
Reliability-Aware Speedup Models for Parallel
Applications with Coordinated

Checkpointing/Restart
Ziming Zheng,Member, IEEE Computer Society, Li Yu, Student Member, IEEE, and

Zhiling Lan, Senior Member, IEEE Computer Society

Abstract—Speedup models are powerful analytical tools for evaluating and predicting the performance of parallel applications.

Unfortunately, the well-known speedup models like Amdahl’s law and Gustafson’s law do not take reliability into consideration and

therefore cannot accurately account for application performance in the presence of failures. In this study, we enhance Amdahl’s law

and Gustafson’s law by considering the impact of failures and the effect of coordinated checkpointing/restart. Unlike existing analytical

studies relying on Exponential failure distribution alone, in this work we consider both Exponential and Weibull failure distributions in the

construction of our reliability-aware speedup models. The derived reliability-aware models are validated through trace-based

simulations under a variety of parameter settings. Our trace-based simulations demonstrate these models can effectively quantify

failure impact on application speedup. Moreover, we present two case studies to illustrate the use of these reliability-aware speedup

models.

Index Terms—Speedup, reliability, Amdahl’s law, Gustafson’s law, analytical modeling

Ç
1 INTRODUCTION

1.1 Motivations

COMPUTING power has experienced tremendous growth
over the past decades. Production systems today

already contain hundreds of thousands of processors [6].
Exa-scale systems are expected to become available in less
than a decade [37], which are projected to consist of millions
of processing units. For parallel applications running on
these extreme scale systems, speedup is a critical metric
[38]. It not only measures the inherent parallelism of an
application, but also provides an important guidance of
application performance as system size increases.

Amdahl’s law [3] and Gustafson’s law [4] are two well-
known speedupmodels. They are used to estimate the perfor-
mance of parallel applications at scales: Amdahl’s law focuses
on parallel execution relative to the serial execution under the
assumption of a fixed workload (i.e., fixed-sized speedup),
while Gustafson’s law emphasizes the amount of workload
that can be finished in a fixed time (i.e., fixed-time speedup).
Both models implicitly assume that the application can complete
without experiencing any failure.Nevertheless, with the increas-
ing scale and complexity of computer systems, failure
becomes a commonplace scenario rather than an exception.
Recent studies have shown that MTBFs (mean-time-between-
failures) of teraflop and petaflop-scale systems are only on the
order of 10-100 hours, even for systems based on ultra-reliable
components [7]. As a result, parallel applications are very

difficult to make any forward progress because of failures [5].
The occurrences of failures force the application to wait for
system recovery, which may take upto nearly 100 hours [1],
and then roll back to the beginning or the latest checkpoint.
Due to the impact of failures, application speedup in the
presence of failures is different from its speedup in an ideal
failure-free environment [16].

Despite the importance of reliability-aware speedup
modeling, only a few analytical studies have been conducted
to understand application performance under failures [22],
[12], [11], [16]. Reliability analysis is a hard problem, espe-
cially in parallel systems with unprecedented scale and com-
plexity. To simply the problem, existing studies typically
assume a constant failure rate and adopt Exponential failure
distribution in their modeling process. Nevertheless, recent
studies on field data from production systems clearly show
that Weibull distribution with decreasing failure rate pro-
vides a better goodness of fit than Exponential distribution
[2], [8], [46], [51]. The key challenge is that Weibull distribu-
tion is hard to study analytically due to its complicated and
dynamic failure rate nature [40]. Furthermore, validating
reliability-aware speedup models is also difficult due to the
scarcity of failure data from production supercomputers.

To address the aforementioned problems, in this paper
we present a set of reliability-aware speedup models to extend
Amdahl’s law and Gustafson’s law by considering failure
impact. The goal of this work is to provide more accurate
measurement of application speedup in a practical failure-
prone environment. More importantly, we consider both
Exponential and Weibull failure distributions in the model
construction. To tackle the challenge of dynamic failure
rate inherent in Weibull distribution, we derive the lower
and upper bounds of application speedup under Weibull
failure distribution.

Checkpointing/restart is a well-known fault tolerance
method to mitigate the impact of failures. In particular,

� The authors are with the Department of Computer Science, Illinois Insti-
tute of Technology, Chicago, IL 60616.
E-mail: {zzheng11, lyu17, lan}@iit.edu.

Manuscript received 9 Mar. 2013; revised 24 Jan. 2014; accepted 16 Mar.
2014. Date of publication 14 Apr. 2014; date of current version 8 Apr. 2015.
recommended for acceptance by Z. Tari.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2317182

1402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

0018-9340� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

coordinated checkpointing is a widely used technique in the
field of high performance computing due to its simplicity
[26], [56], [58]. It periodically coordinates application pro-
cesses and stores a consistent snapshot of the application. In
case of failure from any process, all the processes roll back
to the last checkpoint for recovery [30]. Although coordi-
nated checkpointing can effectively reduce work loss, it also
introduces some inevitable costs to the computation such as
checkpointing overhead and recovery cost [47], [23]. As
shown in the studies [16], [48], for an application running
on a large-scale system, its overall checkpoint/restart over-
head could take more than 50 percent of its execution due to
high failure rate and high checkpoint frequency. In this
study, we also quantify coordinated checkpointing effects
on application speedup in the design of reliability-aware
models. Furthermore, our models can be extended to study
other fault tolerance technologies such as uncoordinated
checkpoint with message logging [56] and hybrid check-
pointing protocols [58], [60].

To comprehensively and realistically assess our models,
we conduct trace-based simulations using the real failure
traces from production supercomputers [35], [51]. We
develop an event-driven simulator to simulate parallel exe-
cution. The simulator is designed to parse discrete events
from the failure traces and also provides a flexible interface
to allow various configurations of application parameters.
Our experiments are structured to assess model accuracy
under different application workloads, parallel fractions
and computing scales. Together, these experiments provide
a comprehensive evaluation of model accuracy under vari-
ous configurations. Our results indicate that the newly
derived speedup models can more accurately reveal appli-
cation performance in a practical failure-present environ-
ment than the original Amdahl’s and Gustafson’s laws.
Further, our results clearly show that the reliability-aware
models based on Weibull distribution greatly outperform
those based on Exponential distribution.

In this study we also present two case studies to illustrate
the usefulness of the aforementioned speedup models. One
is to identify the optimal computing scale and the maximal
speedup for an application under a given system, and the
other is to project node reliability and checkpoint overhead
that are needed in future exascale systems in order to main-
tain good computing efficiency.

The rest of the paper is organized as follows. Section 2
briefly discusses related studies. Background and assump-
tions are presented in Section 3. In Section 4, we present
reliability-aware application performance models. Based
on the models listed in Section 4, the enhanced Amdahl’s
models and Gustafson’s models are derived in Section 5
and 6 respectively. Model validation and model usage are
listed in Section 7 and Section 8. We discuss the extension
of our model for new fault tolerance techniques in Section
9. Finally, we conclude the paper in Section 10.

2 RELATED WORK

Speedup has been studied for decades from various
aspects. Amdahl’s [3] and Gustafson’s [4] are two well-
known models. Amdahl’s model is for fixed-size problems
(strong scaling), while Gustafson’s model is for fixed-time

problems (weak scaling). Both models have made tremen-
dous impact on parallel and distributed computing. A
number of analytical studies have extended these basic
models to examine application scalability under various
system constraints. Kumar and Gupta develop scalability
models for a specific parallel architecture [27]. Yero and
Henriques analyze the speedup and scalability of Master-
Slave applications on heterogeneous clusters [39]. Woo
and Lee extend the Amdahl’s law for many-core architec-
tures [28]. Jogalekar and Woodside introduce an adapta-
tion of scalability for the distributed system era [42]. Sun
and Ni develop memory-constrained speedup in [9]. In
[10], a power-aware speedup is proposed to predict the
scaled execution time and power consumption. However,
neither of them studies the impact of failures—which is an
important aspect as systems and applications scale to very
large sizes. This work is focused on extending Amdahl’s
model and Gustafson’s model by considering system fail-
ures and resilience mechanisms. Further, our models can
be easily integrated with existing studies to analyze more
complicated scenarios.

