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Abstract—In high performance computing (HPC), profiling
an application on heterogeneous systems is complex. There
are many profiling tools, each with their own characteristics:
supported architectures, setup and runtime constraints, output
data formats, user code requirements, etc. Managing complicated
profiling typically falls to the user as an expensive, rapidly-
compounding manual process. In this work, we present Mantis, a
unified interface to managing complex profiling on heterogeneous
systems. It not only provides a simple interface for automating
complex profiling via many tools on different devices, but also
offers a unified output data format for accelerating post-profiling
data analysis. Mantis is modular, transparent to user-code, and
easy to use. This paper identifies the use-cases and design
challenges for Mantis. An end-to-end example of Mantis in use
is also presented.

Index Terms—Measurement tools and techniques; Profiling,
trace collection, synthetic traces

I. INTRODUCTION

High-Performance Computing (HPC) is continuously ex-
panding in scope, and the technology supporting HPC has
grown to match [1]. To understand the field’s expanding capa-
bilities, profiling tools have grown alongside HPC, supporting
new hardware architectures, programming models, compilers,
and more [2], [3]. Such growth presents a familiar trade-off:
more capabilities in HPC means more capabilities in profiling
at the cost of increased workload and complexity for the user.

A. Complexity in Profiling

Profiling tools often support a limited number of architec-
tures and platforms. Intel VTune, for example, is a much-
used profiling tool which works only on Intel architectures [4].
Similarly, AMD’s pProf and NVIDIA’s Nsight Systems work
only on their so-named hardware/software architectures and
platforms [5], [6]. This creates challenges for users evaluating
application performance across different architectures since
each profiling tool has diverse and specific requirements.

In addition, many profiling tools impose requirements on
user code. For example, PAPI is a much-beloved tool in HPC,
but it requires direct integration into user code [7]. This means
the user must understand both what they wish to profile and
where in their code it would be useful to perform the profiling,
and neither is guaranteed to be trivial or directly relevant to
the user’s study.
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Finally, profiling tools offer an enormous variety of data
output formats. Digesting and combining results, especially
across tools and architectures, falls to post-processing. Con-
sidered in a vacuum, post-processing data is neither difficult
nor complex—but when compounded across every tool, ar-
chitecture, and measurement under study, post-processing can
become tedious to the user. Even when two profiling tools,
say Linux perf and Intel VTune, offer a CSV output format,
these CSVs do not share a schema and cannot necessarily be
merged into one file [8], [4]. This holds for more complex
formats, such as databases, and even more so for proprietary
or tool-specific formats like some used with NVIDIA profilers
(6], [9], [10].

Consequently, the user wishing to profile an HPC applica-
tion has to contend not just with their own code and field of
study, but also the requirements of their profiling tools and data
post-processing. In this work, we present Mantis to address the
above problem. More specifically, Mantis is built to automate
and simplify application profiling on the user’s behalf.

Figure 1 highlights the differences between profiling with
Mantis versus profiling with existing profiling tools. The left
column lists some of the manual work involved in existing
profiling. For every component in their system (CPUs, GPUs,
host-side system elements like memory, etc), users must select
appropriate profiling tools, configure the tool to collect the
desired measurements, run the tool with their code, and
manually reformat the data for later analysis—possibly many
times, depending on the quantity of variables under study. The
right column in this figure shows the simplification of profiling
via Mantis. Once a user installs Mantis and modifies a Mantis-
supplied configuration file, Mantis manages and runs the
profiling tools needed to gather the requested measurements.
In the end, the user is handed a single, unified data format
containing all requested measurements over all code variations,
experiment repetitions (iterations), profiling tools, and so on.
Mantis takes a tedious, manual process and turns it into a
simple, automatic one—and the user’s only obligation is to
modify a configuration file provided by Mantis.

B. Mantis Highlights

Mantis is developed to tackle the complexity of profiling
across many diverse systems, offering modularity and user-
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Fig. 1. Existing profiling versus profiling with Mantis

simplicity unmatched by the authors’ experiences with existing
tools. It has two design goals: (1) Mantis offers a simple user
interface for managing complex, multi-tool profiling across
diverse heterogeneous systems, and (2) Mantis handles post-
processing requirements to output in a a unified data format
(UDF).

