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Abstract 
 
      As the scale of high performance computing (HPC) 
continues to grow, application fault resilience becomes 
crucial. To address this problem, we are working on 
the design of an adaptive fault tolerance system for 
HPC applications.  It aims to enable parallel 
applications to avoid anticipated failures via 
preventive migration, and in the case of unforeseeable 
failures, to minimize their impact through selective 
checkpointing. Both prior and ongoing work are 
summarized in this paper. 
 
 
1. Introduction 
 

Over the past decades, the insatiable demand for 
more computational power in science and engineering 
has driven the development of ever-growing 
supercomputers.  High performance computing (HPC) 
systems with hundreds to thousands of processors, 
ranging from tightly-coupled proprietary systems to 
loosely-coupled commodity-based clusters, are being 
designed and deployed [1]. For systems of such scales, 
reliability becomes a critical concern as the system-
wide MTBF (mean-time-between-failure) decreases 
dramatically with the increasing count of components. 
Studies have shown that MTBFs for teraflop- and 
petaflop-scale systems are only on the order of 10-100 
hours, even for the systems based on ultra-reliable 
components [2,3].  

To accurately model realistic problems, parallel 
applications are designed to span across a substantial 
number of processors for days or weeks until 
completion. Among various parallel paradigms, MPI 
(Message passing interface) has become the de facto 
standard for parallel processing in HPC. Unfortunately, 
the current state is such that the failure of a single 
process usually aborts the entire MPI application. As a 
consequence, large applications, in particular tightly-
coupled parallel applications, find it difficult to make 
any forward progress because of failures. This 

situation is likely to deteriorate as systems get bigger 
and parallel applications become larger. 

Checkpointing is the conventional method for fault 
tolerance. In essence, it is reactive by periodically 
saving a snapshot of the application and using it for 
restarting the execution in case of failures [4,5]. When 
one of the application processes experiences a failure, 
all the processes, including non-faulty processes, have 
to roll back to the previously saved state prior to the 
failure. Thus, significant performance loss can be 
incurred due to the work loss and failure recovery. 
Moreover, with the growing gap between processor 
speed and data access speed, frequent checkpointing 
can further increase the disparity between sustained 
performance and peak performance in HPC.  Unlike 
checkpointing, the newly emerged proactive approach 
(e.g. process migration) takes preventive actions before 
failures, thereby preventing failure experiencing and 
avoiding rollbacks [6,7,8]. Nevertheless, it requires 
accurate fault prediction, which is hardly achievable in 
practice. As a result, the proactive approach alone is 
unlikely sufficient to provide a reliable solution for 
fault management in HPC. 

In this report, we present our on-going research 
project on addressing the above problem by exploring 
an adaptive approach. Proactive techniques are 
dynamically integrated with reactive methods at 
runtime, where proactive actions enable applications to 
avoid anticipated faults if possible and reactive actions 
intend to minimize the impact of unforeseeable 
failures. By intelligently coordinating proactive and 
reactive actions, the proposed system aims at 
improving fault resilience of parallel applications. 
Figure 1 shows the proposed adaptive fault 
management system, along with its major components.  
Specifically, the contributions of the project include: 

 
1. Fault forecasting to improve fault prediction and 

localization in large-scale systems by investigating 
ensemble learning and pattern recognition 
techniques [9,10,23]. 



2 
 

2. Adaptation manager to dynamically select a best-
fit fault tolerance action in response to fault 
forecasting [11,12]. 

3. Integrated runtime support to enable cost-
effective integration and enhancement of fault 
tolerance techniques according to adaptation 
manager [13,14]. 
 

 
Figure 1. Overview of Adaptive Fault Tolerance 
 

 
2. Fault Forecasting 
 

Despite extensive research on various fault 
tolerance techniques, little work has been done on fault 
forecasting, especially in large-scale systems such as 
those used in HPC. The goal of fault forecasting is to 
automatically analyze the data collected by various 
monitoring tools and then feed the learned information 
to fault tolerance tools for fast failure recovery and/or 
timely failure avoidance [9,15-17].  While it is clearly 
desirable for efficient fault management, it is also 
challenging. Due to the massive quantities of 
information collected from a large number of 
components, fault patterns and root causes are often 
buried like needles in a haystack.  