Analytical modeling of failure and checkpointing on
application performance has been presented in [22], [12],
[11], [45], [17], and most studies assume failure arrivals fol-
low a Poisson’s process, i.e., the inter-arrival times of fail-
ures follow an identical Exponential distribution. In [22],
Young derives the optimal checkpointing interval via the
first order estimation. Daly improves the model by using
higher order estimation and derives the expected comple-
tion time with checkpointing in [12]. Jones et. al. use Daly’s
model to study the impacts of failures and checkpointing on
application efficiency in [43]. In [11] and [45],the authors
use an M/G/1 model to describe system failures and derive
performance models to estimate the mean, variation and
distribution function of application completion time. While
Exponential distribution is commonly used for modeling,
recent studies have shown that Weibull distribution pro-
vides a better goodness of fit [2], [8], [46]. There are very
few studies considering Weibull distribution. In [41], Liu et.
al. use a stochastic renewal reward process to study optimal
checkpointing interval based on Weibull distribution. In
[40], Gottumukkala et al. study system-wide time-to-failure
distribution under Weibull failure arrivals. Distinguishing
from existing analytical modeling studies, in this paper we
derive reliability-aware speedup models under both Expo-
nential and Weibull failure distributions, and examine these
models under the scenarios where checkpointing may or
may not be used.

Experimental studies of failure impact on parallel com-
puting have been discussed in [16], [21], [44]. Based on
simulation results, Elnozahy and Plank point out that the
optimal speedup decreases rapidly as the number of nodes
grows beyond a certain point [16]. In [21], a reliability-
aware resource allocation algorithm is presented to select
an optimal number of nodes for the execution of an appli-
cation. In [44], Taerat et. al analyze Blue Gene/L logs in a
period of six months and study the job interruptions
through simulation. Unlike these studies, this paper devel-
ops analytical models to explicitly express application
speedup in the presence of failures, using both Exponen-
tial and Weibull failure distributions.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1403

3 ASSUMPTIONS

For the development of reliability-aware speedup models,
we make several assumptions based on existing studies.

First, the time interval between failures on each node i
follows a certain distribution with a probability density
function of fiðtÞ. In this paper, we study two commonly
used distributions, i.e., Exponential and Weibull. Their
probability density functions are as follows:

fiðtÞ ¼
�ie

��it Exponential

bi

hi

t

hi

� �bi�1

eð�t=hiÞbi Weibull:

8<
: (1)

In Exponential density function, the constant �i > 0 is the
constant failure arrival rate of node i. InWeibull density func-
tion, hi > 0 is the scale parameter and bi > 0 is the shape
parameter.We assume that all the nodes on a system have the
same shape parameter, i.e., b1 ¼ � � � ¼ bN ¼ b, and b < 1.
This assumption is based on the observations in [2], [46].

Second, we assume the system adopts a space sharing
mechanism for job scheduling, where each compute node is
dedicated to one application process once it is allocated to an
application. Most supercomputing centers adopt space shar-
ing mechanism for their job scheduling. Further, we assume
a fail-stop mode [30], where the failure of any single node
interrupts the entire application. Many tightly-coupled par-
allel applications likeMPI applications fall into this category.

Third, failure repair time follows a general distribution
with a mean of m [11]. Further, m is not sensitive to sys-
tem size in homogeneous systems, which is based on the
observation in [2].

Lastly, the overhead of a single coordinated checkpoint-
ing Oc is a linear function of application size N (i.e., number
of nodes used for running the application), and is much less
than application workload [47], [48], [12]. The overhead con-
sists of two parts, i.e., I/O overhead and message passing
overhead [18]. For augmented Amdahl’s models, since the
problem size does not change, we assume I/O overhead is

fixed [18], [14], i.e., Oc ¼ aþ bN . For augmented Gustafson’s
models, since the problem size or the checkpoint image size
is proportional to the number of nodes, the I/O overhead in
this case linearly increases with the number of nodes. Hence
the overhead is Oc ¼ aN þ bN [25], [30].

Table 1 lists a set of nomenclatures that will be frequently
used in the rest of the paper. Unless otherwise specified, in
the rest of the paper, the term of checkpointing indicates
coordinated checkpointing.

4 EXPECTED APPLICATION PERFORMANCE

Given a system with N nodes, we assume the inter-arrival
times of failures for each node are independent and iden-
tically distributed (iid) and the failure of a single node
interrupts the entire application (the fail-stop mode). Let
W be the failure free execution time of an application run-
ning on N nodes, then application reliability function at
time T is given as

RappðT Þ ¼
YN
i¼1

1� R tiþT

0 fiðtÞdt
1� R ti0 fiðtÞdt

; (2)

where ti is the time of the last failure. The expected applica-
tion execution time in the presence of failure EfðTW Þ, is dif-
ferent depending on whether checkpointing is adopted or
not. For the systems without checkpointing support, it can
be derived based on a model from [13] as below.

EfðTW Þ ¼ W þ mð1�RappðWÞÞ
RappðWÞ �

RW

0
tdðRappðtÞÞ

RappðWÞ : (3)

In an environment with checkpointing support, we adopt
a segment based model presented in [45], where the execu-
tion time of an application is divided into a set of check-
pointing segments. Each segment is a period of time
between two consecutive checkpoints and its length can be
represented as d ¼ t þOc, where t is the checkpoint interval
and Oc is the checkpoint overhead. In each segment, once a

TABLE 1
Nomenclature

1404 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

failure occurs, the application needs to roll back to the last
checkpoint (i.e., the beginning of the current segment).
Assume there are kf failures occurring during a segment
and each failure results in a rework cost X and a system
downtime Y , the expected completion time of a segment
EðTdÞ can be defined as

EðTdÞ ¼ dþ kf � ðEðXÞ þ EðY ÞÞ; (4)

where

EðXÞ ¼ R dt¼0 t
fiðtÞR d

0
fiðtÞdt

dt

and EðY Þ = m. As we need at least bW
t
c segments to finish the

whole application, the expected execution time of the appli-
cation with checkpointing is estimated as

Ef
ckpðTW Þ ¼ W

t

� �
� EðTdÞ: (5)

4.1 Exponential Distribution

In the case of Exponential distribution for failure arrivals,
based on Equations (1) and (2), due to the memoryless
property of this distribution, i.e., P ðt > ti þ T jt > tiÞ ¼
P ðt > T Þ, Rexp

appðT Þ is independent of ti and can be calcu-
lated as

Rexp
appðT Þ ¼ e�T�app ; (6)

where �app ¼
PN

i¼1 �i. If all the nodes have the same failure
rate �, it can be simplified as �app ¼ N� [31], [36].

Based on Equation (3) and (6), we can obtain the
expected application performance without checkpointing

Ef
expðTW Þ ¼ �mþ ��1

app

�ðe�appW � 1Þ: (7)

In case of checkpointing support, based on Equation (4)
and Equation (5), we can estimate the expected application
execution time as follows:

Ef
exp;ckpðTW Þ ¼ em�app

�app
ðed�app � 1ÞW

t
; (8)

where t is the checkpoint interval, d ¼ t þOc is the check-
point segment, and Oc ¼ aþ bN is the checkpoint overhead.
According to [12], [30], the optimal checkpoint interval can
be approximated as follows:

t ¼

ffiffiffiffiffiffiffiffiffi
2Oc

�app

s
1þ 1

3

Oc�app

2

� �1
2

þ 1

9

Oc�app

2

� �" #
�Oc Oc <

2

�app

1

�app
Oc � 2

�app
:

8>>><
>>>:

(9)

4.2 Weibull Distribution

In the case of Weibull distribution for failure arrivals, based
on Equation (1) and (2), Rwb

appðT Þ can be derived as

Rwb
appðT Þ ¼ e

PN

i¼1

t
b
i
�ðtiþT Þb

h
b
i

:

(10)

Unlike the case of Exponential distribution, Rwb
app depends

on the time of the last failure ti, suggesting a change once
failures occur in one or more nodes [40]. To tackle the prob-
lem, we derive a lower bound and an upper bound for Rwb

app.