These goals are achieved through a standard, robustly mod-
ular architecture which can be easily extended across many
hardware and software architectures. Furthermore, Mantis is
designed around an intentionally simple user interface—a
configuration file. If the user’s chosen system can run their
code and the necessary profiling tools, Mantis handles much

of the manual work on the behalf of the user.

A key design challenge is to balance supporting as many
profiling tools as possible (such as Nsight Systems, pProf, perf,
and many more) and post-processing each tool’s output into a
single, uniform format—all while keeping the user’s manual
processing and wall-clock runtime to a minimum.

C. Paper Outline

This paper outlines Mantis’s capabilities and its design
techniques. We discuss the architecture of Mantis in terms
of design techniques in Section II. We then present several
use cases in Section III. We discuss future work in Section
IV, followed by the conclusions.

II. MANTIS ARCHITECTURE

The design of Mantis contains three key parts: a modular
design to support different tools, and architectures, a unified
output data format, and a configuration file as the user
interface.

A. Mantis Requirements

Mantis requires Linux. It is implemented in Python and
requires Python 3.4+. It currently contains 1,600 lines of
code and is still growing. Mantis is open-source under the
GNU Lesser General Public License v2.1 [11]. The source
is available via GitHub [12]. Instructions for installation are
located in the GitHub repo.

Each profiling tool supported by Mantis requires support
on the host platform. If a user wishes to make use of
measurements collected via perf, for example, perf must be
both installed on that system and available to the user [13].
The command

mantis —monitor ——detect_tools

outputs a list of profiling tools available on the system and
supported by Mantis.

B. Profiling Tools Supported

Mantis currently supports profiling via Linux perf [8], the
/proc filesystem [14], and several NVIDIA profiling interfaces
[6], [9], [10]. Work to support similar profiling interfaces for
NVIDIA and Intel GPUs via AMD’s pProf suite and Intel’s
VTune is ongoing.

1) Linux Perf: Linux perf is a tool to measure performance
counter events and metrics according to the host CPU’s archi-
tecture [8]. When using Linux perf, a user may want to collect
many performance counters over the course of their code’s
runtime. Linux perf is intentionally low-overhead and very
suitable for precise profiling tasks—unless incorrectly used. It
is possible to request performance counters very frequently,
or to request very many of them; this can interfere with
performance, as only so many counters can be monitored at
a time without thrashing the registers holding those counters
[13].

Mantis handles these concerns for the user. First, Mantis
enforces a lower limit (50 milliseconds) on the requested
timescale (see the listing at 1). Next, Mantis ensures all



requested counters are measured, but if many counters are
requested, the perf collector may divide the requested data
across multiple runs, calling into the user’s code—and perf—
multiple times to reduce any risk of performance interference.

2) The /proc Filesystem: [proc is a virtual filesystem some-
times referred to as a ‘process information pseudo-filesystem’
[14]. When run on Linux, a process populates a “file” in
the OS’s /proc filesystem. This data contains runtime system
information and is widely used by system utilities, such as
sysctl, Ispci, and Ismod. While it is possible to make use
of this system manually, collecting meaningful data usually
entails writing scripts or modifying user code.

Mantis handles reading the /proc filesystem on behalf of
the user, offering information on the user’s code from the
OS’s perspective. Mantis can, for instance, collect the current
memory in use for a family of user processes, or track the
high-water mark of memory use over time. It can also collect
detailed information on how long each user process ran to get
detailed wall-clock times.

3) NVIDIA Profiling Tools: When profiling on an NVIDIA
GPU, there are many (many) profiling data options available.
Mantis tries to support as many of these as possible, working
around the many complexities involved when profiling on a
GPU.