To address the above challenge, we have adopted 
two strategies. One is to integrate multiple data sources 
(including RAS logs, performance data, sensor 
reading, etc.) and the other is to combine various 
predictive methods (including statistical learning, data 
mining, pattern recognition, etc.). By combining and 
cross-correlating data from different sources, we aim at 
capturing a variety of fault patterns and interactions in 
the system, even when these patterns are dynamically 
changing with time. By combining and coordinating 
multiple predictive methods, we intend to boost 
prediction coverage and accuracy. Our current work 
has focused on answering two questions. The first is 
the “when” question, meaning to predict when failures 
are likely to occur. The second is the “where” 
question, meaning to identify which part of the system 
that failures are likely to occur.  

To answer the “when” question, we have designed 
an ensemble learning based prediction mechanism 
(Figure 2). Given that raw data collected by different 
monitoring tools are often in different formats and 
contain repeated or redundant entries, during the event 
preprocessing phase, raw data is cleaned and 
categorized.  This step is intended to get a unique and 
standardized set of events. During the base prediction 
phase, a number of predictive methods are applied on 
the preprocessed data to identify fault patterns and 
characteristics. For example, statistical based methods 
are applied to capture probabilistic characteristics 
among failure events, and association rules are used to 
discover causal correlation between different events. 
During the meta-learning prediction phase, ensemble 
learning techniques are explored to boost prediction 
accuracy by combining the strengths of different 
predictive methods [19]. 

 
Figure 2. Ensemble Learning Based Prediction 

 
Due to the lack of information provided in the RAS 

log, our ensemble learning based prediction can only 
detect when the system behaves abnormally, without 
identifying the root cause (i.e. the components that 
cause the problem).  To answer the “where” question, 
we have developed a PCA (principal component 
analysis) based localization method (Figure 3). PCA is 
a well-known pattern recognition technique, which has 
been successfully used in many fields for reducing data 
dimensionality [18]. Our localization method also 
consists of three steps: (1) feature collection to 
assemble a feature space for the system (generally has 
a high dimensionality), e.g. the matrix X  in the figure; 
(2) feature extraction to obtain the most significant 
features out of the original feature space for efficient 
data analysis by applying the principal component 
analysis (PCA) algorithm, e.g. the matrix Y in the 
figure; and (3) outlier detection to quickly identify the 
nodes that are “far away” from the majority by using 
the cell-based detection algorithm [20].  



3 
 

 
Figure 3. PCA based Anomaly Localization 
 
     We have assessed our methods by means of trace 
studies and fault injection. Our case study with 15-
month RAS logs from SDSC and ANL has shown that 
the ensemble learning based prediction mechanism is 
able to capture more than 65% of failures, with the 
false alarm rate less than 35%.  In other words, both 
Precision and Recall are higher than 65%.  Here, 
Precision is defined as Tp / (Tp + Fp), and Recall is 
defined as Tp / (Tp + Fn).  Tp is number of correct 
predictions (i.e. true positives), and Fp is number of 
false alarms (i.e. false positives), and Fn is number of 
incorrect non-failure predictions (i.e. false negatives). 
A good prediction engine should achieve a high value 
(closer to 1.0) for both metrics.  Under a variety of 
fault modes, the proposed localization method can 
discover every fault injected, except in one case where 
Recall is lower than 1.0. Besides, Precision is always 
above 0.8, meaning that less than 20% of identified 
root causes are false alarms.  

