Performance Computing—Measurement
and Tuning, Springer, 2012.

[23] C. Lefurgy, X. Wang, M. Ware, Server-level power control, in: Proceedings of
ICAC, 2007.

http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref1
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref5
http://cpntools.org/
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref13
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref14
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref15
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref20
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref21
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref22


14 L. Yu et al. / J. Parallel Distrib. Comput. 84 (2015) 1–14
[24] C. Lefurgy, X. Wang, M. Ware, Power capping: a prelude to power shifting,
Cluster Comput. 11 (2008) 183–195.

[25] F. Liu, M. Heiner, C. Rohr, Manual for Colored Petri Nets in Snoopy. Technical
Report, Brandenburg University of Technology Cottbus, 2012.

[26] LLview: graphical monitoring of loadleveler controlled cluster, 2013.
http://www.fz-juelich.de/jsc/llview/.

[27] M. Marinoni, G.C. Buttazzo, Elastic dvs management in processors with
discrete voltage/frequency modes, IEEE Trans. Ind. Inf. 3 (2007) 51–62.

[28] T. Martin, D. Siewiorek, Non-ideal battery and main memory effects on CPU
speed-setting for low power, IEEE Trans. VLSI Syst. 9 (2001) 29–34.

[29] W.Marwan, C. Rohr,M.Heiner, Petri Nets in Snoopy: AUnifying Framework for
the Graphical Display, Computational Modelling, and Simulation of Bacterial
Regulatory Networks, Humana Press, 2012.

[30] Mira: Next-generation supercomputer, 2012. https://www.alcf.anl.gov/mira.
[31] A. Mu’alem, D. Feitelson, Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling, IEEE Trans.
Parallel Distrib. Syst. 12 (6) (2001) 529–543.

[32] T. Patki, D.K. Lowenthal, B. Rountree, M. Schulz, B.R. de Supinski, Exploring
hardware overprovisioning in power-constrained, high performance comput-
ing, in: Proceedings of ICS, 2013.

[33] Q. Qiu, M. Pedram, Dynamic power management based on continuous-time
Markov decision processes, in: Proceedings of DAC, 1999.

[34] A.F. Rodrigues, K.S. Hemmert, B.W. Barrett, C. Kersey, et al., The structural
simulation toolkit, SIGMETRICS Perform. Eval. Rev. 38 (2011) 37–42.

[35] P. Rong, M. Pedram, Battery-aware power management based on Markovian
decision processes, in: IEEE TCAD, 2006.

[36] J. Srinivasan, S. Adve, P. Bose, J. Rivers, The impact of technology scaling on
lifetime reliability, in: Proceedings of DSN’04, 2004.

[37] B. Subramaniam, W.-C. Feng, Statistical power and performance modeling for
optimizing the energy efficiency of scientific computing, in: Proceedings of
GREENCOM-CPSCOM, 2010.

[38] K. Sugavanam, C.-Y. Cher, J.A. Gunnels, R.A. Haring, P. Heidelberger, et al.,
Design for low power and power management in IBM Blue Gene/Q, IBM J. Res.
Dev. 57 (2013) 1–11.

[39] W. Tang, N. Desai, D. Buettner, Z. Lan, Analyzing and adjusting user runtime
estimates to improve job scheduling on Blue Gene/P, in: Proceedings of IPDPS,
2010.

[40] W. Tang, Z. Lan, N. Desai, D. Buettner, Fault-aware utility-based job scheduling
on Blue Gene/P systems, in: Proceedings of Cluster, 2009.

[41] The standard workload format. http://www.cs.huji.ac.il/labs/parallel/
workload/swf.html.

[42] Y. Tian, C. Lin, M. Yao, Modeling and analyzing power management policies in
server farms using stochastic Petri nets, in: Proceedings of e-Energy, 2012.

[43] A. Tiwari, M.A. Laurenzano, L. Carrington, A. Snavely, Modeling power and
energy usage of HPC kernels, in: Proceedings of IPDPSW, 2012.

[44] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, M. Papka, Application profilling
benchmarks on IBM Blue Gene/Q, in: Proc. of Cluster, 2013.