First, Mantis handles using nvprof [9], the old profiling
system, as well as the Nsight Systems suite [6], the new pro-
filing system. Generally, the same data can be gathered from
either tool, but the specifics of usage vary wildly [15], [16].
Then, much data can be gathered from NVIDIA SMI, the more
general system-side tool for monitoring the physical stats of
an NVIDIA device. Which tool a user should use (and which
profiling options are thus available) depends on the NVIDIA
GPU generation—and Mantis handles this complexity.

Mantis offers the user its best guess on the genera-
tion of NVIDIA GPU in the system when generating a
sample configuration file. It will then populate the avail-
able profiling “modes” for that generation. Currently sup-
ported collection modes include power_time, utilization_time,
memory_basic_time, temperature_time, clocks_time, and
gpu_trace. The time-series measurements are collected once
per timescale (as set in the config file), while the GPU trace
option offers summary information on GPU API activities,
including CUDA calls, OpenCL calls, memory movement
commands, and many more. Each NVIDIA profiling mode
is documented in the wiki.

More collection modes for NVIDIA GPUs are under devel-
opment.

C. Profiling at Runtime and the Unified Output Format

Profiling tools, ranging from Linux perf to Intel’s VTune to
the NVIDIA Nsight Systems suite, tend to be highly config-
urable. From selecting the desired measurements, timescales,
and units to the desired output format, profiling tools tend to
look very different at runtime, and most have the ability to
output to different formats.

This flexibility is convenient when using an individual
profiling tool or two, but it rapidly grows into a daunting and
expensive time-sink when dealing with many measurements,
output schema, architectures, hardware devices, operating sys-
tems, and so on.

‘ Tool ‘ ‘ Commands and Outputs ‘
nsys profile ... nsys stats --format=csv ...

NVIDIA nsys [ —
e T e ] e
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NVIDIA smi
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cat /proc/.../measurementl/... awk
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cat /proc/.../measurement2/... awk ...

Fig. 2. Existing profiling and post-processing pipeline, where the bottom
boxes (in red) highlight the tedious manual processing involved in existing
profiling tools.
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Fig. 3. Different data formats/schema generated from existing profiling tools.

Figure 2 presents the manual processing and post-processing
pipeline involved in existing profiling tools. Note this pipeline
must be repeated for every experiment repetition, code change,
system change, and so on. Additionally, even if a user requests
one generic output format from all tools, like CSV files or SQL
databases, the schema are seldom able to be joined. Figure 3




presents example data formats/schema from different profiling
tools listed in Figure 2 [17] [18] [19] [20].

Mantis is designed to provide an automatic and unified inter-
face across different profiling tools. It handles the complexity
of running different profiling tools on the user’s behalf. As
long as the system can run the profiling tool, Mantis will
handle the details. Additionally, every profiling tool integrated
with Mantis has its output data post-processed into a unified
data format (UDF). The UDF can be output in a number of
filetypes, such as to a CSV file, JSON file, SQL database, or
a Python Pandas DataFrame [21]. The UDF holds regardless
of the system on which Mantis is used, so all data collected
by Mantis can be combined (or converted) using Mantis.

Any UDF file can be converted to another filetype using the
command

mantis —monitor ——convert_data=types filename

where fypes is a comma-separated list of supported types to
convert to (JSON, CSV, pkl, SQL) and filename is the UDF
file to convert from. So, for example,

mantis —monitor ——convert_data=json,csv filename.sql

will output the data from filename.sql as a JSON and CSV
file. Mantis can also merge any UDF files using the command

mantis —monitor ——merge_data=filenames types output—filename

where filenames is a comma-separated list of all files to
combine, fypes is a comma-separated list of supported types
to save the file as, and output-filename is the name to use for
the saved file(s).

A sample UDF CSV file is shown in Figure 6, and full
details of the UDF schema can be found in the Mantis Wiki.

D. User Interface

1) Running Mantis: Installing the mantis_monitor Python
package (instructions on the GitHub repository README)
provides an executable named mantis-monitor. The command

mantis —monitor config.yaml

runs Mantis using the configuration specified in config.yaml.
Advanced users may also choose to use Mantis as a package.
2) The Config File: The user’s primary interaction with
Mantis occurs in the configuration file. See code listing 1 for
an example.

