
1

Enhancing Application Robustness through Adaptive Fault Tolerance*

Zhiling Lan, Yawei Li, Ziming Zheng, and Prashasta Gujrati
Illinois Institute of Technology, Department of Computer Science

{lan,liyawei,zzheng11,gujrpra}@iit.edu

* This work is supported in part by NSF CNS-0720549.

Abstract

 As the scale of high performance computing (HPC)
continues to grow, application fault resilience becomes
crucial. To address this problem, we are working on
the design of an adaptive fault tolerance system for
HPC applications. It aims to enable parallel
applications to avoid anticipated failures via
preventive migration, and in the case of unforeseeable
failures, to minimize their impact through selective
checkpointing. Both prior and ongoing work are
summarized in this paper.

1. Introduction

Over the past decades, the insatiable demand for
more computational power in science and engineering
has driven the development of ever-growing
supercomputers. High performance computing (HPC)
systems with hundreds to thousands of processors,
ranging from tightly-coupled proprietary systems to
loosely-coupled commodity-based clusters, are being
designed and deployed [1]. For systems of such scales,
reliability becomes a critical concern as the system-
wide MTBF (mean-time-between-failure) decreases
dramatically with the increasing count of components.
Studies have shown that MTBFs for teraflop- and
petaflop-scale systems are only on the order of 10-100
hours, even for the systems based on ultra-reliable
components [2,3].

To accurately model realistic problems, parallel
applications are designed to span across a substantial
number of processors for days or weeks until
completion. Among various parallel paradigms, MPI
(Message passing interface) has become the de facto
standard for parallel processing in HPC. Unfortunately,
the current state is such that the failure of a single
process usually aborts the entire MPI application. As a
consequence, large applications, in particular tightly-
coupled parallel applications, find it difficult to make
any forward progress because of failures. This

situation is likely to deteriorate as systems get bigger
and parallel applications become larger.

Checkpointing is the conventional method for fault
tolerance. In essence, it is reactive by periodically
saving a snapshot of the application and using it for
restarting the execution in case of failures [4,5]. When
one of the application processes experiences a failure,
all the processes, including non-faulty processes, have
to roll back to the previously saved state prior to the
failure. Thus, significant performance loss can be
incurred due to the work loss and failure recovery.
Moreover, with the growing gap between processor
speed and data access speed, frequent checkpointing
can further increase the disparity between sustained
performance and peak performance in HPC. Unlike
checkpointing, the newly emerged proactive approach
(e.g. process migration) takes preventive actions before
failures, thereby preventing failure experiencing and
avoiding rollbacks [6,7,8]. Nevertheless, it requires
accurate fault prediction, which is hardly achievable in
practice. As a result, the proactive approach alone is
unlikely sufficient to provide a reliable solution for
fault management in HPC.

In this report, we present our on-going research
project on addressing the above problem by exploring
an adaptive approach. Proactive techniques are
dynamically integrated with reactive methods at
runtime, where proactive actions enable applications to
avoid anticipated faults if possible and reactive actions
intend to minimize the impact of unforeseeable
failures. By intelligently coordinating proactive and
reactive actions, the proposed system aims at
improving fault resilience of parallel applications.
Figure 1 shows the proposed adaptive fault
management system, along with its major components.
Specifically, the contributions of the project include:

1. Fault forecasting to improve fault prediction and

localization in large-scale systems by investigating
ensemble learning and pattern recognition
techniques [9,10,23].

2

2. Adaptation manager to dynamically select a best-
fit fault tolerance action in response to fault
forecasting [11,12].

3. Integrated runtime support to enable cost-
effective integration and enhancement of fault
tolerance techniques according to adaptation
manager [13,14].

Figure 1. Overview of Adaptive Fault Tolerance

2. Fault Forecasting

Despite extensive research on various fault
tolerance techniques, little work has been done on fault
forecasting, especially in large-scale systems such as
those used in HPC. The goal of fault forecasting is to
automatically analyze the data collected by various
monitoring tools and then feed the learned information
to fault tolerance tools for fast failure recovery and/or
timely failure avoidance [9,15-17]. While it is clearly
desirable for efficient fault management, it is also
challenging. Due to the massive quantities of
information collected from a large number of
components, fault patterns and root causes are often
buried like needles in a haystack.