Theorem 1. For Weibull failure distribution with bi < 1 (i ¼ 1
to N), the lower bound and the upper bound of Rwb

app are

Rwb
appðT Þ ¼ e

�N T
h

	
b

ðlower boundÞ (11)

R
wb

appðT Þ ¼ e
N�N

hþT
h

	
b

; ðupper boundÞ (12)

where h ¼ miniðhiÞ and h ¼ maxiðhiÞ. If bi ¼ 1 and h ¼ h,
Rwb

appðT Þ ¼ R
wb

appðT Þ
Proof. For the lower bound, we note the inequality

tbi � ðti þ T Þb � �T b holds when ti � 0 and 0 < b < 1,

therefore Rwb
appðT Þ � e

�
PN

i¼1
Tb

h
b
i � e

�N
�
T
h

�b
.

For the upper bound, we assume a situation in which
all the nodes survive until a failure occurs at ti ¼ hi, then

system reliability becomes Rwb
appðT Þ ¼ e

PN

i¼1

h
b
i
�ðhiþT Þb

h
b
i . To

achieve this situation, all the nodes need to be failure-
free during the time interval from ti ¼ 0 to hi, with the

probability RiðhiÞN ¼ e�Nðhi=hiÞb ¼ e�N decreasing to 0 as

the growth of N . In other words, the probability that Rwb
app

is as high as e

PN

i¼1

h
b
i
�ðhiþT Þb

h
b
i is very low and decreases as

the scale grows. As a result, an approximation for the

upper bound is e
N�N

�
hþT
h

�b
� e

PN

i¼1

h
b
i
�ðhiþT Þb

h
b
i . The reason

of choosing ti ¼ hi is to simplify the mathematical
expression.

If bi ¼ 1, e

PN

i¼1
hbi�ðhþT Þbi

h
bi
i ¼ e

PN

i¼1
h�ðhþT Þ

hi ¼ e
PN

i¼1
T
hi ¼

e

PN

i¼1
Tbi

h
bi
i . Therefore if h ¼ h, Rwb

app ¼ R
wb

app. tu
To estimate the expected execution time without check-

pointing, we replace (3) with (11) and (12) as follows:

Ef
wbðTW Þ ¼ W � mþ m

e
�’ þ ðh=N�Þgð1þ�;’Þ

e
�’ (13)

E
f

wbðTW Þ ¼ W � mþ m

eN�’

þ h=N�ðgð1þ �;’Þ � gð1þ �;NÞÞ þ he�’ � he�N

e�’
;

(14)

where � ¼ 1=b, ’ ¼ NðW=hÞb, ’ ¼ Nð1þW=hÞb, and
gðx; yÞ ¼ R y0 tx�1e�tdt is the lower incomplete gamma func-
tion with parameter x and y [49].

To estimate the expected execution time with checkpoint-
ing, we integrate (11) and (12) into (5). We use kf ¼ d

MTBF to
represent the number of failures occurring in one check-
pointing segment, where MTBF is the mean time between
failures. Under Weibull failure distribution, MTBF =

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1405

hGð1þ �Þ and Gð�Þ is the gamma function. The results are
shown below.

Ef
wb;ckpðTW Þ ¼ d 1þ m

ðh=N�ÞGð1þ�Þ þ
gð1þ�;cÞ

ð1�e
�cÞGð1þ�Þ

� �
W
t

(15)

E
f

wb;ckpðTW Þ ¼ d

�
1þ m

heN

N� Gð1þ �;NÞ � h

þ
heN

N� ðgð1þ �;cÞ � gð1þ �;NÞÞþ heN�c � h

ð1� eN�cÞ heN

N� Gð1þ �;NÞ � h
	
 �

W

t;

(16)

where c ¼ Nðd=hÞb, c ¼ Nð1þ d=hÞb, and Gðx; yÞ ¼R1
y tx�1e�tdt is the upper incomplete gamma function with
parameter x and y [49]. The optimal checkpoint interval t
and t can be identified via numeric method like Newton’s
method.

5 RELIABILITY-AWARE AMDAHL’S MODELS

According to Amdahl’s law, application workload per pro-
cess is Wp ¼ ð1� aÞW þ aW=N , where W is the entire
application workload and a is the fraction of the application
that can be parallelized. Hence the fixed-size speedup is
defined as:

SA ¼ W

ð1� aÞW þ aW=N
¼ N

Nð1� aÞ þ a
: (17)

5.1 Exponential Distribution

In the case of Exponential failure distribution, we can derive
the following reliability-aware model based on Equation (7)
and Equation (8)

SAf
exp ¼

W�
mþ ��1

app

�ðe 1�aþa
Nð Þ�appW � 1Þ;

(18)

SAf
exp;ckp ¼ �appt

em�app ðed�app�1Þ 1�aþa
Nð Þ: (19)

5.2 Weibull Distribution

In the case of Weibull failure distribution without check-
pointing, we estimate the lower bound and upper bound
based on (13) and (14) as follows:

SAf
wb ¼

W

Ef
wbðTWpÞ

¼ We�#

e�#ðWp � uÞ þ uþ h

N�

	

gð1þ �; #Þ

(20)

and

SA
f

wb ¼
W

E
f

wbðTWpÞ

¼ WeN�#

eN�#ðWp�uþhÞþuþhþ h

N� ðgð1þ�;N
Wp

h

	
b
Þ�gð1þ �;NÞÞ

;

(21)

where # ¼ NðWp=hÞb and # ¼ Nð1þWp=hÞb.
For the models based on checkpointing support, we can

obtain the following lower and upper bounds based on
Equations (15) and (16):

SAf
wb;ckp ¼

W

Ef
wb;ckpðTWpÞ

¼ t

d 1þ m

ðh=N�ÞGð1þ�Þ þ
gð1þ�;fÞ

ð1�e
�fÞGð1þ�Þ

� �
1� aþ a

N

� �
(22)

and

SA
f

wb;ckp ¼
W

E
f

wb;ckpðTWpÞ
¼ t

d 1� aþ a
N

� �
1þ m

heN

N� Gð1þ�;NÞ�h
þ

heN

N� ðgð1þ�;fÞ�gð1þ�;NÞÞþheN�f�h

ð1�eN�fÞðheN
N� Gð1þ�;NÞ�hÞ

 !

(23)

where f ¼ Nðd=hÞb and f ¼ Nð1þ d=hÞb.
Theorem 2. SA is a special case of SAf

exp, and SAf
exp is a special

case of SAf
wb.

Proof. For SAf
exp, when the recovery time can be ignored

(m ¼ 0), each node has the same failure rate (�a ¼ P�),
and the �a is much larger than the parallel workload
(1
P� � Wp), based on the first-order Taylor series, we
obtain

SAf
exp ¼

W

ðP�Þ�1ðeð1�aÞP�Wea�W � 1Þ
� W

ðP�Þ�1ðð1� aÞP�W þ a�WÞ
¼ SA:

Based on Theorem 1, it is obvious that SA
f

wb ¼ SAf
wb ¼

SAf
exp when b ¼ 1. tu

5.3 Model Analysis

The above models provide two interesting properties about
reliability-aware fixed-size speedup.