Listing 1. Example Config File

1 benchmarks:

2 CustomThingl :

3 cmd: ./run/user/code_A
4 name: CustomUserCodel
5 CustomThing?2 :

6 cmd: ./run/user/code_B ——options
7 name: CustomUserCode?2
8

9 collection_modes:

10 perf:

11 perf_counters:

12 — instructions

13 — major—faults

14 — branch—-instructions

15 — branch-misses

16 — bus-cycles

17 — cache—-misses

18 — cache-references
19 — cpu-cycles

20 — context—switches
21 — cpu—migrations
22 — major—faults

23 — minor—faults

24 nvidia:

25 modes :

26 — power_time

27 — utilization_time
28 — memory_basic_time
29 — temperature_time
30 — clocks_time

31 — gpu_trace

32 gen:

33 — sm_80

34 memory :

35 modes :

36 — high_watermark
37 — memory_over_time
38 — api_trace

39 — gpu_trace

40 — power_over_time
41

42 formatter_modes:

43 - CSV

44 — SQL

45

46 time_count: 1000
47 iterations: 2
48 test_name: sample_config

This configuration file contains the following:

o Commands to run two different invocations of user code
(lines 1-7)

¢ Options for running perf, NVIDIA, and host-side memory
profilers (lines 9-40)

— A list of perf counters to measure (lines 10-23,
verified against the system’s available counters)

— A list of collection modes to run on the NVIDIA
GPU (lines 24-33)

— A list of collection modes for host-side memory
measurements (lines 34-40)

o Options for formatting the output (lines 42-44)

o Options for measurement frequency (in ms, line 46) and
number of overall experiment repetitions (iterations, line
47) to run

o The test name to attach to the output data (line 48)

This is the extent of the user’s interaction with Mantis. As
long as the commands entered for the benchmarks effectively
run the user’s code, Mantis will run the requested profiling
tools and collection modes around the user’s code, gather all
data, repeat over the requested number of iterations, and output
to the requested data format.

To simplify determining what tools and measurements are
available, Mantis can provide a user configuration file popu-
lated with all measurements possible on that system. This is
done via the command



mantis —monitor ——generate_config

On a system with many available profiling tools, the resulting
configuration file will have many measurements the user
should prune to their requirements.

Documentation of all Mantis configuration options is avail-
able on the Mantis GitHub wiki.

E. Modular Design

In order to provide the flexibility required for profiling
on many architectures and platforms, and in order to ensure
convenience for the user and correctness of the unified data
format, the architecture of Mantis is robustly modular.

Figure 4 shows the four main components of Mantis, while
Figure 5 provides a key for the symbols used in the former.
The design leverages standard object-oriented interfaces to
a simple central controller. This allows for separation of
concerns and keeps necessary component entanglements tidy.
Each component will be discussed briefly with an emphasis
on the challenge it overcomes.
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Fig. 4. Mantis classes and relationships

This architecture is extensible; a user interested in imple-
menting a custom Benchmark, Collector, or Formatter need

UML Class Diagram: Relationship Key

—————————————— Realization: B is an interface, and Aimplements B
Association: A has access to B (but not B to A)
Dependent Use: A uses some part(s) of B

Aggregation: B consists of (possibly many) A

Fig. 5. Relationship types

only import the mantis_monitor package, define a class inher-
iting from the relevant interface, and invoke mantis-monitor.
This is completely optional—Mantis tries to anticipate user
needs with its built-in classes, and ideally configuration files
will almost always be sufficient—but it lends Mantis a fully
general power. Several examples are given in the GitHub repo,
and step-by-step instructions are available on the wiki.

1) Configuration Module: The Configuration module is one
of the least complex but most important components in Mantis.
The user’s config file is ingested and parsed into options
specifying how to run the user’s code, what profiling data
they would like, and their preferred output format(s). While
this role is vital, the functionality is intentionally simple.

First, the Configuration class can generate a sample config
file for the user containing all appropriate profiling tool options
for their system. This is useful because tools offer different
options on different systems. For example, Linux perf may
not offer the same event counters on different CPUs [8].
Alternatively, the profiling modes available on an NVIDIA
A100 differ from those offered for a V100, since the supported
profiling tools are different [15].