To address the above challenge, we have adopted
two strategies. One is to integrate multiple data sources
(including RAS logs, performance data, sensor
reading, etc.) and the other is to combine various
predictive methods (including statistical learning, data
mining, pattern recognition, etc.). By combining and
cross-correlating data from different sources, we aim at
capturing a variety of fault patterns and interactions in
the system, even when these patterns are dynamically
changing with time. By combining and coordinating
multiple predictive methods, we intend to boost
prediction coverage and accuracy. Our current work
has focused on answering two questions. The first is
the “when” question, meaning to predict when failures
are likely to occur. The second is the “where”
question, meaning to identify which part of the system
that failures are likely to occur.

To answer the “when” question, we have designed
an ensemble learning based prediction mechanism
(Figure 2). Given that raw data collected by different
monitoring tools are often in different formats and
contain repeated or redundant entries, during the event
preprocessing phase, raw data is cleaned and
categorized. This step is intended to get a unique and
standardized set of events. During the base prediction
phase, a number of predictive methods are applied on
the preprocessed data to identify fault patterns and
characteristics. For example, statistical based methods
are applied to capture probabilistic characteristics
among failure events, and association rules are used to
discover causal correlation between different events.
During the meta-learning prediction phase, ensemble
learning techniques are explored to boost prediction
accuracy by combining the strengths of different
predictive methods [19].

Figure 2. Ensemble Learning Based Prediction

Due to the lack of information provided in the RAS

log, our ensemble learning based prediction can only
detect when the system behaves abnormally, without
identifying the root cause (i.e. the components that
cause the problem). To answer the “where” question,
we have developed a PCA (principal component
analysis) based localization method (Figure 3). PCA is
a well-known pattern recognition technique, which has
been successfully used in many fields for reducing data
dimensionality [18]. Our localization method also
consists of three steps: (1) feature collection to
assemble a feature space for the system (generally has
a high dimensionality), e.g. the matrix X in the figure;
(2) feature extraction to obtain the most significant
features out of the original feature space for efficient
data analysis by applying the principal component
analysis (PCA) algorithm, e.g. the matrix Y in the
figure; and (3) outlier detection to quickly identify the
nodes that are “far away” from the majority by using
the cell-based detection algorithm [20].

3

Figure 3. PCA based Anomaly Localization

 We have assessed our methods by means of trace
studies and fault injection. Our case study with 15-
month RAS logs from SDSC and ANL has shown that
the ensemble learning based prediction mechanism is
able to capture more than 65% of failures, with the
false alarm rate less than 35%. In other words, both
Precision and Recall are higher than 65%. Here,
Precision is defined as Tp / (Tp + Fp), and Recall is
defined as Tp / (Tp + Fn). Tp is number of correct
predictions (i.e. true positives), and Fp is number of
false alarms (i.e. false positives), and Fn is number of
incorrect non-failure predictions (i.e. false negatives).
A good prediction engine should achieve a high value
(closer to 1.0) for both metrics. Under a variety of
fault modes, the proposed localization method can
discover every fault injected, except in one case where
Recall is lower than 1.0. Besides, Precision is always
above 0.8, meaning that less than 20% of identified
root causes are false alarms.

3. Adaptation Manager

 Fault forecasting is only part of the story, and the
next major challenge facing the design of adaptive
fault tolerance is how to select an appropriate action
at runtime. There are several requirements in the
design of such an adaptation manager. First, it must
consider a range of factors that may impact application
performance. These include not only the available
spare nodes, but also costs and benefits of different
fault tolerance actions. Second, given that a failure
predictor is subjected to false negatives and false
positives, it must take account of both errors during its
decision making process. Lastly, it must make a timely
decision without causing noticeable overhead on
application performance.
 Toward this end, we have designed an adaptation
manager called FT-Pro as shown in Figure 4. It
dynamically selects a best-fit action from three options.
(1) SKIP, where the fault tolerant request is ignored.
This action is taken to remove unnecessary actions,

when failure impact is trivial. (2) CHECKPOINT,
where the application takes a checkpoint. This action is
to reduce application work loss that might be caused
by unforeseeable failures. (3) MIGRATION, where the
processes on suspicious nodes (i.e. the nodes predicted
to be failure-prone in the near future) are transferred to
healthy nodes. This action is to avoid an upcoming
failure.