Property 1. Reliability-aware fixed-size speedups, in
case of Exponential or Weibull failure distribution with-
out checkpointing, decrease with the growth of application
workload.

Property 2. Reliability-aware fixed-size speedups, in case
of Exponential or Weibull failure distribution with check-
pointing, are independent of application workload.

1406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

To illustrate Property 1, Fig. 1 presents reliability-aware
fixed-size speedups under different workloads. By compar-
ing Property 1 and 2, we can clearly observe that the use of
checkpointing can promote application speedup.

6 RELIABILITY-AWARE GUSTAFSON’S MODELS

Different from Amdahl’s law, Gustafson’s law empha-
sizes the amount of workload that can be finished in a
fixed time [4]. It assumes that the a fraction of the work-
load can be parallelized and scaled with the number of
computing nodes, and the rest of the workload does not
grow with the number of nodes [4]. Hence it defines
fixed-time speedup as follows:

SG ¼ ð1� aÞW þ aWN

W
¼ 1� aþ aN: (24)

In an ideal failure-free case, Gustafson’s law shows that
the fixed-time speedup is independent of W (i.e., applica-
tion workload) and linearly grows with N (i.e., computing
scale). In practice, however, as W increases, the application
becomes more vulnerable to failures. Considering the
impact of failures, we define the achievable workload W � as
the workload for user application duringW execution.

6.1 Exponential Distribution

In the case of Exponential failure distribution, SGf
exp can be

derived from Equation (7) as

SGf
exp ¼ 1� aþ

N lnð W
uþ��1

app
þ1Þ

W�app
� ð1� aÞN: (25)

Similarly, we can derive SGf
exp;ckp based on Equation (8)

as follows:

SGf
exp;ckp ¼ 1� aþ tN�app

em�app ðed�app�1Þ � ð1� aÞN: (26)

Theorem 3. SG is a special case of SGf
exp.

Proof. When the recovery time can be ignored (m ¼ 0), each
node has the same failure rate (�app ¼ P�), and �app is
much larger than the execution time (1

P� � W), based on
the first-order Taylor series we obtain

SGf ¼ 1� aþ lnðWP�þ 1Þ
W�

� P ð1� aÞ

� 1� aþWP�

W�
� P ð1� aÞ

¼ SG:

(27)

tu

6.2 Weibull Distribution

In the case of Weibull failure distribution without check-
pointing, the achievable workloads are derived from the
transcendental equations Ef

wbðTW Þ ¼ W and E
f

wbðTW Þ ¼ W ,
which have no analytical solutions. We adopt a numeric
method to solve the equations, as shown in Algorithm 1.
Here the value of SGf

exp is used as the initial point and the
Newton’s method is used to search the numeric solutions.

In the case of Weibull failure distribution with check-
pointing, based on Equations (15) and (16), the lower bound
and upper bound speedups are estimated as follows:

SGf
wb;ckp ¼ 1� a� ð1� aÞN

þ tN

d 1þ m

ðh=N�ÞGð1þ�Þ þ
gð1þ�;cÞ

ð1�e
�cÞGð1þ�Þ

� � (28)

SG
f

wb;ckp ¼ 1� a� ð1� aÞN

þ tN

d 1þ m
heN

N� Gð1þ�;NÞ�h
þ

heN

N� ðgð1þ�;fÞ�gð1þ�;NÞÞþheN�f�h

ð1�eN�fÞ heN

N� Gð1þ�;NÞ�h

	

0
@

1
A

:

(29)

6.3 Model Analysis

The above models provide two interesting properties about
reliability-aware fixed-time speedup.

Fig. 1. Comparison of SA, SAf
exp, and SAf

wl under different workloads
where computing scale N is 16. The parameters are a ¼ 0:9,
� ¼ h ¼ 1

7500 hours, m ¼ 0:2 hours, b ¼ 0:8.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1407

Property 3. Reliability-aware fixed-time speedups, in case
of Exponential or Weibull failure distribution without check-
pointing, decrease with the growth of application workload.

Property 4. Reliability-aware fixed-time speedups, in
case of Exponential or Weibull failure distribution with
checkpointing, are independent of application workload.

To illustrate Property 3, Fig. 2 presents reliability-
aware fixed-time speedups under different workloads.
By comparing Property 3 and 4, we can clearly observe
that the use of checkpointing can promote application
speedup with high workload.

7 MODEL VALIDATION

We evaluate our models by means of real failure traces from
production supercomputers. Specifically, we select two fail-
ure traces from the public failure archive [35], denoted as
LANL #8 and LANL #9 in the rest of the paper. We also use
a failure log from the 40-rack Blue Gene/P system named
Intrepid at Argonne [51]. The use of multiple traces from dif-
ferent machines is to ensure that our models are not biased
to any specific systems. For the LANL systems, we select
128 nodes that have sufficient failure records for testing; for
the BlueGene/P system, we test our models at the rack-
level. The summary of failure traces are listed in Table 2.

Fig. 3 depicts our evaluation design. For the purpose of
model verification, we have developed an event-driven sim-
ulator. It takes two inputs: failure events and parallel appli-
cations. The failure event is extracted from the failure trace
log. Each failure event is associated with a time stamp, loca-
tion, and recovery time. The parameters of parallel applica-
tion is specified by users, or randomly created by job
generator. Each application is described in terms of its fail-
ure-free execution time W , its computing scale N , its paral-
lel fraction a, the checkpointing configuration (i.e., with or
without checkpointing) and the checkpointing overhead Oc.

Upon initiating the execution of an application, the simu-
lator randomly assigns a set of machine nodes to the appli-
cation and selects a time stamp within the failure trace to
represent application start time. For each application, the
results presented in the following sections are the average
of 10,000 simulation tests with randomly selected start times
and execution nodes. When the execution is completed, the
simulator returns a value (denoted as measured value).

With respect to Amdahl’s models, the simulator scans
through the failure trace in the order of event occurrence time
and emulates a failure when any of the assigned nodes to the
application encounters a fatal event according to the failure
trace. Without checkpointing, the application is stopped,
waits for the recovery, and then rolls back to the beginning.
The measured application time includes the failure-free exe-
cution time, the work loss, and the recovery time.With check-
pointing, the simulation process is similar except that the
application performs periodic checkpointing. Upon a failure,
the application rolls back to the most recent checkpoint, and
the checkpointing overhead is added into the measured
application time.

With respect to Gustafson’s models, the simulator meas-
ures the achievable workload of the application during the TW

time. Similar to the cases of calculating Amdahl’s speedup,
the simulator scans through the failure trace in the order of
failure time stamp. Upon a failure on any of the assigned
nodes, without checkpointing, the achievable workload is cal-
culated as the application workload between the last failure
and the completion time; with checkpointing, it is calculated
as the sum of workload except for the checkpoint overhead,
the recovery time and work loss due to rolling back.

Meanwhile, we extracted reliability related parameters
from the failure log, and these include failure rate and
repair time. These parameters, along with application infor-
mation, are fed into our reliability-aware models to calcu-
late various speedup values (denoted as predicted values). By
comparing measured values and predicted values, we
assess model accuracy by calculating their relative differ-
ence (i.e., error ¼ jpredicted value�measured valuej

jmeasured valuej).
In our experiments, checkpoint overhead Oc on LANL

systems is a linear function of computing scale N (i.e., num-
ber of nodes used for running the application), and is much
less than application workload [47], [48], [12]. It consists of
two parts, namely I/O overhead and message passing over-
head [18]. For augmented Amdahl’s models, as the problem
size does not change, the I/O overhead is assumed fixed
[18], [14], i.e., Oc ¼ aþ bN . For augmented Gustafson’s
models, as the problem size or the checkpoint image size is
proportional to the number of nodes, the overhead is
defined as Oc ¼ aN þ bN [25], [30]. Based on our experience
as well as existing literatures [18], [50], [47], [48], we set a to

Fig. 2. Comparison of SG, SGf
exp, and SGf

wb with different application
workloads where the computing scale is set to 16. Here, the parameters
are a ¼ 0:9, � ¼ h ¼ 1

7500 hours, b ¼ 0:8, m ¼ 0:2 hours.

