
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Parallel Distrib. Comput. 70 (2010) 630–643

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A study of dynamic meta-learning for failure prediction in large-scale systems
Zhiling Lan a,∗, Jiexing Gu a, Ziming Zheng a, Rajeev Thakur b, Susan Coghlan b
a Illinois Institute of Technology, Chicago, IL 60616, United States
b Argonne National Laboratory, Argonne, IL, 60439, United States

a r t i c l e i n f o

Article history:
Received 19 December 2008
Received in revised form
10 September 2009
Accepted 4 March 2010
Available online 12 March 2010

Keywords:
Failure prediction
Meta-learning
Dynamic techniques
Large-scale systems
Blue Gene

a b s t r a c t

Despite years of study on failure prediction, it remains an open problem, especially in large-scale systems
composed of vast amount of components. In this paper, we present a dynamic meta-learning framework
for failure prediction. It intends to not only provide reasonable prediction accuracy, but also be of practical
use in realistic environments. Two key techniques are developed to address technical challenges of failure
prediction. One is meta-learning to boost prediction accuracy by combining the benefits of multiple
predictive techniques. The other is a dynamic approach to dynamically obtain failure patterns from a
changing training set and to dynamically extract effective rules by activelymonitoring prediction accuracy
at runtime.We demonstrate the effectiveness and practical use of this framework bymeans of real system
logs collected from the production Blue Gene/L systems at Argonne National Laboratory and San Diego
Supercomputer Center. Our case studies indicate that the proposed mechanism can provide reasonable
prediction accuracy by forecasting up to 82% of the failures, with a runtime overhead less than 1.0 min.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivations

To meet the insatiable demand in science and engineering,
supercomputers continue to grow in size. Production systems
with tens to hundreds of thousands of computing nodes are be-
ing designed and deployed [36]. Such a scale, combined with the
ever-growing system complexity, is introducing a key challenge—
reliability—in the field of high performance computing (HPC).
Despite great efforts on the design of ultra-reliable components,
the increase of system size and complexity has outpaced the im-
provement of component reliability. Recent studies have pointed
out that the mean time between failure (MTBF) of teraflop and
soon-to-be-deployed petaflop machines are only on the order of
10–100 h [31,26,29].
To address the reliability problem, considerable research has

been done to improve fault resilience of computer systems and
their applications through various technologies. Representative
works include failure-aware resource management and schedul-
ing [42,23,25], checkpointing [9,24,32,16], proactive or adaptive
runtime resilience support [20,40]. The advance of these technolo-
gies, however, greatly depends on whether we can predict the

∗ Corresponding author.
E-mail addresses: lan@iit.edu (Z. Lan), jgu5@iit.edu (J. Gu), zzheng11@iit.edu

(Z. Zheng), thakur@mcs.anl.gov (R. Thakur), smc@mcs.anl.gov (S. Coghlan).

occurrence of failure, i.e., failure prediction. For example, proac-
tive fault tolerant methods, such as preemptive process migra-
tion, require failure forecasting to enable cost-effective failure
avoidance. For reactive methods such as checkpointing, an effi-
cient failure prediction could substantially reduce their operational
cost by telling when and where to perform checkpoints, rather
than blindly invoking actions periodicallywith an unwisely chosen
frequency.
Despite years of study on failure prediction, it remains an un-

solved problem, especially in large-scale systems composed of
substantial amount of components. We summarize its key chal-
lenges from two aspects. First is prediction accuracy. Existing stud-
iesmainly concentrate on exploring one specificmethod to capture
and discover failure patterns. As a matter of fact, in a large-scale
system the sources of failures are numerous and complex; thus,
it is improper to expect a single method to capture all of failures
alone. For example, many rule-based classifiers emphasize on dis-
covering correlation relationships between warning messages and
fatal events for failure prediction [19,30]. As we will show in our
experiments, they are limited by the amount of fatal events oc-
curring without any precursor warnings. Hence, relying on these
methods alone is insufficient to provide an effective failure fore-
casting. Further, hardware and software upgrades are common at
supercomputing centers, and system workloads tend to vary dur-
ing system operation. These changes can drastically alter system
behaviors [26]. As a result, static analysis that uses a fixed set
of historic data to learn failure patterns cannot adapt to system
changes at runtime, thereby being incapable of providing accurate
forecasting.

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.03.003



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 631

Raw
Log

Data Preprocessing

Categorizer

Filter

Clean
Log

Failure Prediction

Meta-
Learner

Knowledge
Repository

Reviser

Predicted
Failures

Actual
 Failure

Predictor

Fig. 1. Overview of our dynamic meta-learning framework for failure prediction.

The next is with respect to practical use. While many predictive
models have been presented so far, most of them merely focus on
the algorithm-level improvement and are too complicated to be
of practical use for online failure prediction [22,41]. In addition, to
obtain sufficient failure patterns,many predictivemethods require
a long training phase (e.g., one ormore years), thereby beingunable
to provide prediction service for a long period of time [11]. Given
that most systems at supercomputing centers only have a couple
of years in production, this requirement must be removed.

1.2. Main contributions

In this study, we present a dynamic meta-learning framework
for online failure prediction in large-scale systems. It intends to
provide reasonable prediction accuracy, as well as be of practical
use in realistic environments. Our framework consists of two parts
to process and analyze system events: one is to preprocess system
events by means of event categorization and filtering (i.e., data
preprocessing), and the other is to examine the cleaned events for
generating failure patterns and triggering failurewarnings through
continuous runtime event analysis (i.e., failure prediction). These
two parts, along with their main components, are illustrated in
Fig. 1. The details of the main components will be described in
Sections 3 and 4.
Our method employs two key techniques to address the

challenges listed above. First, meta-learning is explored to boost
prediction accuracy by combining the benefits of multiple
predictive methods. It enables us to discover a variety of failure
patterns in large-scale systems, without constructing complex
models of the underlying system. In this study, we integrate three
widely used predictive methods, namely association rule-based

learner [30,39], statistical rule-based learner [21], and probability
distribution [31], in the framework by applying a simple yet
efficient ensemble learning method. Next, a dynamic mechanism is
adopted to trigger relearning periodically and to adaptively extract
effective rules of failure patterns by actively tracing prediction
accuracy.
To demonstrate the effectiveness and practical use of our

framework,we evaluate itwith the real RAS (reliability, availability
and serviceability) logs collected from the production Blue Gene/L
systems at Argonne National Laboratory (ANL) and San Diego
Supercomputer Center (SDSC). The use of multiple RAS logs is to
ensure that our framework is not bias to any specific log and thus
produces representative results expected in other systems as well.
To comprehensively assess our framework, our experiments are
structured to answer the following questions:

Q1: How much improvement is achieved by the meta-learning?
Q2: How much improvement is achieved by the dynamic ap-

proach?
Q3: How sensitive is prediction accuracy to prediction window

size?
Q4: How much runtime overhead is introduced?

Our experiments demonstrate that meta-learning can effec-
tively improve prediction accuracy by up to three times, and the
dynamic approach is capable of adapting to system changes, even
after amajor system reconfiguration. For both systems, ourmethod
can provide reasonable prediction accuracy by predicting up to 82%
of failures, with a runtime overhead less than 1.0 min. Further-
more, prediction accuracy depends on how far away we are in-
terested in forecasting failures. In general, the larger the window
is, the higher the prediction coverage is, along with a higher false
alarm rate. The rules of failure patterns change dramatically during
systemoperation,which further proves that the dynamic approach
is indispensable for better prediction. Finally, runtime overhead
increases with the growing size of the training set. Overall speak-
ing, we find that for both systems, the use of recent 6 month train-
ing set can well balance between prediction accuracy and runtime
overhead.
We note that three predictive methods, namely association

rule-based learning, statistical learning, and probability distribu-
tion, have been tested in our experiments. Rather than focusing on
which predictive method is better, this study focuses on providing
a general framework to dynamically combine multiple predictive
methods for better failure prediction. We believe that other pre-
dictivemethods like [22,6] can be easily integrated into our frame-
work.