Second, when Mantis is invoked, the Configuration class
parses the user’s config file into a map of selected options,
which are then used to invoke all further module components.

2) Benchmark Module: Another intentionally simple mod-
ule in Mantis is the Benchmark module. Here, using the
options provided in the config file, instructions for running
a user’s code are stored for use by Mantis during profiling.
This can happen in one of two ways.

The simplest and by far most common Benchmark class
implementation is a generic form. In the config file, the user
simply provides a command line to run and some name to give
the experiment. As many experiments and different command
lines as needed can be passed into the config file, and Mantis
will run each to profile for the requested data. An example of
this can be seen under the “benchmarks:” heading in the code
listing at listing 1.

In some cases, however, this may not cover all user needs.
For example, it may be necessary to perform major setup/tear-
down actions between each test run, like recompiling under
a different compiler or cleaning up intermediate files. To
accommodate this, special attention has been given to the
API of the Benchmark interface class. Users who choose to
implement a custom Benchmark have access to fine-grained,
complex control, including hooks before and after each it-



eration and each benchmark, utility functions dealing with
common patterns, and the ability to define and handle custom
config file options. This API is documented on the wiki.

Implementing a custom Benchmark class is recommended
only for very complex user code invocation. In general, users
need only provide to their config file the command line they
use to run their code, and Mantis will do the rest.

3) Formatter Module: The final simple module in Mantis
is the Formatter interface. Since all data is stored in the
UDF within Mantis, Formatter classes are simply instructions
for converting the internal form of UDF (currently a Python
Pandas DataFrame) into the desired file format and vice-versa.
Currently, supported Formatters include CSV files, JSON
files, SQL databases, and Python pickles [22] of the Pandas
DataFrame.

While Formatter implementations are not equivalent (the
SQL database looks very different from the CSV file), all use
the UDF. Mantis is perfectly capable of ingesting multiple
output files from multiple runs of Mantis, regardless of the
Formatter type(s) used to generate the files, and combining
them into a single internal UDF to output to the user’s
desired new format. This is especially useful when profiling
across many heterogeneous systems or when combining results
from many invocations of Mantis. The wiki contains much
information on how to call Mantis to combine datasets in this
way.

In general, the functionality of the Formatter implementa-
tions simply allow the user to select their output filetype and
to combine datasets when desired.

4) Collector Module: The Collector implementations are
the most functionally complex Mantis components by far.

In Mantis, any Collector class implementation functions as
a profiling tool. This generally takes one of two forms: (1)
Calling an external profiling tool with appropriate arguments
and passing this tool the user’s code, or (2) starting and
tracking a profiling tool in the background, then initiating the
user’s code, then stopping the profiling tool’s process. In either
case, the details of invoking user code are delegated to the
Benchmark module(s) in use, and all invocations of profiling
tools happen from within Python.

Collectors currently exist to monitor the /proc filesystem
[14], Linux perf [8], and several NVIDIA tools [6], [9], [10].
Depending on the user’s config file options, these tools are
invoked in different ways and with different options to gather
the requested data. This data is then converted to the internal
Mantis UDF. The details of this vary enormously between
profiling tools and are often subtly (or blatantly) complex.

Other complexities, outside the details of the profiling tools
supported by each Collector class, are handled implicitly by
the Collector interface. For example, all data is ingested at
the Collector level and transformed to the internal UDF for
later output. The Collector classes also attempt to overlap their
measurements as much as possible to avoid re-running user
code and wasting resource time. Collector implementations are
the granularity at which Mantis experiments can be paused and
re-engaged, so if a user’s invocation of Mantis, say, overruns

a job’s scheduled time, the user can re-invoke Mantis on the
system in a new job, and Mantis will pick back up where
the previous Collectors left off to finish the user’s requested
measurements.

Implementing a Collector is still kept as simple as possible,
should a user want to support a new profiling tool not yet
offered by the Mantis suite. This is done through the modular
design of Mantis and through the use of many helper utilities.
Very detailed information on this can be found on the wiki.
In general, users need not be concerned with new profiling
tools and can just focus on using Mantis’s rich set of current
options to understand their code.