TABLE 2
Summary of Failure Traces

Fig. 3. Model validation.

1408 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

0.335 and b to 0.0364. For the Blue Gene/P system, I/O
bandwidth scales linearly with the number of nodes at the
beginning and then becomes level off at about 25 GB/s
when the application scales to 16 racks (16,384 nodes) [50],
hence we set 120 seconds of Oc for augmented Amdahl’s
models and 600 seconds of Oc for augmented Gustafson’s
models if the application uses less than 16 racks; otherwise
we set 240 seconds of Oc for augmented Amdahl’s models
and 1,200 seconds of Oc for augmented Gustafson’s models.

7.1 Under Different Computing Scales

In the first set of experiments, we study the accuracy of our
reliability-aware speedupmodels under different computing
scales. We set the workload W to 100 hours and the parallel
fraction a to 0:9. The results are shown in Figs. 4 and 5.

From the figures, we make two important observations.

First, the original Amdahl’s model and Gustafson’s model

tend to deviate far from the actual application performance

as the computing scale increases, no matter whether check-

pointing is adopted or not. Our reliability-aware models

can better represent application speedup, especially under

large scales. For example, as shown in Fig. 4 a, the error of

Weibull based models is always less than 2 percent, which

is only about one-sixth of the original Amdahl’s model.

Second, our Weibull based models generally outperform

the Exponential based models. Without checkpointing,

either SAf
wb or SA

f

wb shows the best accuracy. With check-

pointing, SA
f

wb always outperforms other models with an

error of less than 1 percent under different computing

scales. Furthermore, its error typically does not increase

with the growth of computing scale.

7.2 Under Different Workloads

In the second set of experiments, we study the accuracy of
our reliability-aware speedup models under different work-
loads. We use the maximal computing scales, i.e., 128 nodes
for the LANL systems and 40,960 nodes for the BlueGene/P
system, and set a to 0:9. In terms of Amdahl’s models, we
test application workloads from 200 hours to 1,000 hours. In
terms of Gustafson’s models, we test application execution
time from 40 hours to 200 hours. Due to space limitation, we

Fig. 4. Error comparison of various Amdahl’s models under different computing scales. Here application workload is 100 hours and its parallel fraction
is set to 0.9.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1409

Fig. 5. Error comparison of various Gustafson’s models under different computing scales. Here application workload is 100 hours and its parallel frac-
tion is set to 0.9.

Fig. 6. Error comparison under different workloads (a) Amdahl’s model without checkpointing (b)Amdahl’s model with checkpointing (c) Gustafson’s
model without checkpointing (d) Gustafson’s model with checkpointing. Here the parallel fraction is 0.9 and the computing scale is 128.

1410 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

only present the results from the LANL #8 system in Fig. 6.
The results from other systems are very similar.

Without checkpointing, the accuracy of the original

Amdahl’s model SA dramatically decreases with the growth

of application workload. For example, as shown in Fig. 6, the

error of SA is more than 100 percent when application work-

load is increased beyond 800 hours. Our reliability-aware

models significantly outperform SA and SAf
exp with the error

less than 9 percent. Similarly, the original Gustafson’s model

SG can lead to substantial errors as the growth of workload.

Instead, SGf
wb quantifies the impact of failures, thereby

greatly outperforming SG. These results clearly indicate that

without considering failure impact, the original Amdahl’s

model and Gustafson’s model cannot accurately represent

application speedup, especially for long-running applica-

tions. Furthermore, the models based on Weibull distribu-

tion (e.g., SAf
wb, SA

f
wb;ckp, SG

f
wb, and SGf

wb;ckp) outperform the

models based on Exponential distribution (e.g., SAf
exp,

SAf
exp;ckp, SG

f
exp, and SGf

exp;ckp), especially under high applica-

tion workload. For example, for the application with a work-

load of 1,000 hours with checkpointing, the Exponential

based model SAf
exp;ckp introduces an error of 13 percent,

whereas the upper boundWeibull basedmodel SAf
wb;ckp only

has an error of 0.1 percent. This is due to the fact the Expo-

nential based models do not consider the dynamic feature of

failure arrivals, which can greatly influence model accuracy

under high applicationworkload.

7.3 Under Different Parallel Fractions

In the third set of experiments, we examine our reliability-
aware models under different parallel fractions. We set the
application workload W to 1,000 hours for Amdahl’s

models and 200 hours for Gustafson’s models, with a vary-
ing from 0:7 to 0:999. Again, we only present the results
from the LANL system #8 in Fig. 7, and omit the results
from other systems as they are similar.

Without checkpointing, the original SA and SG provide
extremely low accuracy, especially when parallel fraction is
low. When a is 0.7 (i.e., meaning that 70 percent of the appli-
cation can be parallelized), the original Amdahl’s model
produces an error of 2; 851 percent and the original
Gustafson’s model gives an error of 188 percent, whereas
our models achieve much better accuracy with error being
less than 10 percent. With checkpointing, our models still
significantly outperform the original models. For example,
the best accuracy achieved by the original Amdahl’s model
is 3:5 percent when a is set to 0:999, whereas SA

f

wb;ckp can
provide an almost perfect prediction with an error of only
0:2 percent; the best accuracy achieved by the original
Gustafson’s model is 9 percent, whereas SG

f

wb;ckp has an error
of only 0:1 percent. Moreover, by comparing the errors pro-
duced by Exponential based models and Weibull based
models, we can observe that Weibull based models are more
accurate than Exponential based models. For example, with-
out checkpointing, the error of SAf

exp is 50 percent when the
a is 0.7, whereas the Weibull based models always present
less than 10 percent error. With checkpointing, SA

f

wb;ckp and
SG

f

wb;ckp produce extremely lower errors under different par-
allel fractions. This demonstrates that Weibull based models
can better describe application speedup in the failure-present
environment as compared to Exponential based models.

7.4 Validation Summary

Our trace-based simulations demonstrate the significant
impact of failures on application speedup and the high
accuracy of our newly developed speedup models. Below
we summarize the key observations.

Fig. 7. Error comparison under different parallel fractions (a) Amdahl’s models without checkpointing (b) Amdahl’s models with checkpointing
(c) Gustafson’s models without checkpointing (d) Gustafson’s models with checkpointing. Here the computing scale is 128, workload for Amdahl’s
models is 1,000 hours, and workload for Gustafson’s models is 200 hours.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1411

� The original SA and SG cannot accurately represent
application speedup in a failure-present environ-
ment, especially under large computing scale, high
workload, and small parallel fraction.

� The Exponential based speedup models quantify the
impact of failures and the effect of checkpointing
and their accuracy decrease under high workload
and small parallel fraction. Without checkpointing
support, the Exponential based speedup models
may lead to an error of up to 50 percent.

� The Weibull based speedup models are highly accu-
rate with the error typically ranging between 0:4�5:1
percent for Amdahl’s models and 0:3�17:5 percent
for Gustafson’s models, which significantly outper-
form the Exponential based models.

8 MODEL USAGE

As shown in Section 7, our Weibull based models can repre-
sent application speedup with high accuracy. In this section,
we present two case studies to demonstrate the use of Wei-
bull based models. Given an application, the first case study
shows the use of our models to identify an optimal comput-
ing scale. The second one is to estimate node MTBFs and
checkpoint overhead that are needed in future exascale sys-
tems in order to maintain the computing efficiency achieved
on current systems.