1.3. Paper organization

The rest of the paper is organized as follows. Section 2 gives
the background information of Blue Gene systems and system logs.
Section 3 describes the details of data preprocessing, followed by
a detailed description of our dynamic meta-learning method in
Section 4. The case studies with real failure logs are presented in
Section 5. Section 6 discusses the related work and points out the
key differences between this work and existing studies. Finally,
Section 7 summarizes the paper.

2. Background

2.1. Overview of Blue Gene/L

In this paper, we use RAS (reliability, availability and service-
ability) logs collected from the Blue Gene/L systems for case stud-
ies; thus, we give an overview of the systems and their RAS logging
facilities below. The proposed dynamic meta-learning framework



Author's personal copy

632 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

Fig. 2. Blue Gene/L system overview.

Table 1
Attributes of RAS events in Blue Gene.

Attribute Description

Record ID An integer denoting event sequence number
Event type The mechanism through which the event is recorded
Event time Timestamp associated with the reported event
Job ID Job that detects the event
Location Place of the event (e.g., chip/node card/service card/link card)
Entry data A short description of the event
Facility The service/hardware component experiencing the event
Severity The level of severity of the reported event

can be easily extended for failure prediction of other large-scale
systems.
System packaging is an integral aspect of Blue Gene/L systems

(see Fig. 2). As shown in the figure, the basic building block is
called computer chip. Each computer chip consists of two PPC
440 cores, with a 32 KB L1 cache and a 2 KB L2 cache. The cores
share a 4 MB EDRAM L3 cache. A compute card contains two
computer chips, a node card contains 16 compute cards, and a
midplane holds 16 node cards with a total of 1024 processors.
In addition to compute nodes, a midplane is also populated
with several I/O nodes which are configured to handle file I/O
and host communication. Each midplane also has one service
card that performs system management services like monitoring
node heartbeat and checking errors. More details of the system
architecture can be found in the literature [7].
In Blue Gene, the Cluster Monitoring and Control System

(CMCS) service is implemented on the service nodes for the
purpose of system monitoring and error checking. The service
node, which is available in each midplane, acquires specific device
information, such as RAS events, directly through the control
network. Runtime information is collected from computer and I/O
nodes by a polling agent, reported to the CMCS service, and finally
stored in a centralized DB2 repository. This system event logging
mechanism works in a granularity of less than 1 ms.
The entries in the RAS log include hard errors, soft errors,

machine checks, and software problems. Information about
scheduled maintenance, reboot, and repair is not included. Each
record has eight attributes which are described in Table 1.

The SEVERITY attribute can be one of the following levels—
INFO, WARNING, SEVERE, ERROR, FATAL, or FAILURE—which also
denotes the increasing order of severity. INFO events are for
the purpose of general information to administrators about the
reliability of various hardware/services components in the system.
WARNING events report unusual events in node cards, link cards,
service cards or related services. SEVERE events provide more
information about the reasons causing problems in node cards or
service cards, etc. ERROR events indicate problems that require
further attention of administrators. An event with any of the
above SEVERITY attributes is either informative in nature, or
is related more to the initial configuration errors, and is thus
relatively transparent to the applications/runtime environment.
However, FATAL or FAILURE events (such as ‘‘uncorrectable torus
error’’, ‘‘communication failure socket closed’’, ‘‘uncorrectable
error detected in eDRAM bank’’, etc.) are more severe, and usually
lead to system/application crashes. Our primary focus in this study
is to predict FATAL and FAILURE events (denoted as fatal events,1
while other events are denoted as non-fatal events). In [26], Oliner
et al. have pointed out that some of the fatal events provided by
the RAS log are not true fatal events. We have consulted with
experienced system administrators at both ANL and SDSC, and
removed these ‘‘fake’’ fatal events from the failure list.

2.2. Test logs

Two production Blue Gene/L systems are used in our experi-
ments. One is at SDSC, which consists of three racks with 3072
dual-core compute nodes and 384 I/O nodes. The configuration is
chosen to support data-intensive computing. Each node consists of
two PowerPC processors that run at 700 MHz and share 512 MB of
memory, giving an aggregate peak speed of 17.2 teraflops and a to-
tal memory of 1.5 TB [35]. The other is at ANL, which has one rack
with 1024 dual-core compute nodes and 32 I/O nodes [34]. The ag-
gregate peak performance is of 5.7 teraflops, with a total memory
of 500 gigabytes. Both systems are mainly used for scientific com-
puting. Table 2 summarizes the RAS logs used in our experiments.

1 In the paper we use ‘‘failure’’ and ‘‘fatal event’’ interchangeably.



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 633

Table 2
Log description.

Log Period Weeks Event no. Log size

ANL BGL Jan. 21, 2005–Jun. 19,2007 112 5887771 2.27 GB
SDSC BGL Dec. 6, 2004–Jun. 11, 2007 132 517247 463 MB

The log from ANL has much more number of records, although
the system has only one rack of nodes. This is due to a large
quantity of error checking messages produced at the ANL site. For
example, during the 50th week of the ANL’s log (between January
6 and January 13, 2006), there were over 1.15 million of machine
checking information messages generated. System administrators
at ANL ran diagnostics more frequently to cull out bad hardware
faster, without applications seeing it.

3. Data preprocessing

Raw logs generally contain many repeated or redundant
information. This is because each computer chip runs a polling
agent to collect the errors reported by the chip. As each job is
assigned to multiple computer chips, any failure of the job will
get reported at multiple places—once from each of the assigned
computer chips. Thus multiple components may report the same
failure. Also, the logging mechanism records the events at a very
fine granularity (e.g., inmillisecond), but the recorded event time is
generally in seconds orminutes, thus leading tomultiple entries of
an eventwith the same time stamp. Therefore, before a RAS log can
be used for failure prediction, it needs to be processed to identify
unique RAS events.
As shown in Fig. 1, data preprocessing mainly consists of two

components: one is event categorizer and the other is event filter.
The categorizer aims at providing a precise list of RAS types,
and the filter removes redundant data by conducting temporal
compression at a single location and spatial compression across
multiple locations. The goal of data preprocessing is to provide a
list of unique events for failure prediction.

3.1. Categorizer

Event categorization is a time-consuming process. It requires
a deep understanding of system events; thus, close collaboration

with system administrators is essential for obtaining a list of
meaningful event categories. Fortunately, for a specific system,
the process only needs to be performed once. Once a standard
categorizing of system events is constructed, we can use it for a
long period of time, unless a drastic change occurs in the system
(e.g., system reconfiguration). In the case of minor changes during
system operation, existing categorization technologies such as the
one presented in [27] can be applied for dynamic tuning of event
classifications.
We adopt a hierarchical approach for event categorization. We

first divide system events into several high-level classifications,
and then further group events into a number of subcategories
based on their attributes. For the Blue Gene/L systems, 10 high-
level event categories are identified based on the Facility field,
which are further divided into 219 low-level event types based
on the Severity and Entry Data fields. Further, it is also necessary
to distinguish these event categories into fatal or non-fatal groups
for the purpose of data training. Non-fatal events indicate system
warnings or informationmessages,while fatal events refer to those
critical events that lead to system or application crashes. Although
RAS logs from Blue Gene/L provide a severity level for each event,
it is not accurate since some fatal or failure events are not truly
fatal at all [26]. By working with system administrators, we have
identified and removed some of these events from the fatal list.
Totally, there are 69 fatal events for the Blue Gene/L systems.
Examples are shown in Table 3.

3.2. Filter

Event filtering is required to remove duplicated or unnecessary
entries in the log. Common cleaning steps include removing du-
plicated entries, removing unnecessary entry attributes, correct-
ing inaccurate attributes, preparing output files for corresponding
learning methods, etc. In this study, we apply both temporal com-
pression and spatial compression to remove duplicate entries by
applying threshold-based techniques. With temporal compression
at a single location, events from the same location with identical
values in the Job ID and Location fields are coalesced into a single
entry, if reported within a predefined time duration. With spatial
compression across multiple locations, we remove those entries
that are close to each otherwithin a predefined time duration, with
the same Entry Date and Job ID, but from different locations.
How to decide an optimal threshold for filtering is still an open

question. In this study, we adopt an iterative approach [15,2]. We
first set the threshold to a very small number, and then gradually
increase the number. The search stops when there is no significant
change with respect to the compression rate. Table 4 presents the

Table 3
Event categories in Blue Gene/L.