The Collector modules are a powerful, complex, and ever-
growing vitality to Mantis. These Collectors are the backbone
of Mantis’s purpose—to support, simply, profiling user code
on heterogeneous systems without backbreaking user effort in
combining, tracking, and processing their profiling data.

IIT. MANTIS USE-CASE

To prove capability, Mantis was studied on a system across
three microbenchmarks and multiple compilers as well as
through one application study.

A. Experiment Platform

The system used was ThetaGPU at Argonne National
Laboratory [23]. One node was used at a time. ThetaGPU
contains 24 NVIDIA DGX A100 nodes. Each DGX A100
node comprises eight NVIDIA A100 Tensor Core GPUs and
two AMD Rome 64 core CPUs. The nodes used for this study
included 320 GB of DDR4 host-side memory as well as 320
GB GPU memory, four 3.84 TB Gen4 NVME drives, and
the network supports up to per-node 25 gigabits per second
in bandwidth. The dedicated compute fabric in ThetaGPU
comprises 20 Mellanox QM9700 HDR200 40-port switches
wired in a fat-tree topology.

B. Microbenchmarks

Two microbenchmarks, XSBench [24] and RSBench [25],
were studied to show Mantis’s capabilities on a heterogeneous
system employing multiple programming models (CPU-only,
offloading to a GPU, different compilers, etc). Both run a
core kernel to a Monte-Carlo neutron transport algorithm.
XSBench uses the standard kernel, while RSBench employs
a technique to use an order of magnitude less memory but
requires expansion for computation.

XSBench and RSBench were profiled using several col-
lection modes including a selection of perf counters and the
NVIDIA power over time mode. Additionally, several pro-
gramming models for XSBench and RSBench were examined,
including the CUDA, OpenMP threading (CPU-only), and
OpenMP offload (GPU-offload) versions.

Figure 6 shows a sample of the resulting UDF output.
Each row contains data from a single experimental run. The
“collector_name” column gives the unique name of the Col-
lector used during that benchmark run. “iteration”, “timescale
(ms)”, “units”, and “measurements” are metadata columns



benchmark_name _name i i i units measurements
count per [linstructions’,
timescale "L1-dcache-load-misse
XSBench_cuda PerfCollector 0 0 1000 milliseconds  s',...]
XSBench_cuda NvidiaPowerTime 0 1000 time, W ['power.draw']
count per ['instructions',
timescale "L1-dcache-load-misse
XSBench_openmp-threading PerfCollector 0 0 1000 milliseconds  s',...]
count per [linstructions',
timescale "L1-dcache-load-misse
XSBench_openmp-offload PerfCollector 0 0 1000 milliseconds  s',...]
XSBench_openmp-offload NvidiaPowerTime 0 1000 time, W ['power.draw’]
count per [linstructions’,
timescale "L1-dcache-load-misse
RSBench_cuda PerfCollector 0 0O 1000 milliseconds  s',...]
RSBench_cuda NvidiaPowerTime 0 1000 time, W ['power.draw’]

instructions L1-dcache-load-misses ... gpu_0_power.draw

[(1.00819863, 1640576043.0),
(2.013520331, [(1.00819863, 36339614.0),
.

5635473743.0), ...] null

[('2022/06/24 09:15:45.202',
74.57), ('2022/06/24 09:15:46.236',

null null 70.68),...]
[(1.008215711,

2964467925.0), [(1.008215711, 73657798.0),

(2.013634666, (2.013634666,

99262274025.0),...] 119936937.0),...] null

[(1.008092552, 741121793.0), [(1.008092552, 16514271.0),
(2.013521884, 3572111864.0), (2.013521884,

] 81200111.0),...]

[(2022/06/24 09:25:22.239',
71.54), ('2022/06/24 09:25:23.265',

null null 70.95),...]