8.1 Identification of Optimal Computing Scale

According to the original Amdahl’s law and Gustafson’s
law, the fixed-size speedup SA monotonically increases as
the computing scale N grows with the bound 1

1�a
, and the

fixed-time speedup SG can grow infinitely as the computing
scale increases in a failure-free system. Nevertheless, in a
realistic failure-present environment, our derived models
show that both fixed-size speedup and fixed-time speedup
drop down when the computing scale increases beyond a
certain point due to the increasing failure rate. As a result,
for a parallel application, it is necessary to identify the opti-
mal computing scale at which the application can achieve
the maximal speedup.

Suppose a homogenous system where all the nodes have
the same Weibull failure distribution, the optimal computing
scale can be determined by solving the equations @Sf=@N ¼ 0
and @Sf

ckp=@N ¼ 0. Fig. 8 presents the fixed-size speedup

results on a homogeneous system where the computing scale
ranges from 1 to 105. There are five curves in the plot, repre-
senting the original Amdahl’s model and our reliability-aware
models with and without checkpointing respectively. As
shown in the figure, unlike the original SA, reliability-aware
fixed-size speedup decreases as the computing scale increases
beyond a certain point. Furthermore, by comparing the curves
with and without checkpointing, we observe that the use of
checkpointing can considerably boost application speedup by
increasing the maximal achievable speedup. For the specific
application listed in the figure, without checkpointing, the
optimal scale is about 4,500-5,000 which achieves a speedup
of about 550-680; with checkpointing, the optimal scale is
about 16;000� 21;000 which achieves a speedup of about
820-920.

Similarly, Fig. 9 presents the fixed-time speedup as the
computing scale grows from 1 to 105. Obviously, these
curves indicate that the achievable fixed-time speedups of
SGf and SGf

ckp are much smaller than the speedup given by
the original Gustafson’s law. The curves of SGf show that
the maximal speedup can only achieve about 1:5	 104

although a is as high as 0.999. With checkpointing, the
growth of SGf

ckp is still much slower than the original
Gustafon’s law, but SGf

ckp can achieve 4:5	 104 when com-
puting scale is 105. The difference between SGf and SGf

ckp

indicates that the use of checkpointing can increase the opti-
mal computing scale and boost application speedup.

8.2 Projection on Exascale Systems

The efficiency of parallel application is defined as the propor-
tion of speedup to the computing scale. It measures the
extent to which time is well used for the intended computa-
tion. Assume a future system composing of nodes with the
same reliability as those on the current Blue Gene/P
machine “Intrepid” at Argonne. We further assume check-
point overhead on this future system is maintained at the
same level as on Intrepid. Our field data show that on
Intrepid, system-wide MTBF is 30.5 hours, and checkpoint-
ing overhead typically takes 30 minutes [51]. Fig. 10
presents efficiency trend on a large scale system (composing
of 105 � 106 nodes). Here, we use the reliability-aware
Gustafson’s model under checkpointing. The curves show
that efficiency exhibits decreasing trend. Especially, the

Fig. 8. Identification of the optimal computing scale and the maximum
fixed-size speedup in a homogenous system. Here MTBF of 105 nodes
is 109,718 seconds (i.e., 30.5 hours), a ¼ 0:999, b ¼ 0.8, m ¼ 0:2 hours,
and the application workload is 1000 hours.

Fig. 9. Identification of the optimal computing scale and the maximum
fixed-time speedup in a homogenous system. Here MTBF of 105 nodes
is 109,718 seconds (i.e., 30.5 hours), a ¼ 0:999, b ¼ 0.8, m ¼ 0:2 hours,
and the application workload is 10 hours.

1412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

lower bound of efficiency becomes less than 0.1 when com-
puting scale reaches 106. In other words, the results here
indicate that in order to effectively harness the potential of
extreme scale systems, we need to improve fault tolerance.

A number of approaches have been studied to reduce
the impact of failures. These approaches can be broadly
classified into two main directions: improving the node
reliability [19], [52] or reducing the overhead of fault toler-
ance methods such as checkpointing [16], [26], [33], [34].
Our derived models can be applied to measure the benefits
of these approaches with regards to maintaining good
computing efficiency.

In terms of node reliability, existing studies mainly focus
on increasing node MTBF. In Fig. 11, we present the
required node MTBF on future systems in order to maintain
the same efficiency on Intrepid (Fig. 10). Here, we assume
checkpoint overhead is the same as on Intrepid. As we can
see, the shape value b plays a critical role with regard to
node MTBF. There are three curves representing different
shape values in the plot. It is shown that a smaller b (e.g.,
when b ¼ 0:6) generally requires much faster growing node
MTBF in order to maintain the efficiency. The main reason
is that a lower shape value leads to a higher failure rate right
after the occurrence of failure [49], thus a higher MTBF is
expected to reduce the average number of failures during
the application execution time. In other words, it is essential
to increase both the shape value and the node MTBF to gain
a good efficiency on future systems.

Improving checkpointing performance is an active
research area, and a wide range of hardware and software
technologies are presented to reduce the checkpointing
overhead [16], [26], [33], [52]. Our models indicate that
reducing checkpointing overhead alone is insufficient to
maintain computing efficiency due to inevitable work
loss. Reducing checkpointing overhead can reduce the
growth requirement on node MTBF, as shown in Fig. 12.
As an example, for a future system composing of 106

nodes, if the system keeps the same checkpointing over-
head (i.e., 30 minutes), its node MTBF should be increased
69.2 times longer than that observed on Intrepid, in order
to maintain the same level of computing efficiency; never-
theless, if the checkpointing overhead can be reduced to
10 minutes, its node MTBF should be increased 32.9 times
longer than that on Intrepid.

9 MODEL DISCUSSION

In this paper, we focus on global coordinated checkpoint-
ing given that it is the most popular fault tolerant mecha-
nism used in practice [26], [56], [58]. Nevertheless, as
demonstrated in Section 8.2, global coordinated check-
pointing may be not a viable resiliency solution as we
move toward exascale computing. Recently several new
techniques are developed to address the potential problem
associated with global coordinated checkpointing, and
these include uncoordinated checkpointing with message
logging [56] and hybrid checkpointing protocol [58], [60].
With uncoordinated checkpointing, each process can take
its checkpoints independently and locally. Upon a failure,
only the failed process rolls back to the previous state.
Since uncoordinated checkpointing may lead to a domino
effect that forces the entire application to restart from the
beginning, message logging is adopted to replay the mes-
sages for recovery. However, extensive message logging
consumes storage space and adds a significant overhead
on communication bandwidth. To alleviate this issue,
hybrid protocol is proposed to combine coordinated
checkpointing and message logging. It conducts coordi-
nated checkpointing inside clusters of processes and mes-
sage logging between the clusters. Meanwhile, hybrid
protocol leverages the common properties of parallel
applications such as send-determinism [56] and channel-
determinism [60] to reduce the amount of logging mes-
sages and the performance overhead during recovery.

Fig. 11. The node MTBF is required on future exascale systems to
maintain the same efficiency on Intrepid. Here 200	 represents
200 times over node MTBF in Intrepid. The parameters are a ¼ 0:99,
m ¼ 0:2 hours, W ¼ 168 hours.

Fig. 12. The combined effect of node MTBF and checkpointing overhead
for future exascale systems to maintain the same efficiency as on
Intrepid. Here 70	 represents 70 times over node MTBF in Intrepid. The
parameters are a ¼ 0:99, m ¼ 0:2 hours,W ¼ 168 hours.