Main category Examples No. of fatal categories No. of non-fatal categories

APP Load Program failure 10 7
Function call failure

BGLMASTER Segmentation failure 2 2
BGLMaster restart info

CMCS CMCS command info 0 4
CMCS exit info

DISCOVERY Nodecard communication warning 0 24
Servicecard read error

HARDWARE Midplane service warning 1 12
KERNEL Broadcast failure 46 90

Cache failure
CPU failure
Node map file error

LINKCARD Linkcard failure 1 0
MMCS Control network MMCS error 0 5
MONITOR Node card temperature error 9 5
SERV_NET System operation error 0 1
TOTAL 69 150



Author's personal copy

634 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

Table 4
Number of events with different filtering thresholds (in seconds).

Log 0 s 10 s 60 s 120 s 200 s 300 s 400 s

APP ANL 6758 1942 1827 1684 1566 1453 1378
SDSC 26358 754 741 675 615 579 556

BGLMASTE ANL 123 123 120 115 115 109 107
SDSC 119 119 114 105 99 93 90

CMCS ANL 302 295 292 286 284 283 280
SDSC 437 433 421 404 384 362 356

DISCOVERY ANL 18054 1727 1429 937 676 578 497
SDSC 60748 3621 3356 1352 750 565 556

HARDWARE ANL 1840 668 633 601 593 539 468
SDSC 1648 422 349 316 296 283 278

KERNEL ANL 5819166 59784 47998 40777 33847 26754 23823
SDSC 426816 4238 4056 3940 3747 3595 3379

LINKCARD ANL 64 30 18 15 13 11 10
SDSC 188 120 107 95 92 88 82

MMCS ANL 954 561 521 484 467 444 437
SDSC 929 654 630 590 563 523 501

MONITOR ANL 40509 19774 16120 15969 15834 15689 15421
SDSC 0 0 0 0 0 0 0

SERV_NET ANL 1 1 1 1 1 1 1
SDSC 4 4 4 4 4 4 4

numbers of events after applying different thresholds, where we
separate the numbers according to the high-level event categories.
The column where threshold is set to zero denotes the raw logs
before any compression. For both logs, the amount of compression
of events achieved is not significant when the threshold greater
than 300 s is used. Additionally, as RAS events are logged at a sub-
second frequency, taking a higher threshold valuewill increase the
chances of different events being clustered together. Hence, we
choose 300 s as the threshold to coalesce events, which achieves
above 98% compression rate for the logs.

4. Prediction methodology

Our predictionmethod consists of threemajor components: the
meta-learner, the reviser, and the predictor (see Fig. 1). The meta-
learner examines system events to discover various fault patterns
by applying multiple predictive methods. The generated failure
patterns or rules will be stored in a knowledge repository which
encompasses all of the relevant information of failure patterns. It
contains all the learned rules of failure patterns and corresponding
ensemble rules for meta-learning. These rules of failure patterns
are subjected to modifications made by the reviser at runtime. The
reviser monitors prediction accuracy by comparing the predicted
results and the actual failures, and then modifies the knowledge
base. The training set used by the meta-learner and the reviser
is periodically changed during system operation. The predictor
actively examines system events. In case that the occurrence of an
event triggers a matching pattern in the knowledge base, it will
trigger a warning.
Distinguishing from existing studies like [30,21,22,13,6], our

framework has two novel features. One is to exploit meta-learning
(i.e., ensemble learning) to boost failure prediction and the other is
to dynamically learn failure patterns from a changing training set
during system operation.
Beforewego to thedetails of these components,we first present

the main terms used in our framework (see Fig. 3). The training
set, which may be dynamically adjusted everyWR weeks (denoted
as retraining window), is part of the log from which the meta-
learner and the reviser use to generate the rules of failure patterns.
In other words, the meta-learner and the reviser will be invoked
everyWRweeks. The rules are generatedwith a fixed timewindow,
generally in the order of a couple of minutes to hours (denoted
as rule generation window WP ). The rules learned will be stored in
the knowledge repository, which will be used by the predictor for
failure prediction before the next retraining. The predictor actively

Prediction

Prediction

Prediction
Window WP

Retraining
Window WR

Training Set

Training Set

time
Rule Generation

Window WP

Fig. 3. Key terms in failure prediction.

monitors the events occurring during prediction window, whose
size is the same as the rule generation windowWP , and in the case
of a matching rule, it will trigger a warning.

4.1. Meta-learner

The meta-learner focuses on revealing and learning the cause-
and-effect relations of system events by applying data mining
techniques. Data mining, or knowledge discovery, is a computer-
assisted process of searching and analyzing data sets for hidden
patterns [14]. Meta-learning, also known as ensemble-learning,
can be loosely defined as learning from learned knowledge [28].
It emphasizes on combining different individual models (denoted
as base learners) to boost overall predictive effectiveness.
In this study, we choose three widely used predictive meth-

ods, namely association rule-based method [39,30], statisti-
cal rule-based method [21], and probability distribution-based
method [31], as our base learners. The meta-learner intends to
identify a preferable combination of these base learners. In the fol-
lowing, we first describe the base learners, followed by presenting
our meta-learning method. Note that other base methods can be
easily incorporated.
Base learners. The first base learner is based on association rules.
It examines causal correlations between non-fatal and fatal events
by building association rules. In general, an association rule is in
the form X → Y , where the rule body X and Y are subsets
of an event set. It states that a transaction that contains the
items in X are likely to contain the items in Y . Association rules
are characterized by two measures: support which measures the
percentage of transactions that contain both items X and Y , and
confidencewhich measures the percentage of item sets containing



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 635

120

100

80

60

40

20

0N
u

m
b

er
 o

f 
F

at
al

 E
ve

n
ts 120

100

80

60

40

20

0N
u

m
b

er
 o

f 
F

at
al

 E
ve

n
tsTemporal correlation at ANL Temporal correlation at SDSC

1 1 114 227 340 453 566 679 792 905 1018 113157 113169225281337393449505561617673729785841

Days Days

Fig. 4. Temporal correlations among fatal events.

the items X that also contain the items Y . The problem of mining
association rules consists of generating all the association rules
from a set of items that have both support and confidence greater
than the user-defined thresholds. Given that failure is rare event,
low values of support and confidence are set for the purpose of
capturing infrequent events.
On the training set, for each fatal event, we identify the set of

non-fatal events preceding it within the rule generation window
WP . The set, including the fatal event and their precursor non-
fatal events, is called an event set. We then apply the standard
association rule algorithm to build rule models for event sets that
are above the minimum support and confidence. The association
rules will be in the form of {e1, e2, . . . , ek} → f , confidence, where
ei and ej (1 ≤ i, j ≤ k) are non-fatal events, and f is a fatal event.
For instance, two examples from the SDSC log are listed below:

networkWarningInterrupt, networkError→ socketReadFailure: 1.0
idoStartInfo, bglStartInfo→ fsFailure: 0.79

Our second base learner emphasizes on discovering statistical
characteristics, i.e., how often and with what probability will the
occurrence of one failure influence subsequent failures, among
fatal events and then using the obtained statistical rules for
failure prediction. It is denoted as the statistical rule-based method.
Studies have shown that temporal correlations among fatal events
are common in large-scale systems [31,21,6]. Fig. 4 plots fatal
events per day occurred at ANL and SDSC. We can observe that
a significant number of failures happen in close proximity, and
our further analysis indicates that network and I/O stream related
failures form a majority of such failures.
Specifically, on the training set, we calculate the probability of

k failures occurred within the rule generation window WP . If the
probability is larger than a user-defined threshold, then a statistic
rule is generated, along with its probability value. As an example,
we have discovered that for both logs, if four failures occur within
300 s, then the probability of another failure is 99%.
The third base learner is called the probability distribution-

based method. It generates probability distribution of fatal events
and stores it for failure prediction. Different from the above two
methods which attempt to discover short-term (e.g., in the order
of minutes) correlations among events for failure prediction, this
method recognizes that some failure events may not have any
short-termprecursor events and intends to utilize long-term failure
behavior for failure prediction. Here, the long-term means the
probability distribution of failure events, which is generally in the
order of hours or even days.
Specifically, the method calculates inter-arrival times between

adjacent fatal events and uses maximum likelihood estimation to
fit a mathematical model to these data. Distributions like Weibull,
exponential, and log-normal are examined for generating the
cumulative distribution function (CDF) of fatal events. Fig. 5 plots
the CDFs of fatal events occurred at ANL and SDSC. By calculating
the probability of possible failure based on the derived CDF
function, this base method will trigger a warning if the probability
is larger than a user-defined threshold, or equally saying, when the
elapsed time since the last failure is longer than some threshold.