[45] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, M.E. Papka, Measuring power
consumption on IBM Blue Gene/Q, in: Proceedings of HPPAC, 2013.

[46] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszcek, D. Terpstra, S.
Moore, Measuring energy and power with PAPI, in: International Workshop
on Power-Aware Systems and Architectures, 2012.

[47] White Paper, Enhanced Intel Speedstep Technology for the Intel Pentium m
Processor. Technical Report, Intel Corporation, 2004.

[48] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, M.E. Papka, Dynamic
pricing of electricity into energy aware scheduling for HPC systems, in:
Proceedings of SC, 2013.

[49] G. Zheng, G. Kakulapati, L.V. Kale, Bigsim: A parallel simulator for performance
prediction of extremely large parallel machines, in: Proceedings of IPDPS,
2004.

[50] Z. Zhou, Z. Lan, W. Tang, N. Desai, Reducing energy costs for IBM Blue Gene/P
via power-aware job scheduling, in: Proc. of JSSPP, 2013.
Li Yu received the B.S. degree from Sichuan University
in 2004 and the M.S. degree from Rochester Institute of
Technology in 2009, respectively. He is currently working
toward the Ph.D. degree in Computer Science at Illinois
Institute of Technology since 2010. His research interests
include HPC data analytics and performance modeling in
large-scale systems. He is a student member of the IEEE.

Zhou Zhou received his B.S. degree from Beijing Jiaotong
University in 2009. He is currently working toward his
Ph.D. degree in Computer Science at Illinois Institute of
Technology since 2009. His main research interests are in
the areas of intelligent resource management for exascale
computing systems, system performance analysis and
optimization, and job scheduling on large-scale systems.
He is a student member of IEEE computer society.

Sean Wallace is a Ph.D. student in the Computer Science
Department at Illinois Institute of Technology. He is also
a Research Assistant at the Argonne National Laboratory.
His research has focused on the energy efficiency of
supercomputers such as the Blue Gene/Q as well as
accelerators commonly used in more heterogeneous
systems. He received his B.S. in Computer Science from
Illinois Institute of Technology in 2011.

Michael E. Papka received his Ph.D. degree in Computer
Science from the University of Chicago. His research inter-
ests are high performance computing in support of scien-
tific discovery. He is the Division Director of the Argonne
Leadership Computing Facility (ALCF) and the Deputy As-
sociate Laboratory Director for Computing, Environment,
and Life Sciences (CELS). He is also a senior fellow of the
University of Chicago/Argonne National Laboratory Com-
putation Institute, where he conducts interdisciplinary
studies involving multiscale simulation data, and investi-
gates techniques for managing, processing, and analyzing

data in the computational pipeline in order to find crucial information leading to
scientific breakthroughs. In addition to his duties at Argonne, he is an Associate
Professor of Computer Science at the Northern Illinois University.

Zhiling Lan received her Ph.D. degree in Computer
Engineering from the Northwestern University in 2002.
Since then she joined the faculty of Illinois Institute of
Technology and is currently a Professor at the Department
of Computer Science. She is also a guest research
faculty at the Argonne National Laboratory. Her research
interests are in the areas of high performance computing
and parallel and distributed systems, with particular
emphasis on fault tolerance, power efficiency, resource
management and job scheduling, performance analysis
and optimization. She has authored or co-authored over

70 publications in these areas. She is a senior member of IEEE computer society.

http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref24
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref25
http://www.fz-juelich.de/jsc/llview/
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref27
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref28
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref29
https://www.alcf.anl.gov/mira
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref31
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref34
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref38
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://refhub.elsevier.com/S0743-7315(15)00104-5/sbref47

	Quantitative modeling of power performance tradeoffs on extreme scale systems
	Introduction
	Background
	Colored Petri net
	Power consumption
	Batch scheduling

	PuPPET design
	Batch scheduling
	Power-aware allocation
	CPU scaling
	PuPPET implementation

	Model validation
	Case studies
	Case study 1: power capping via DVFS
	Case study 2: power capping via power-aware allocation
	DVFS versus power-aware allocation

	Related work
	Conclusion
	Acknowledgments
	References