 
3. Adaptation Manager 
 
     Fault forecasting is only part of the story, and the 
next major challenge facing the design of adaptive 
fault tolerance is how to select an appropriate action 
at runtime. There are several requirements in the 
design of such an adaptation manager. First, it must 
consider a range of factors that may impact application 
performance. These include not only the available 
spare nodes, but also costs and benefits of different 
fault tolerance actions. Second, given that a failure 
predictor is subjected to false negatives and false 
positives, it must take account of both errors during its 
decision making process. Lastly, it must make a timely 
decision without causing noticeable overhead on 
application performance. 
    Toward this end, we have designed an adaptation 
manager called FT-Pro as shown in Figure 4.  It 
dynamically selects a best-fit action from three options. 
(1) SKIP, where the fault tolerant request is ignored. 
This action is taken to remove unnecessary actions, 

when failure impact is trivial. (2) CHECKPOINT, 
where the application takes a checkpoint. This action is 
to reduce application work loss that might be caused 
by unforeseeable failures. (3) MIGRATION, where the 
processes on suspicious nodes (i.e. the nodes predicted 
to be failure-prone in the near future) are transferred to 
healthy nodes. This action is to avoid an upcoming 
failure.  

 
Figure 4. Adaptation Manager 

 
     The adaptation manager performs runtime selection 
based on quantitative performance modeling of 
applications.  More specifically, it estimates the 
expected application execution time Enext during the 
next interval and selects the action that minimizes Enext:  
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Where I is the adaptation interval, Cckp is the 
checkpointing overhead, Cpm is the migration 
overhead, Cr is the mean recovery cost, fappl  denotes 
the failure probability of the application during the 
next interval, lcurrent and llast are the index of the current 
or the last checkpoint location, f

WN and h
SN represent 

the number of failed computation nodes and healthy 
spare nodes allocated to the application.     
       The manager also takes account of prediction 
recall. Given the possibility of unpredictable failures, 
the performance loss could be significant when a 
number of SKIP actions have been taken continuously 
before an unpredicted failure. Hence, when the number 
of consecutive SKIP actions reaches a threshold (i.e. 

/( (1 ))MTBF I recall⋅ − ), rather than blindly relying on 
the prediction, the manager enforces a checkpoint.  
 
4. Integrated Runtime Support 
 
     We have implemented FT-Pro in the open-source 
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checkpointing package MPICH-VCL 0.76 [21]. Note  
that FT-Pro is independent of the underlying 
checkpointing tool, and can be easily implemented 
with other checkpointing tools.  Figure 5 illustrates our 
implementation: (1) FT-Pro daemons that are 
collocated with application processes on computation 
nodes, (2) the dispatcher that is responsible for 
managing computing resources, (3) the adaptation 
manager which is in charge of runtime decision 
making, and (4) the CKP server to perform 
coordinated checkpoints. Process migration may be 
done through live migration [8,22] or based on the 
simple stop-and-restart approach. 

 
 
 
 
 

 
 
 
 
 
 
Figure 5. Implementation with MPICH-V 

 
We have evaluated the prototype system with a 

number of real applications (cosmology application 
ENZO, molecule dynamics application GROMACS, 
and the parallel benchmark NPB) under a wide range 
of settings [24-26]. Preliminary study has indicated 
that it outperforms periodic checkpointing in terms of 
reducing application completion times and improving 
resource utilization, by up to 43% (Figure 6). It does 
better than periodic checkpointing, even when failure 
prediction has a 70% false positive and false negative 
rate (Figure 7). Additionally, the overhead caused by 
runtime adaptation is less than 3% [12]. 

 
5. Summary 
 

     This paper presents our on-going project on the 
design and development of adaptive fault tolerance for 
HPC applications. We have conducted initial 
implementation and experimental evaluation of the 
prototype system under a wide range of computing 
settings. Our study shows very promising results. 

      Our on-going efforts include the investigation of 
advanced failure diagnosis and prognosis techniques, 
the development of a better integration and 
coordination support, and extensive evaluation with 
real applications on production systems.  

 

 
Figure 6. Impact of Computation Scales, where the 

number of spare nodes is set to 1. 
 

 
Figure 7. Impact of prediction accuracies. 
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