Fig. 5. Cumulative Distribution Functions (CDFs) of fatal events. The thin curves
represent the actual fatal events, while the thick curves model the Weibull
distributions of the events.

Fig. 6. Meta-learning method.

For instance, on a training set from the SDSC log, the Weibull
distribution of F(t) = 1 − e−(t/19984.8)0.507936 is determined to be
the best CDF to describe inter-arrival times between adjacent fatal
events. Hence, if the threshold is set to 0.60, when the elapsed time
since the last failure is 20000 s, awarningwill be triggered because
F(20 000)(=0.63) is larger than the threshold.
Ensemble learning. There are many ways to combine base models,
among which bagging, boosting, and stacking are well-known
ensemble methods. In our study, we choose themixture-of-experts
model, which is a variation of the stacking method [11,28]. Fig. 6
illustrates ourmeta-learning process. The basic idea is simple: base
learners are experts in some portion of the feature space, and the
combination rule selects the most appropriate classifier for each
instance. Based on verification on the training data, the meta-
learner determines the ordering of rules used for prediction.
In our case studies, the order is the association rule, followed by

the statistical rule, and finally probability distribution. Specifically,
when an event occurs, if it is a non-fatal event, the meta-learner
first checks whether it will trigger a matching of an association
rule; if it is a fatal event, the meta-learner will check whether it
will trigger a matching of a statistical rule. If no matching is found,



Author's personal copy

636 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

the meta-learner will check the elapsed time since the last failure
and apply the derived probability distribution of failures for failure
forecasting.

4.2. Reviser

The reviser is responsible formodifying the candidate rules gen-
erated by the meta-learner via monitoring the actual observations
and the predicted results. This is to ensure the effectiveness of the
learned rules in the knowledge repository. Asmentioned earlier, in
order to capture infrequent items, the parameters used in the base
learners may be adopted without much consideration regarding
their effectiveness, thereby probably resulting in some bad rules.
Thus, the reviser checks each rule in the knowledge repository by
applying the ROC (receiver operating characteristic) analysis [14].
It enables us to select optimal models and discard suboptimal ones
independently from the class distribution. The reviser will exam-
ine each rule andonly keep the ruleswhich canprovide satisfactory
accuracy [12]. The detailed method is shown in Algorithm 1.

Algorithm 1 The Reviser
For each rule r generated by the meta-learner:

(1) count its true positives TP , false positives FP , and false
negatives FN on the training data;

(2) calculate two metricsm1(r) andm2(r):

m1(r) =
TP

TP + FP
,m2(r) =

TP
TP + FN

;

(3) calculate ROC(r):

ROC(r) =
√
m1(r)2 +m2(r)2;

(4) keep the rule if its ROC value is larger than a predefined
thresholdMinROC; otherwise, discard the rule.

4.3. Predictor

The predictor actively monitors system events and triggers a
warningwhen a rule is observedwithin the predictionwindowWP .
In order to be used for online forecasting, an event-drivenmethod is
adopted for its design [12]. That is, the predictor triggers a warning
on the occurrence of events.
The detailed method is presented in Algorithm 2. The predictor

maintains three event lists. One is called F-list which records a
list of triggering events for each failure event. The second is called
E-list which tracks a list of failure events that may be triggered by
each event (fatal or non-fatal). The third is to keep the most recent
events occurred withinWP . Upon an occurrence of an event e, the
predictor appends the event into the third list (Step 1), and then
goes through its E-list to find out all possible failures that may be
triggered by its occurrence (Step 2). For each possible failure f i, the
predictor checks its F-list to see whether a cause-and-effect rule is
matched in the knowledge repository (Steps 3 and 4).

5. Experiments

To evaluate the effectiveness of the proposed framework, we
use the real RAS logs collected from the production systems at
ANL and SDSC (see Table 2). Further, to comprehensively examine
the framework, our experiments are structured to answer the key
questions listed in Section 1.

5.1. Evaluation metrics

Two metrics are used to measure prediction accuracy:

Algorithm 2 The Predictor
First, it creates two lists based on the learned rules:
F − List = {fi ⇐ {ei1, ei2, . . . , eik} : 1 ≤ i ≤ Nf }
E − List = {ej ⇒ {fj1, fj2, . . . , fjl} : 1 ≤ j ≤ Ne}
where fi is a fatal event and ei is a fatal or non-fatal event, Nf is
number of fatal events, and Ne is number of any events. During
operating, when an event e occurs:

(1) Append e into the monitoring event set E = {e1, e2, . . . ,
en, e} where the events are sorted in an increasing order of
their occurrence times, remove ei if its occurrence time is
more thanWP before the occurrence time of e, i.e., keep the
most recent events occurred withinWP .

(2) Go through the E-List of e, obtain the potential failures that
may be triggered by e: {f 1, f 2, . . . , f k} .

(3) For each potential failure f i, go through its F-List: f i ⇐
{eii1, e

i
i2, . . . , e

i
ik} .

(4) If {eii1, e
i
i2, . . . , e

i
ik} ⊆ E, then produce a warning that the

failure f i may occur within the time ofWP .

(1) Precision is defined as the proportion of correct predictions to
all the predictions made.

precision =
Tp

Tp + Fp
.

(2) Recall is defined as the proportion of correct predictions to the
number of failures.

recall =
Tp

Tp + Fn
.

Here, Tp is the number of correct predictions (i.e., true positives),
Fp is the number of false alarms (i.e., false positives), and Fn is
the number of missed failures (i.e., false negatives). Obviously,
a good prediction engine should achieve a high value (closer to
1.0) for both metrics. We note that these metrics are also used
by the reviser to determine whether a rule is effective or not (see
Algorithm 1).

5.2. Results

In our experiments, the training set is initially set to 6 months,
which will be dynamically adjusted during operation. The default
retraining window WR is 4 weeks, and the default prediction
windowWP , also the rule generation window, is 300 s.
The minimum support and confidence values for association

rules are set to 0.01 and 0.1 respectively. The low values are
chosen for the purpose of capturing infrequent events. The rules
that are not good will be removed by the reviser. There are three
other parameters used by our framework, namely MinROC for
the reviser, and the thresholds for statistical rule-based learner
and probability distribution-based learner. In our experiments,
MinROC is set to 0.7, and the thresholds for statistical rules
and probability distribution-based learner are set to 0.8 and 0.6
respectively. Choosing optimal values for these parameters is
difficult, and often experimental determination might be the only
viable option.Wehave tested different values, froma lowvalue like
0.1 to a high value like 0.9, and found that these values can yield
the best prediction accuracy for both logs. In general, low values
for these parameters result in more failure rules and thus better
failure coverage, at the expense of introducing more false alarms.

5.2.1. Q1: Howmuch improvement is achieved by the meta-learning?
In this set of experiments, we compare prediction results

by using static meta-learner as against individual base learners
(i.e., association rule, statistical rule, and probability distribution).



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 637

1 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.95
0.9

0.85
0.8

0.75
0.7

0.65
0.6

0.55
0.5

1
0.95

0.9
0.85

0.8
0.75

0.7
0.65

0.6
0.55

0.5

32 40 48 56 64 72 80 88 96 104 112

wk. seq. no.