Fig. 10. The efficiency with different computing scales. Here the parame-
ters are a ¼ 0:9, b ¼ 0:6, W ¼ 168 hours. The MTBFs of Intrepid system
is 109,718 seconds, and checkpointing overhead on existing system
Oc ¼ 30minutes.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1413

Our models can be extended for the aforementioned fault
tolerant techniques. Take hybrid checkpointing protocol as
an example. Within each cluster of processes, the speedup
model is identical to the coordinated checkpointing models.
Upon a failure, only the impacted cluster of processes needs
to roll back and replays the corresponding inter-cluster mes-
sages. As a result, the speedup of the application is deter-
mined by the slowest cluster and the recovery performance
of the protocol. Suppose the cluster size is K, all the nodes
have exponential failure distribution with the same failure
rate �, and the corresponding average recovery time is mK ,
we can derive the augmented Amdahl’s model for hybrid
protocol from Equation (19):

SAf
exp;hybrid ¼ K�tK

emKK� edKK��1ð Þ 1�aþa
Nð Þ ; (30)

where tK is the optimal checkpointing interval for the clus-
ter. By studying the relation between mK and K, this model
can be used to identify the optimal cluster size.

10 CONCLUSIONS

In this paper, we have presented several reliability-aware
models to extend Amdahl’s law and Gustafson’s law by
considering the impact of failures and coordinated check-
pointing. In particular, we have derived speedup models
based on Weibull failure distribution, and analyzed the
cases with and without checkpointing in these models. By
means of real failure data from various production systems,
we have demonstrated that these analytical models can bet-
ter represent application performance and speedup in the
presence of failures. Moreover, our results clearly show that
Weibull based models outperform Exponential based mod-
els in terms of characterizing application speedup in the
presence of failures.

The newly derived speedup models can quantitatively
guide the community in terms of evaluating, optimizing,
and predicting application performance in realistic failure-
present environments. One of our future work is to combine
these analytical models with our empirical log analysis
studies [51], [19], [55] to promote performance and resil-
ience of extreme scale computing. Furthermore, we will
extend our models to study the impact of other fault toler-
ance techniques such as uncoordinated checkpointing with
message logging [56] and hybrid checkpointing protocol
[58], [60].

ACKNOWLEDGMENTS

Zhiling Lan was supported by US NSF grant CNS-0834514.

REFERENCES

[1] A. Oliner and J. Stearly, “What supercomputers say: A study of
five system logs,” in Proc. IEEE Annu. Int. Conf. Dependable Syst.
Netw., 2007, pp. 575–584.

[2] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance-computing systems,” in Proc. IEEE Annu. Int.
Conf. Dependable Syst. Netw., 2006, pp. 337–350.

[3] G. Amdahl, “Validity of the single processor approach to achiev-
ing large-scale computing capabilities,” in Proc. AFIPS Spring Joint
Comput. Conf., 1967, pp. 483–485.

[4] J. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM,
vol. 31, no. 5, pp. 532–533, 1988.

[5] Y. Tanaka, H. Takemiya, S. Sekiguchi, S. Ogata, A. Nakano, R.
Kalia, and P. Va shishta, “Adaptive grid-enabled SIMOX simula-
tion on Japan-US grid testbed,” in Proc. TeraGrid, 2006.

[6] (2013). Top500 supercomputing sites. http://top500.org/
[7] D. Reed, C. Lu, and C. Mendes, “Big systems and big reliability

challenges,” in Proc. Parallel Comput., 2003, pp. 729–736.
[8] T. Lin and D. Siewiorek, “Error log analysis: Statistical modeling

and heuristic trend analysis,” IEEE Trans. Rel., vol. 39, no. 4,
pp. 419–432, Oct. 1990.

[9] X. Sun and L. Ni, “Another view on parallel speedup,” in Proc.
Supercomput., 1990, pp. 324–333.

[10] R. Ge and K. Cameron, “Power-aware speedup,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2007, pp. 1–10.

[11] M. Wu, X. Sun, and H. Jin, “Performance under failure of high-
end computing,” in Proc. SuperComput., 2007, pp. 48:1–48:11.

[12] J. Daly, “A higher order estimate of the optimum checkpoint inter-
val for restart dumps,” Future Generation Comput. Syst., vol. 22,
no. 3, pp. 303–312, 2006.

[13] S. Garg, Y. Huang, C. Kintala, and K. Trivedi, “Minimizing com-
pletion time of a program by checkpointing and rejuvenation,” in
Proc. Int. Conf. Measurement Modeling Comput. Syst., 1996, pp. 252–
261.

[14] J. Plank and M. Thomason, “Processor allocation and checkpoint
interval selection in cluster computing systems,” J. Parallel Distrib.
Comput., vol. 61, no. 11, pp. 1570–1590, 2001.

[15] J. Plank and W. Elwasif, “Experimental assessment of workstation
failures and their impact on checkpointing systems,” in Proc. 28th
Annu. Int. Symp. Fault-Tolerant Comput., 1998, pp. 48–57.

[16] E. Elnozahy and J. Plank, “Checkpointing for Peta-scale systems:
A look into the future of practical rollback-recovery,” IEEE Trans.
Dependable Secure Comput., vol. 1, no. 2, pp. 97–108, Apr.–Jun. 2004.

[17] L. Wang, K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Modeling
coordinated checkpointing for large-scale supercomputers,” in
Proc. Int. Conf. Dependable Syst. Netw., 2005, pp. 812–821.

[18] Z. Lan and Y. Li, “Adaptive fault management of parallel applica-
tions for high performance computing,” IEEE Trans. Comput.,
vol. 57, no. 12, pp. 1647–1660, Dec. 2008.

[19] J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B.-H. Park,
“Dynamic meta-learning for failure prediction in large-scale sys-
tems: A case study,” in Proc. Int. Conf. Parallel Process., 2008,
pp. 57–164.

[20] Z. Zheng and Z. Lan, “Reliability-aware scalability models for
high performance computing,” in Proc. IEEE Int. Conf. Cluster
Comput. Workshops, 2009, pp. 1–9.

[21] N. Gottumukkala, C. Leangsuksun, R. Nassar, M. Paun, D. Sule,
and S. Scott, “Reliability aware optimal k node of parallel applica-
tions in large scale HPC systems,” in Proc. High Availability Per-
form. Comput. Workshop, 2008.

[22] J. Young, “A first order approximation to the optimal checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[23] Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. Sahoo,
“Performance implications of failures in large-scale cluster sched-
uling,” in Proc. 10th Int. Workshop JSSPP, SIGMETRICS, 2004,
pp. 233–252.

[24] A. Oliner, R. Sahoo, J. Moreira, and M. Gupta, “Performance
implications of periodic checkpointing on large-scale cluster sys-
tems,” in Proc. Parallel Distrib. Process. Symp., 2005, p. 8.

[25] S. Arunagiri, J. Daly, P. Teller, S. Seelam, R. Oldfield, M. Varela,
and R. Riesen, “Opportunistic checkpoint intervals to improve
system performance,” Tech. Rep. UTEP-CS-08-24, University of
Texas at El Paso, 2008.

[26] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello,
“Improved message logging versus improved coordinated check-
pointing for fault tolerant MPI,” in Proc. Int. Conf. Cluster Comput.,
2003, pp. 115–124.

[27] V. Kumar and A. Gupta, “Analysis of scalability of parallel algo-
rithms and architectures: A survey,” in Proc. 5th Int. Conf. Super-
comput., 1991, pp. 396–405.

[28] D. Woo and H. Lee, “Extending Amdahl’s law for energy-efficient
computing in the many-core era,” IEEE Comput., vol. 41, no. 12,
pp. 24–31, Dec. 2008.

[29] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative checkpointing:
A robust approach to large-scale systems reliability,” in Proc. Int.
Conf. Supercomput., 2006, pp. 14–23.

1414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

[30] R. Oldfield, “Investigating lightweight storage and overlay net-
works for fault tolerance,” in Proc. High Avail. Perform. Comput.
Workshop, 2006.

[31] F. Petrini, K. Davis, and J. Sancho, “System-level fault tolerance in
large-scale parallel machines with buffered coscheduling,” in
Proc. Int. Parallel Distrib. Process. Symp., 2004, p. 209.