Figure 4. Adaptation Manager

 The adaptation manager performs runtime selection
based on quantitative performance modeling of
applications. More specifically, it estimates the
expected application execution time Enext during the
next interval and selects the action that minimizes Enext:
(1) MIGRATION:

(2) () (1)

1 (1)

0

f h
SW

next r pm appl pm appl

N N f h
W S

appl f h
W S

E I C C f I C f

precision N N
where f

N N

−

= + + ⋅ + + ⋅ −

⎧ − − >⎪= ⎨
≤⎪⎩

(2) CHECKPOINT:
(2) () (1)

 1 (1)
f

W

next r ckp appl ckp appl

N
appl

E I C C f I C f

where f precision

= + + ⋅ + + ⋅ −

= − −

[]
(3) SKIP:

(2) * *(1)

 1 (1)
next r current last appl appl

appl

E C l l I f I f

where f precision

= + + − ⋅ + −

= − −

Where I is the adaptation interval, Cckp is the
checkpointing overhead, Cpm is the migration
overhead, Cr is the mean recovery cost, fappl denotes
the failure probability of the application during the
next interval, lcurrent and llast are the index of the current
or the last checkpoint location, f

WN and h
SN represent

the number of failed computation nodes and healthy
spare nodes allocated to the application.
 The manager also takes account of prediction
recall. Given the possibility of unpredictable failures,
the performance loss could be significant when a
number of SKIP actions have been taken continuously
before an unpredicted failure. Hence, when the number
of consecutive SKIP actions reaches a threshold (i.e.

/((1))MTBF I recall⋅ −), rather than blindly relying on
the prediction, the manager enforces a checkpoint.

4. Integrated Runtime Support

 We have implemented FT-Pro in the open-source

4

checkpointing package MPICH-VCL 0.76 [21]. Note
that FT-Pro is independent of the underlying
checkpointing tool, and can be easily implemented
with other checkpointing tools. Figure 5 illustrates our
implementation: (1) FT-Pro daemons that are
collocated with application processes on computation
nodes, (2) the dispatcher that is responsible for
managing computing resources, (3) the adaptation
manager which is in charge of runtime decision
making, and (4) the CKP server to perform
coordinated checkpoints. Process migration may be
done through live migration [8,22] or based on the
simple stop-and-restart approach.

Figure 5. Implementation with MPICH-V

We have evaluated the prototype system with a

number of real applications (cosmology application
ENZO, molecule dynamics application GROMACS,
and the parallel benchmark NPB) under a wide range
of settings [24-26]. Preliminary study has indicated
that it outperforms periodic checkpointing in terms of
reducing application completion times and improving
resource utilization, by up to 43% (Figure 6). It does
better than periodic checkpointing, even when failure
prediction has a 70% false positive and false negative
rate (Figure 7). Additionally, the overhead caused by
runtime adaptation is less than 3% [12].

5. Summary

 This paper presents our on-going project on the
design and development of adaptive fault tolerance for
HPC applications. We have conducted initial
implementation and experimental evaluation of the
prototype system under a wide range of computing
settings. Our study shows very promising results.

 Our on-going efforts include the investigation of
advanced failure diagnosis and prognosis techniques,
the development of a better integration and
coordination support, and extensive evaluation with
real applications on production systems.

Figure 6. Impact of Computation Scales, where the

number of spare nodes is set to 1.

Figure 7. Impact of prediction accuracies.