32 40 48 56 64 72 80 88 96 104 112

wk. seq. no.

32 40 48 56 64 72 80 88 96 104 112 120 128 32 40 48 56 64 72 80 88 96 104 112 120 128

wk. seq. no.

ANL Precision ANL Recall

Association Rule

Prob. Dist.
Statistic Rule
Static Meta

Association Rule

Prob. Dist.
Statistic Rule
Static Meta

Association Rule

Prob. Dist.
Statistic Rule
Static Meta

Association Rule

Prob. Dist.
Statistic Rule
Static Meta

SDSC Precision SDSC Recall

Fig. 7. Meta-learning versus base predictive methods. Each plot contains four curves, representing association rule-based learner, statistical rule-based learner, probability
distribution-based learner, and static meta-learner. Here, the ‘‘static’’ means that the meta-learner applies mixture-of-experts ensemble of the base methods without
dynamic relearning. It is clear that meta-learning can substantially boost prediction accuracy in terms of both precision and recall.

Here, the ‘‘static’’ means that the meta-learner simply applies
mixture-of-experts ensemble of the base methods, without
dynamic training, retraining and revising. Hence, for both logs, the
first 6 months are used as the training set, and the remaining parts
are for testing. The results are shown in Fig. 7, where the x-axis
shows the sequence number of the week.
First, both precision and recall decrease as the time goes by,

no matter which method is used. The reason is that all these
methods are based on a static approach, meaning that they learn
the rules on the 6 month training set and then use these rules
for prediction on the rest of the logs. The rules may well capture
failure patterns at the beginning. However, system behavior is
dynamically changing. As a result, the established rules become
outdated, thereby resulting in lower prediction accuracy as the
time goes by.
We make several interesting observations regarding each

base method. First, the statistical rule-based method provides
a reasonably good result for precision; however, it results in a
low value for recall. It suggests that this method is only good
at discovering certain types of failures which exhibit temporal
correlations. Second, the association rule-based method has the
worse results in terms of recall. This is mainly due to the fact
that while this method well captures causal correlation between
non-fatal and fatal events, it is limited by the proportion of fatal
eventswithout any precursorwarnings (e.g., low recall values). Our
analysis shows that for both logs, there are a large portion of fatal
events (up to 75%) which are not preceded by any precursor non-
fatal events. Third, the recall results provided by the probability
distribution-based method are quite good (e.g., higher than 0.5
for both logs). Nevertheless, it can introduce many false alarms.
The problem of the probability distribution-basedmethod is that it
cannot pinpoint the occurrence times of the failures, thereby giving
many false alarms once the elapsed time since the last failure is
large enough.
A Venn diagram of these base learners is presented in Fig. 8.

It shows the numbers of fatal events predicted by these base
learners between the 44th and 48th week of the SDSC log. In total,
there are 156 fatal events during this period, and 67 of them are

AR

SR

PD

46

10

6

3

9

19

24

39

Fig. 8. A Venn diagram to show logical relations between association rule-based
learner (AR), statistical rule-based learner (SR), and probability distribution-based
learner (PD) between the 44th and 48th week of the SDSC log. Each number
represents the number of fatal events captured by one or multiple base learners.
There are totally 156 fatal events occurred during this period of time. For example,
the number six in the intersection of three circles indicates that six fatal events can
be predicted by all these base learners.

captured by multiple base learners. The coverage of each base
learner is as follows: association rule-based learner 23.7% (37 fatal
events), statistical rule-based learner 37.2% (58 fatal events), and
probability distribution-based learner 56.4% (88 fatal events). The
diagram clearly shows that it is improper to expect a singlemethod
to capture all of failures alone.

Observation#1: In a large-scale system, there are numerous failure
patterns in general; thus, a single base learner is unlikely to capture
all of them alone.
Meta-learning can substantially improve recall, indicating that

meta-learning can improve prediction coverage by capturing var-
ious fault patterns. The impact of using meta-learning on precision
is not as significant as on recall, but still non-trivial, especially as



Author's personal copy

638 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.9

0.85

0.8

0.75

0.7

0.65

0.6

32 40 48 56 64 72 80 88 96 104 112
wk. seq. no.

wk. seq. no.

32 40 48 56 64 72 80 88 96 104 112
wk. seq. no.

ANL Precision ANL Recall

SDSC Precision SDSC Recall

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Dynamic: Whole
Dynamic: 3- Mo

Dynamic: 6- Mo.
Static Meta

Dynamic: Whole
Dynamic: 3- Mo

Dynamic: 6- Mo
Static Meta

Dynamic: Whole
Dynamic: 3- Mo

Dynamic: 6- Mo
Static Meta

Dynamic: Whole
Dynamic: 3- Mo

Dynamic: 6- Mo
Static Meta

32 40 48 56 64 72 80 88 96 104112120128

wk. seq. no.

32 40 48 56 64 72 80 88 96 104112120128

Fig. 9. What is the appropriate size for the training set? Each plot consists of four curves: (1) dynamic-whole means to train the rules using all the historical data; (2)
dynamic-6 momeans to train the rules using the recent 6 months; (3) dynamic-3 momeans to train the rules using the recent 3 months; and (4) static means to use the first
6-month training set. Clearly, dynamic-whole and dynamic-6 mo are the best. Combining the results shown in Table 5, we suggest that dynamic training on the most recent
6 month provides the best balance between prediction accuracy and runtime overhead.

compared to the association rule-based method and probability
distribution method. Note that the meta-learner does not mod-
ify any of these base methods; instead, it dynamically chooses one
base learner for failure forecasting upon each invocation. The ben-
efit of usingmeta-learner is its ability to form a good integration of
these base learners so as to improve both precision and recall.

Observation #2: Meta-learning can substantially improve predic-
tion accuracy by intelligently integratingmultiple predictivemeth-
ods without requiring complex system modeling.

5.2.2. Q2: How much improvement is achieved by the dynamic
approach?
In this set of experiments, we assess the benefits brought by the

dynamic approach. Specifically,we analyzewhat is the appropriate
size for the training set, how often to trigger relearning, whether it
is necessary to perform dynamic revising, and howmany rules are
changed by applying dynamic relearning.
Fig. 9 presents the answer to the first question, i.e., what is

the appropriate size for the training set? In the figure, each plot
consists of four curves: (1) dynamic-wholemeans to train the rules
using all the historical data, e.g., in the 32nd week, the data in the
previous 31weeks are used for training; (2) dynamic-6momeans to
train the rules using the recent 6months, e.g., in the 32ndweek, the
data in the previous 26 weeks are used for training; (3) dynamic-
3 mo means to train the rules using the recent 3 months, e.g., in
the 32nd week, the data in the previous 13 weeks are used for
training; and (4) static means to use the initial 6-month data as the
fixed training set. With the first method, as the time goes by, the
training set is gradually increased every 4 weeks. With the second
and third methods, the training set is sliding with the time every 4
weeks,with a fixed size of 6months or 3months respectively.With
the fourth method, we always use the rules generated in the initial
training set for failure prediction, i.e., without any retraining.
Clearly, dynamic-whole provides the best results in terms of

both precision and recall, followed by dynamic-6 mo. Further, we

can see that the accuracy difference between these two methods
is generally less than 0.08. As we will show in Section 5.2.4, the
overhead introduced by training on a large data set is not trivial.
Therefore, in practicewe suggest tomake a tradeoff betweenbetter
prediction accuracy and lower computation overhead. For these
systems, we suggest to use the most recent 6-month data for
dynamic training.
Next, it is shown that by using the static method without dy-

namically adjusting the training set, the prediction accuracy is
monotonically decreasing. This is reasonable as the fixed rule set
learned by static meta-learner is unable to adapt to new changes/
reconfigurations occurring in the system.
Finally, the results produced by dynamic-3 mo are the worst

among four different mechanisms. The reason is that this method
relies on a limited amount of training data for rule generation and
this could substantially limit its capability of discovering sufficient
failure patterns for prediction. Nevertheless, as compared to static,
the prediction results are more stable in the sense that they do not
decrease dramatically with time. In summary, the plots indicate
that dynamically adjusting the training set is needed; however it
is not necessary to re-train the rules on the entire available data,
generally the most recent few months are sufficient.