[32] V. Nicola, Checkpointing and Modelling of Program Execution Time.
Software Fault Tolerance. Hoboken, NJ, USA: Wiley, 1995.

[33] Y. Li and Z. Lan, “A fast recovery mechanism for checkpointing in
networked environments,” in Proc. Int’l Conf. Dependable Syst.
Netw., 2008, pp. 217–226.

[34] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “Proactive
process-level live migration in HPC environments,” in Proc.
Supercomput., 2008, pp. 43:1–43:12.

[35] Los Alamos National Laboratory. Operational Data to Support
and Enable Computer Science Research. (2006) [Online]. Avail-
able: http://institute.lanl.gov/data/lanldata.shtml

[36] J. Daly, L. Pritchett-Sheats, and S. Michala, “Application MTFE vs
platform MTBF: A fresh perspective on system reliabilty and
application throughput for computations at scale,” in Proc. IEEE
Int. Symp. Cluster Comput. Grid, 2008, pp. 795–800.

[37] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E.
Elnohazy, M. Hall, R. Harrison, W. Harrod, K. Hill, J. Hiller, S.
Karp, C. Koelbel, D. Koester, P. Kogge, J. Levesque, D. Reed, V.
Sarkar, R. Schreiber, M. Richards, A. Scarpelli, J. Shalf, A. Snavely,
and T. Sterling, “Exascale software study: Software challenges in
extreme scale systems,” DARPA IPTO, Air Force Research Labs,
Tech. Rep 2009.

[38] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M.
Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D.
Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T.
Sterling, R. S. Williams, K. Yelick, K. Bergman, S. Borkar, D.
Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Har-
rod, J. Hiller, S. Keckler, D. Klein, P. Kogge, R. S. Williams, and K.
Yelick, “ExaScale computing study: Technology challenges in
achieving exascale systems,” Dept. Comput Sci., Univ. Notre
Dame, Notre Dame, IN, USA, Tech. Report TR-2008-13, 2008.

[39] E. Yero and M. Henriques, “Speedup and scalability analysis of
Master-Slave applications on large heterogeneous clusters,” J. Par-
allel Distrib. Comput., vol. 67, no. 11, pp. 1155–1167, 2007.

[40] N. Gottumukkala, R. Nassar, M. Paun, C. Leangsuksun, and S.
Scott, “Reliability of a system of k nodes for high performance
computing applications,” IEEE Trans. Reliability, vol. 59, no. 1,
pp. 112–169, Mar. 2010.

[41] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun,
and S. Scott, “An optimal checkpoint/restart model for a large
scale high performance computing system,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process., 2011, pp. 1–9.

[42] P. Jogalekar and M. Woodside, “Evaluating the scalability of dis-
tributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 6,
pp. 589–603, Jun. 2000.

[43] W. Jones, J. Daly, and N. DeBardeleben, “Impact of sub-optimal
checkpoint intervals on application efficiency in computational
clusters,” in Proc. ACM Int. Symp. High Perform. Distrib. Comput.,
2010, pp. 276–279.

[44] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Leangsuksun,
G.Ostrouchov, S. Scott, andC. Engelmann, “BlueGene/L log analysis
and time to interrupt estimation,” inProc. Int. Conf. Avail., Rel. Security,
2009, pp. 173–180.

[45] H. Jin, Y. Chen, and H. Zhu, X. Sun, “Optimizing HPC fault-
tolerant environment: An analytical approach,” in Proc. Int.
Conf. Parallel Process., 2010, pp. 525–534.

[46] T. Hacker, F. Romero, and C. Carothers, “An analysis of clustered
failures on large supercomputing systems,” J. Parallel Distrib. Com-
put., vol. 69, no. 7, pp. 652–665, 2009.

[47] H. Naik, R. Gupta, and P. Beckman, “Analyzing checkpointing
trends for applications on the IBM Blue Gene/P system, in,” in
Proc. Int. Conf. Parallel Process.Workshop, 2009, pp. 81–88.

[48] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, and M. Varela,
“Modeling the impact of checkpoints on next-generation sys-
tems,” in Proc. Int. Conf. Mass Storage Syst. Technol, 2007, pp. 30–46.

[49] H. Rinne, The Weibull Distribution: A Handbook. Boca Raton, FL,
USA: CRC Press, 2008.

[50] S. Lang, P. Carns, K. Harms, and W. Allcock, “I/O performance
challenges at leadership scale,” in Proc. High Perform. Comput.
Netw., Storage Anal., 2009, pp. 1–12.

[51] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan,
and D. Buettner, “Co-Analysis of RAS log and job log on Blue
Gene/P,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2011,
pp. 840–851.

[52] K. B. Ferreira, J. Stearley, J. H. Laros III, R. Oldfield, K. T. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for Exascale sys-
tems,” in Proc. High Perform. Comput. Netw., Storage Anal., 2011,
pp. 1–12.

[53] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien,
“Checkpointing strategies for parallel jobs,” in Proc. High Perform.
Comput. Netw., Storage Anal., 2011, pp. 1–11.

[54] Z. Zheng and Z. Lan, “Reliability-aware scalability models for
high performance computing,” in Proc. Cluster Comput. Workshops,
2009, pp. 1–9.

[55] L. Yu, Z. Zheng, Z. Lan, T. Jones, J. Brandt, and A. gentile,
“Filtering log data: Finding the needles in the haystack,” in Proc.
Int. Conf. Dependable Syst. Netw, 2012, pp. 1–12.

[56] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello,
“Uncoordinated checkpointing without domino effect for send-
deterministic MPI applications,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2011, pp. 989–1000.

[57] A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing
system,” in Proc. High Perform. Comput. Netw., Storage Anal., 2010,
pp. 1–10.

[58] R. Riesen, K. Ferreira, D. Silva, P. Lemarinier, D. Arnold, and P.
Bridges, “Alleviating scalability issues of checkpointing proto-
cols,” in Proc. High Perform. Comput. Netw., Storage Anal., 2012,
pp. 18:1–18:11.

[59] G. Cao and M. Singhal, “Checkpointing with mutable
checkpoints,” Theor. Comput. Sci., vol. 290, no. 2, pp. 1127–1148,
2003.

[60] T. Ropars, T. Martsinkevich, A. Guermouche, A. Schiper, and F.
Cappello, “SPBC: Leveraging the characteristics of MPI HPC
applications for scalable checkpointing,” in Proc. High Perform.
Comput. Netw., Storage Anal., 2013, pp. 8:1–8:12.

Ziming Zheng received the BS and MS degrees
from the University of Electronic Science and
Technology of China in 2003 and 2006, respec-
tively, and the PhD degree in computer science
from Illinois Institute of Technology in 2012. He
was a postdoctoral scholar at the University of Chi-
cago in 2013. He is currently a software engineer
in HP Vertica. His research focuses on fault toler-
ance in large-scale computer systems. He is a
member of IEEE Computer Society and the IEEE.

Li Yu received the BS degree from Sichuan Univer-
sity in 2004, and the MS degree from Rochester
Institute of Technology in 2009, respectively. He is
currently working toward the PhD degree in com-
puter science at the Illinois Institute of Technology
since 2010. His research interests include HPC
data analytics and performance modeling in large-
scale systems. He is a student member of the
IEEE.

Zhiling Lan received the PhD degree in com-
puter engineering from Northwestern University
in 2002. She is currently an associate professor
of computer science at the Illinois Institute of
Technology. Her research interests include fault
tolerance, resource management and schedul-
ing, energy efficiency, and performance analysis
and modeling. She is a senior member of IEEE
Computer Society and the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHENG ET AL.: RELIABILITY-AWARE SPEEDUP MODELS FOR PARALLEL APPLICATIONSWITH COORDINATED... 1415

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