5

References

[1] The top500 supercomputer site. [Online]. Available:
http://www.top500.org
[2] D. Reed, C. Lu, and C. Mendes, “Big systems and big
reliability challenges,” in Proc. of Parallel Computing,
Germany, 2003.
[3] B. Schroeder and G. Gibson, “A large scale study of
failures in high performance-computing systems,” in Proc. of
DSN ’06, 2006.
[4] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A
survey of rollback recovery protocols in message-passing
systems,” ACM Computing Surveys, vol. 34(3), 2002.
[5] E. Elnozahy and J. Plank, “Checkpointing for peta-scale
systems: A look into the future of practical rollback-
recovery,” IEEE Transactions on Dependable and Secure
Computing, vol. 1(2), 2004.
[6] V. Castelli, R. Harper, P. Heldelberger, S. Hunter, K.
Trivedi, K. Vaidyanathan, and W. Zeggert, “Proactive
management of software aging,” IBM Journal of Research
and Development, vol. 45(2), 2001.
[7] S. Chakravorty, C. Mendes, and L. Kale, “Proactive fault
tolerance in large systems,” in Proc. of HPCRI Workshop,
2005.
[8] A. Nagarajan and F. Mueller and C. Engelmann and S.
Scott, “Proactive Fault Tolerance for HPC with Xen
Virtualization”, in Proc. of the International Conference on
Supercomputing, 2007.
[9] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A
meta-learning failure predictor for blue gene/l systems,” in
Proc. of International Conference on Parallel Processing,
2007.
[10] Z. Lan, Y. Li, P. Gujrati, Z. Zheng, R. Thakur, and J.
White, “A fault diagnosis and prognosis service for TeraGrid
clusters”, Proc. of The 2nd TeraGrid Conference, WI, 2007.
[11] Y. Li and Z. Lan, “Exploit failure prediction for
adaptive fault tolerance in cluster computing”, Proc. of
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid06), Singapore, 2006.
[12] Z. Lan and Y. Li, “Adaptive fault management of
parallel applications for high performance computing”, to
appear in IEEE Trans. on Computers, 2008.
[13] Y. Li and Z. Lan, “Using adaptive fault tolerance to
improve application robustness on the Teragrid”, Proc. of
The 2nd TeraGrid Conference, WI, 2007.
[14] Y. Li and Z. Lan, “A fast recovery mechanism for
checkpointing in networked environments”, SCS Tech
Report, Illinois Institute of Technology, 2007.
[15] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, and
S. Ma, “Critical event prediction for proactive management
in large-scale computer clusters,” in Proc. of SIGKDD’03,
2003.
[16] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and
R. Sahoo, “Blue Gene/L failure analysis and prediction
models,” in Proc. of DSN’06, 2006.
 [17] A. Oliner and J. Stearley, “What supercomputers say: A
study of five system logs,” in Proc. of the International
Conference on Dependable Systems and Networks (DSN),
2007.

[18] R. Duda, P. Hart, and D. Stork. Pattern Classification.
Wiley Interscience, New York, NY, 2001. 2nd edition.
[19] R. Polikar, “Ensemble based systems in decision
making”, IEEE Circuits and Systems Magazine, vol. 6(3),
2006.
[20] Edwin M. Knorr, Raymond T. Ng, Vladimir Tucakov,
“Distance-based outliers: algorithms and applications”, The
VLDB Journal,(2000) 8: 237-253.
[21] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier,
and F. Cappello, “Mpich-v: A multiprotocol automatic fault
tolerant mpi,” International Journal of High Performance
Computing and Applications, 2005.
[22] C. Du and X. Sun, “Mpi-mitten: Enabling migration
technology in mpi,” in Proc. of CCGrid’06, 2006.
[23] Z. Zheng, Y. Li and Z. Lan, “Anomaly Localization in
Large-scale Clusters”, Proc. of IEEE Cluster’07, 2007.
[24] G. Bryan, T. Abel, and M. Norman, “Achieving extreme
resolution in numerical cosmology using adaptive mesh
refinement: Resolving primordial star formulation,” in Proc.
of SC’01, 2001.
[25] H. Berendsen, D. V. der Spoel, and R. van Drunen,
“Gromacs: A message-passing parallel molecular dynamics
implementation,” Comp. Phys. Comm., vol. 91:43-56, 1995.
[26] Nasa nas parallel benchmarks. [Online]. Available:
http://www.nas.nasa.gov/Resources/Software/npb.html