Observation #3: Learned rules of fault patterns may not be
applicable for very long, thus dynamically adjusting the training
set is indispensable for good prediction accuracy. In general, using
the most recent few months like six months makes a good tradeoff
between accuracy and runtime overhead.

Fig. 10 answers the second question, i.e., how often to trigger
relearning. It presents the results by using different retraining
windows (WR = 2, 4, or 8 weeks). While prediction accuracy
generally remains similar, more frequent retraining can provide
better accuracy by up to 0.06. Further, we notice that for the
SDSC log, both precision and recall decrease more than 10% during
the 64th week. This is due to the fact that the system went
through a major system reconfiguration around this time. As a



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 639

Fig. 10. How often to trigger relearning? The plots present the cases where the rules are re-trained every 2, 4, or 8 weeks, i.e.,WR is set to 2,4, or 8. Obviously, more frequent
retraining can boost prediction accuracy; however, the improvement is not drastic with the difference less than 0.06 in terms of both precision and recall.

consequence, failure patterns were changed, thereby resulting in
lower prediction accuracy during this period of time. Dynamic
training is able to construct a new set of pattern rules. As we can
see, both precision and recall are changed back to the normal range
after a few retraining processes. Generally speaking, if the system
is constantly changing or its workload is highly dynamic, frequent
retraining is necessary, which can help to rapidly build up the
effective rules for online prediction.

Observation #4: The frequency to trigger relearning depends
on system characteristics. If the system is highly dynamic,
frequent retraining is necessary tomaintain satisfactory prediction
accuracy.

The plots also indicate that our method can start to provide a
good failure prediction service only after 8 weeks of training. For
the ANL log, precision is between 0.72 and 0.81 and recall is ranging
between 0.56 and 0.66; for the SDSC log, precision is between 0.70
and 0.83 and recall is ranging between 0.59 and 0.70. In other
words, our method does not need a long training phase to provide
an acceptable prediction service. We shall also point out that even
when the training set is 2 weeks (not shown in the figure), the
predictor is still capable of capturing more than 43% of failures. In
our previous study [20], we have found that runtime adaptive fault
management is capable of providing positive performance gain as
long as the underlying prediction mechanism can capture 30% of
failures. Therefore, our dynamic meta-learning framework is able
to serve a runtime fault tolerant tool after as few as 2 weeks of
training.
Fig. 11 compares the prediction results with and without using

the reviser. The plots show that dynamic revising can boost both
precision and recall, and the improvement is up to 6%. As stated

in Section 4, failures are rare events. In order to ensure these
infrequent events to be analyzed, the parameters like confidence
and support adopted in the association rules are typically chosen
without much consideration to the effectiveness of the generated
rules, thereby resulting in some rules that may mislead the
prediction. The reviser acts like an additional learning process. It
works on the candidate rules generated by the meta-learner, and
filters out those rules that are not effective on the training set so
as to improve prediction accuracy. The results shown in this figure
demonstrate the necessity of using dynamic revising.

Observation #5: Dynamic revising can help improve failure
prediction by filtering out bad rules of fault patterns.

Next, we examine the number of rules changed by using dy-
namic meta-learning, and the results are presented in Fig. 12. Each
plot contains four curves representing the number of rules un-
changed, the number of rules added by themeta-learner, the num-
ber of rules removed by the meta-learner, and the number of rules
removed by the reviser respectively.
It is clear that the numbers are dynamically changing (i.e., the

rules are added or removed) during the operation. Initially, when
the training starts, there are only dozens of rules, which will
be gradually popularized in the following retraining steps. For a
period of 1 year, the knowledge repository will accumulate more
than 100 rules for both systems. The number of unchanged rules
starts to stabilize for the ANL log around the 70th week—about
140–160 rules. However, for the SDSC log, the number keeps
increasing (up to 260 rules at the 120th week). In general, the
number of rules used for runtime prediction with the ANL log is
between 60 and 115, and it is between 100 and 190 for the SDSC
log. The difference between these logs is due to many factors,



Author's personal copy

640 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

0.9
0.85

0.8
0.75

0.7
0.65

0.6
0.55

0.5
4 16 28 40 52 64 76 88 100 112

wk. seq. no.

0.9
0.85

0.8
0.75

0.7
0.65

0.6
0.55

0.5
4 16 28 40 52 64 76 88 100 112

wk. seq. no.

124

ANL Log SDSC Log
Precision: w/ reviser Precision: w/o reviser
recall: w/ reviser recall: w/o reviser

Precision: w/ reviser Precision: w/o reviser
recall: w/ reviser recall: w/o reviser

Fig. 11. Is it necessary to conduct dynamic revising? It is clear that dynamic revising can boost prediction accuracy by up to 6%.

260
240
220
200
180
160
140
120
100
80
60
40
20
0

4 12 20 28 36 44 52 60 68 76 84 92 100 108

wk. seq. no.

rules unchanged

rules removed by reviser

rules removed by meta

rules added by meta

ANL Log
260
240
220
200
180
160
140
120
100
80
60
40
20
0

4 12 20 28 36 44 52 60 68 76 84 92 100108116124132
wk. seq. no.

rules unchanged

rules removed by reviser

rules removed by meta

rules added by meta

SDSC Log

Fig. 12. Number of rules changed. We measure the numbers of rules that are unchanged, added by the meta-learner, removed by the meta-learner, and removed by the
reviser. These numbers are constantly changing, indicating that the dynamic approach is essential for capturing varying pattern rules.

including system management, workload characteristics, etc. The
change rate of rules, i.e., the ratio between changed and unchanged
rules, ranges between 44% and 212%.
Further, we notice that a substantial change occurs during the

64th week with the SDSC log, where 57 rules are added and 148
rules are removed. The change is significant since normally about
20–30 rules are added and 50–80 are removed per retraining.
Between the 60th and 64th week, a system reconfiguration occurs.
Our method retrains the rules every 4 weeks, meaning that it
extracts a set of rules at the 60thweek and then retrains the system
at the 64th week. Due to the system change, these two sets of rules
are quite different, thereby resulting in significant rule changes.
This is consistent with the results shown in Fig. 10.
The plots also show that the number of rules removed by the

reviser is not trivial, by up to 80. This implies that the reviser can
significantly remove non-trivial amount of rules. This result, com-
bined with the information shown in Fig. 11, proves that dynamic
revising is indispensable for better prediction by removing bad
rules.

Observation #6: The rules of fault patterns are constantly changing
during system operation. It further implies that dynamic relearning
is essential for maintaining prediction accuracy.

5.2.3. Q3: How sensitive is prediction accuracy to prediction window
size?
Fig. 13 presents prediction results by using different prediction

windows (5 min, 15 min, 30 min, 45 min, 1 h, 1.5 h, and 2 h). The
reason for choosing these durations is based on the results reported
in [5,22] and our own experimentswith different applications [20].
A time window smaller than 5 min may become too small for
taking preventive action based on the prediction, whereas a time
window larger than 2 h will induce an increased overhead on the
system as it will require maintaining the history of all the events
for the duration of 2 h. Also, the processing/analysis cost of these
events for online failure prediction is not trivial.

The trend is obvious: the larger the prediction window is,
the higher the recall is and the lower the precision is. When the
prediction window is set to a larger number, it is more likely for
the predictor to capture more events, thereby resulting in more
chances to find a matching rule of the failure pattern. This leads to
a higher value for recall, meaning the predictor can capture more
failures. As an example, when the prediction window is set to 2 h,
recall can be as high as 0.82. On the other hand, if the prediction
window is large, it is also likely for the predictor to trigger false
alarms due to the growing possibility of catching amisleading rule.
For different predictionwindows, the difference on precision is less
than 0.25, and it is about 0.15 in terms of recall. Further, for all the
cases, both precision and recall is generally above 0.55.