[(1.008158606,

1495457249.0), [(1.008158606, 28291916.0),

(2.013062106, (2.013062106,

6548343980.0),...] 7649611.0),...] null
[(2022/06/24 14:19:21.109',
73.62), ('2022/06/24 14:19:22.134',

null null 239.39)]

Fig. 6. The unified data format from Mantis, which shows a subset of microbenchmark results.
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Fig. 7. Subset of microbenchmark results showing ease of analysis when
profiling on heterogeneous systems

which describe the data in the following cells. The remaining
columns each correspond to one of the entries in the “mea-
surements” cell of the same row, and contain the value of that
measurement as collected during that benchmark run. Many
values collected by Mantis take the form of a (time, value)
array of tuples. Other values take the form (descriptor, value)
for non-timeseries measurements, such as the memory high
watermark value for a benchmark run. See the wiki for details
on Formatter output options.

Figure 7 then shows this data plotted against time. Note
that this is only a small subset of the data collected overall
by Mantis, even for this simple test. (See the wiki for the
full dataset collected during this example.) As we can see
from this sample of measurements, Mantis easily enables
direct comparison of measurements across a heterogeneous
architecture.

C. Application Case-Study

An application, PythonFOAM [26], was also studied.
PythonFOAM is a computational fluid dynamics toolbox based
on the popular OpenFOAM [27]; it enhances OpenFOAM
(which is written in C++) with Python in order to add
powerful, flexible in sifu data analysis capabilities, including
machine learning [28]. Its combination of distinct compu-
tational workloads—and its capacity for offloading its data
analysis to dedicated hardware—make it, likewise, a useful
showcase for heterogeneous profiling under Mantis.

In particular, the AEFoam example solver, which trains
a TensorFlow [29] autoencoder to generate low-dimensional
representations of the simulation state, was profiled. Profiling
included selected CPU perf counters, GPU trace data, and
GPU utilization and power consumption over time. AEFoam
was run under GPU-enabled TensorFlow both with the GPU
visible and without (in pure-CPU mode). This configuration,
in addition to the setup and teardown of the OpenFOAM



case directory, was handled cleanly and replicably from within
Mantis.
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Fig. 8. Subset of AEFoam results using Mantis

Figure 8 shows a very simple example of an identifiable pro-
gram inefficiency. Note the phases between CPU instructions
per second and GPU cycles per second. Both measurements
show periods of low activity, and these periods often overlap,
suggesting a more optimal order or arrangement of tasks
could be achieved. (In fact, this version of AEFoam alter-
nates between CFD simulation on the CPU and autoencoder
training on the GPU, when it could parallelize the tasks by
offloading and training the autoencoder on the previous batch
of snapshots while collecting the current one.) This is simply
an example; more sophisticated analysis of the data could yield
more profitable insights, including into PythonFOAM’s design
objective—tuning the tradeoff between computation and I/O.

IV. FUTURE WORK

Mantis is in active development and use. Current tasks
include (but are not limited to) implementing AMD GPU
profiling modes, integrating with Intel’s VTune for Intel GPU
profiling, expanding to operating systems other than Linux,
and deploying and testing Mantis on additional public systems.
In addition, investigation into collector parallelizability is on-
going. Finally, utility functions and user-friendly features (such
as progress display and suspend/resume) are being added.

V. CONCLUSIONS

Mantis is an interface developed to simplify profiling user
code on heterogeneous platforms. It provides an unified in-
terface between users and various profiling tools deployed on
heterogeneous CPU-GPU systems. The goals of Mantis are
simple: (1) to automate performance and power profiling on
heterogeneous systems, and (2) to simplify post-profiling anal-
ysis via a unified data output. Mantis achieves this, overcoming
many challenges in design and implementation, using a highly-
modular and easily-extended architecture. The only user inter-
actions required involve modification of a configuration file to
inform Mantis on what code to run and which metrics to profile
for. Mantis does the rest—including repeating measurements
for statistical viability, handling the complexities of running
different profiling tools (such as NVIDIA’s Nsight Systems
or Linux perf), and postprocessing the resulting data into a
unified data format. Mantis is under constant development to
better support its goals and is licensed open-source at the given
GitHub repo.
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