Observation #7: The larger the predictionwindow is, the higher the
recall is and the lower the precision is.

5.2.4. Q4: How much runtime overhead is introduced?
Operation overhead depends on the size of the training set.

Table 5 summarizes the overheads as a function of training data,
in which the overhead is classified into two parts, namely rule
generation overhead and rule matching overhead. These times are
measured on a local PC configured with a 1.6 GHz Intel Pentium
processor and 768 MB memory. Obviously, the overhead could be
less when a more powerful PC is used.
The overheadmainly comes fromrule generation,while the rule

matching process (i.e., the event-driven predictor) is trivial, usually
in dozens of seconds. As shown in the table, when the training set
is set to 6 months (half of a year), the rule generation may take
6.0 min; and it can increase to 13 min when the training set is set
to 30 months (two and a half year). Note that the rule generation
process can be conducted in parallel when the production system
is in operation; therefore, this cost should not be counted into the
actual runtime overhead for failure prediction. The actual runtime
overhead introduced by the event-driven predictor is normally less
than 1.0 min. Thus, we believe that the framework is feasible as a



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 641

Fig. 13. Impact of Prediction Window. In general, the larger the window is, the higher the recall is and the lower the precision is.

Table 5
Operation overhead (in minutes) as a function of training size.

Training size (mo) Rule generation Rule
Stat_Rule Asso_Rule Prob_Dist Ensemble & revise matching

3 <1 1 <2 1 <1
6 <1 2 <2 1 <1
12 <1 3 <2 2 <1
18 <1 4 <2 2 <1
24 <1 5 <2 3 <1
30 <1 6 <2 4 <1

runtime prediction mechanism. Combining the results shown in
this table and in Fig. 9, we suggest that dynamic meta-learning on
the recent 6 months is practical and time efficient.

Observation #8: The runtime overhead is trivial (e.g., in dozens of
seconds), while the major overhead introduced by rule generation
can be conducted in parallel when the target machine is in
operation.

6. Related work

Recognizing the importance of fault tolerance, the community
has paid much attention to failure prediction. Exiting predictive
approaches can be broadly classified asmodel-based or data-driven
methods. The model-based approach derives a probabilistic or
analytical model of the system and triggers a warning when a
deviation from the model is detected [10,17,37,18]. Examples
include an adaptive statistical data fitting method called MSET
presented in [38], Semi-Markov reward models described in [8],
and anaive Bayesian basedmodel to predict disk drive failures [13].
In large-scale systems, errors may propagate from one component
to other component, which is commonly addressed by developing
fault propagation models (FPM) [33]. While model-based methods
are effective for forecasting some failures, they seem too complicated
to be practical for failure prediction in large-scale systems composed
of tens of thousands of components.
A data-driven method, such as using data mining techniques,

attempts to learn failure patterns from historical data for failure
prediction, without constructing an accurate model ahead of
time. These methods extract fault patterns from system normal

behaviors and detect abnormal observations based on the learned
knowledge without assuming a priori model ahead of time. For
example, the group at the RAD laboratory has applied statistical
learning techniques for failure diagnosis in Internet services [3,1].
The SLIC (Statistical Learning, Inference and Control) project at HP
has explored similar techniques for automating fault management
of IT systems [4]. Sahoo et al. have applied association rules to
predict failure events in a 350-node IBM cluster [30]. In [21,
22], Liang et al. have examined several data mining and machine
learning techniques for failure forecasting in a Blue Gene/L system.
Other representativeworks include system log analysis [31,26] and
a prediction framework for networked systems [6].
While this paper is built upon existing studies, it distinguishes from

the above studies at several aspects. First, unlike existing studies fo-
cusing on one specific predictivemethod, this paper presents a dy-
namic meta-learning framework to dynamically integrate existing
predictive methods for better prediction. In this study, we have
examined three widely used predictive methods, namely associ-
ation rule-based learner [30,39], statistical rule-based learner [21],
and probability distribution-based learner [31] in the framework.
We believe that other predictive methods can be easily incorpo-
rated into our framework. Second, this study emphasizes dynamic
training and learning, which is rarely examined in the literature.
By means of real system logs from production systems, we have
demonstrated that dynamic relearning is essential to capture be-
havior changes during system operation. By examining our frame-
work in various ways, we have shown that using the most recent
fewmonths like 6monthsmakes a good tradeoff between accuracy
and runtime overhead. Next, unlike offline log analysis studies, our
prediction is event-driven, meaning that our framework triggers a



Author's personal copy

642 Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643

warning on the occurrence of events during system operation. An
event-driven approach is well suited for online failure prediction.
Last but not the least, in addition to presenting the key techniques
for boosting prediction accuracy, we have also systematically an-
alyzed our framework and answered several key questions com-
monly raised in failure prediction. It provides a deep insight into
failure prediction in large-scale systems. To the best of our knowl-
edge, we are among the first to comprehensively evaluate the im-
pact of different factors in failure forecasting.

7. Summary

In this paper, we have presented a dynamic meta-learning
prediction engine for large-scale systems. Recognizing problems
in failure prediction, our prediction mechanism relies on two key
techniques to improve prediction accuracy in real systems. Meta-
learning is applied to boost prediction accuracy by integrating
multiple predictive methods, while a dynamic approach is
employed to train the rules of failure patterns at runtime. Our
prediction mechanism does not require a long training phase by
dynamically adjusting the training set during system operation.
Further, it can adapt to system changes, even after a major system
reconfiguration. Our case studies with real system logs have
demonstrated its effectivenesswith a good accuracy, e.g., capturing
up to 82%of failures. The studies have also shown that the proposed
mechanism is practical and well suited for forecasting failures in
real systems.
Our study has some limitations that remain as our future work.

First, in the current design, the prediction window size is fixed.
Our on-going work includes adaptively changing this window size
such that the system can automatically tune its size to reduce the
training cost, without sacrificing the prediction accuracy. Second,
we plan to examine other data mining methods, such as decision
tree and neural network, to popularize our base learners. We will
also investigate other ensemble learning techniques to improve
the meta-learner. Finally, more case studies with a variety of HPC
systems will be conducted. Although our case studies focus on
the Blue Gene/L systems, we believe the proposed mechanism
is applicable to other systems. For the systems that do not have
an error checking and logging facility, the first step is to develop
a monitoring tool which is capable of gathering fault-related
information from various system components and archive the
information in a centralized repository. The proposed framework
can be easily extended to these systems by linking to their event
repositories.

Acknowledgments

Zhiling Lan is supported in part by US National Science
Foundation grants CNS-0834514, CNS-0720549, CCF-0702737, and
a TeraGrid Compute Allocation. Susan Coghlan and Rajeev Thakur
are supported by the Office of Advanced Scientific Computing
Research, Office of Science, US Department of Energy, under
Contract DE-AC02-06CH11357.Wewould like to thank JohnWhite
at Revision3 Company and Eva Hocks at San Diego Supercomputer
Center for the discussion of the SDSC system log. Some preliminary
results of this work were presented in [11,12].

References

[1] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel, G. Tolle, J. Hui,
A. Fox, M. Jordan, D. Patterson, Combining visualization and statistical analysis
to improve operator confidence and efficiency for failure detection and
localization, in: Proc. of The 2nd IEEE International Conference on Autonomic
Computing, ICAC ’05, 2005.

[2] M. Buckley, D. Siewiorek, Comparative analysis of event tupling schemes, in:
Proc. of Fault-Tolerant Computing, FTCS, 1996.

[3] M. Chen, A. Zheng, J. Lloyd, M. Jordan, E. Brewer, Failure diagnosis using
decision trees, in: Proc. of ICAC’04, 2004.

[4] I. Cohen, J. Chase, Correlating instrumentation data to system states: a building
block for automated diagnosis and control, in: Proc. of OSDI’04, 2004.

[5] E. Elnozahy, J. Plank, Checkpointing for peta-scale systems: a look into the
future of practical rollback-recovery, IEEE Transactions on Dependable and
Secure Computing 1 (2) (2004) 97–108.

[6] S. Fu, C. Xu, Exploring event correlation for failure prediction in coalitions of
clusters, in: Proc. of SC’07, 2007.

[7] A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R.
Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht,
B. Steinmacher-Burow, T. Takken, P. Vranas, Overview of the Blue Gene/L
system architecture, IBM Journal of Research and Development 49 (2/3)
(2005).

[8] S. Garg, A. Puliafito, K. Trivedi, Analysis of software rejuvenation usingMarkov
regenerative stochastic petri net, in: Proc. of 6th International Symposium on
Software Reliability Engineering, 1995.

[9] R. Gioiosa, J. Sancho, S. Jiang, F. Petrini, K. Davis, Transparent incremental
checkpointing at kernel level: a foundation for fault tolerance for parallel
computers, in: Proc. of SC’05, 2005.

[10] A. Goyal, S. Lavenberg, K. Trivedi, Probabilistic modeling of computer system
availability, Annals of Operations Research (1987).

[11] P. Gujrati, Y. Li, Z. Lan, R. Thakur, J. White, Ameta-learning failure predictor for
Blue Gene/L systems, in: Proc. of ICPP’07, 2007.

[12] J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, B. Park, Dynamic meta-learning for
failure prediction in large-scale systems: a case study, in: Proc. of ICPP’08,
2008.

[13] G. Hamerly, C. Elkan, Bayesian approaches to failure prediction for disk drives,
in: Proc. of ICML’01, 2001.

[14] J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd edition,
Morgan Kaufmann, 2006.

[15] J. Hansen, D. Siewiorek, Models for time coalescence in event logs, in: Proc. of
Fault-Tolerant Computing, FTCS, 1992.

[16] P. Hargrove, J. Duell, Berkeley Lab Checkpoint/Restart (BLCR) for linux clusters,
in: Proc. of SciDAC 2006 (publication LBNL-60520), 2006.

[17] J. Hellerstein, F. Zhang, P. Shahabuddin, A statistical approach to predictive
detection, Computer Networks: The International Journal of Computer and
Telecommunications Networking (2001).

[18] G. Hoffmann, F. Salfner, M. Malek, Advanced failure prediction in complex
software systems, in: Proc. of SRDS’04, 2004.

[19] M. Joshi, R. Agarwal, V. Kumar, Mining needle in a haystack: classifying rare
classes via two-phase rule induction, in: Proc. of SIGMOD’01, 2001.

[20] Z. Lan, Y. Li, Adaptive fault management of parallel applications for high
performance computing, IEEE Transactions on Computers 57 (12) (2008)
1647–1660.

[21] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, R. Sahoo, Blue Gene/L failure
analysis and models, in: Proc. of DSN’06, 2006.

[22] Y. Liang, Y. Zhang, H. Xiong, R. Shaoo, Failure prediction in IBM BlueGene/L
event logs, in: Proc. of ICDM’07, 2007.

[23] Y. Li, Z. Lan, P. Gujrati, X. Sun, Fault-aware runtime strategies for high
performance computing, IEEE Transactions on Parallel and Distributed
Systems 20 (4) (2009) 460–473.

[24] A. Oliner, L. Rudolph, R. Sahoo, Cooperative checkpointing theory, in: Proc. of
the International Parallel and Distributed Processing Symposium, IPDPS, 2006.

[25] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, A. Sivasubramaniam, Fault-aware job
scheduling for Blue Gene/L systems, in: Proc. of IPDPS’04, 2004.

[26] A. Oliner, J. Stearley, What supercomputers say: a study of five system logs, in:
Proc. of the International Conference on Dependable Systems and Networks,
DSN, 2007.

[27] W. Peng, T. Li, S. Ma, Mining logs files for computing system management, in:
Proc. of ICAC’05,2005.

[28] R. Polikar, Ensemble based systems in decision making, IEEE Circuits and
Systems Magazine 6 (3) (2006).

[29] D. Reed, C. Lu, C. Mendes, Big systems and big reliability challenges, in: Proc.
of Parallel Computing, 2003.

[30] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, Critical event prediction
for proactive management in large-scale computer clusters, in: Proc. of
SIGKDD’03, 2003.

[31] B. Schroeder, G. Gibson, A Large-scale study of failures in high performance
computing systems, in: Proc. of DSN’06, 2006.

[32] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, P. Stodghill,
Implementation and evaluation of a scalable application-level checkpoint-
recovery scheme for MPI programs, in: Proc. of SC’04, 2004.

[33] M. Steinder, A. Sethi, A survey of fault localization techniques in computer
networks, Science of Computer Programming 53 (2004).

[34] The Blue Gene system at ANL. Available at http://www.bgl.mcs.anl.gov/.
[35] The Blue Gene system at SDSC. Available at http://www.sdsc.edu/us/

resources/bluegene/.
[36] The TOP500 supercomputer site. Available at http://www.top500.org/.
[37] K. Trivedi, K. Vaidyanathan, A measurement-based model for estimation of

resource exhaustion in operational software systems, in: Proc. of ISSRE’99,
1999.



Author's personal copy

Z. Lan et al. / J. Parallel Distrib. Comput. 70 (2010) 630–643 643

[38] K. Vaidyanathan, K. Gross, MSET performance optimization for detection of
software aging, in: Proc. of ISSRE, 2003.

[39] R. Vilalta, S. Ma, Predicting rare events in temporal domains, in: Proc. of
ICDM’02, 2002.

[40] C. Wang, F. Mueller, C. Engelmann, S. Scott, A job pause service under
LAM/MPI+BLCR for transparent fault tolerance, in: Proc. of IPDPS’07, 2007.

[41] G.Weiss,Miningwith rarity: a unifying framework, ACMSIGKDDExplorations
6 (1) (2004) 719.

[42] Y. Zhang, M. Squillante, A. Sivasubramaniam, R. Sahoo, Performance implica-
tions of failures in large-scale cluster scheduling, in: Proc. of Workshop on Job
Scheduling Strategies for Parallel Processing, 2004.

Zhiling Lan received the B.S. degree in Mathematics from
Beijing Normal University in 1992, the MS degree in
Applied Mathematics from Chinese Academy of Sciences
in 1995, and the Ph.D. degree in Computer Engineering
from Northwestern University in 2002. She is currently
an associate professor of computer science at the Illinois
Institute of Technology. Her research interests are in the
area of parallel and distributed systems, in particular,
fault tolerance, dynamic load balancing, and performance
analysis and modeling.

Jiexing Gu is currently a Master student at the Computer
Science Department of IIT. She received her B.E. degree
from Nanjing University, China. Her research interest
is parallel and distributed computing in general and is
currently working on fault tolerance.

Ziming Zheng received his B.S. and M.S. degrees in the
University of Electronic Science & Technology of China in
2003 and 2006. He is now a Ph.D. candidate of Computer
Science at Illinois Institute of Technology since 2007. His
research focuses on fault tolerance in large-scale computer
systems. He is also an IEEE student member.

Rajeev Thakur is a Computer Scientist in theMathematics
and Computer Science Division at Argonne National
Laboratory.He is also a Fellow in theComputation Institute
at the University of Chicago and an Adjunct Associate
Professor in the Department of Electrical Engineering
and Computer Science at Northwestern University. He
received a B.E. from University of Bombay, India, in
1990, an M.S. from Syracuse University in 1992, and a
Ph.D. from Syracuse University in 1995, all in Computer
Engineering. His research interests are in the area of high-
performance computing in general and particularly in

parallel programming models and message-passing and I/O libraries.

Susan Coghlan has worked on parallel and distributed
computers for 20 years. Throughout her career, she
has addressed a diverse range of challenges, including
developing scientific applications, such as a model of the
human brain and managing ultra-scale supercomputers
like ASCI Blue Mountain. In 2000, she co-founded a
research laboratory in Santa Fe. In recent years, Susan
was involved in the creation of the Argonne Leadership
Computing Facility (ALCF), where she was responsible for
the installation and operation of the 557-TF Blue Gene/ P
system. In her current role as Associate Division Director

for the ALCF, she is project manager for the facility’s next big system.


