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ABSTRACT
The research literature to date mainly aimed at reducing en-
ergy consumption in HPC environments. In this paper we
propose a job power aware scheduling mechanism to reduce
HPC’s electricity bill without degrading the system utiliza-
tion. The novelty of our job scheduling mechanism is its
ability to take the variation of electricity price into consid-
eration as a means to make better decisions of the timing
of scheduling jobs with diverse power profiles. We verified
the effectiveness of our design by conducting trace-based ex-
periments on an IBM Blue Gene/P and a cluster system as
well as a case study on Argonne’s 48-rack IBM Blue Gene/Q
system. Our preliminary results show that our power aware
algorithm can reduce electricity bill of HPC systems as much
as 23%.
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1. INTRODUCTION
As HPC systems continue to grow so does their energy

consumption. The electricity bill is now a leading com-
ponent of total cost of ownership(TCO) of HPC systems.
The typical current petascale system on average consumes
2-7 MW of power [21]. Case in point, the Argonne Lead-
ership Computing Facility (ALCF) budgets approximately
$1M annually for electricity to operate its primary super-
computing resource. Based on current projections, exascale
supercomputers will consume 60-130 MW, which will prove
to be an unbearable burden for any facility. Therefore, elec-
tricity savings are crucial for reducing the operational cost
of extreme scale systems.

There is a significant number of research studies about
improving energy efficiency for HPC systems and most of
them focusing on the following topics: energy-efficient or en-
ergy proportional hardware, dynamic voltage and frequency
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Figure 1: Job Power Distribution on BGQ

scaling (DVFS) techniques, shutting down hardware compo-
nents at low system utilizations, power capping, and thermal
management.

Being orthogonal to existing studies, this work focuses
on reducing the electricity bill of HPC systems via a smart
job scheduling mechanism. The rationale is based on a key
observation of HPC jobs: parallel jobs have distinct power
consumption profiles. Hennecke et al. [13] analyzed the en-
ergy characteristics of the production workload at Research
Center Julich (FJZ) and found the power consumption of the
jobs running on their Blue Gene/P(BGP) system range from
20 kW/rack to 33 kW/rack per. In our recent work [28], we
provided analysis of a one-month workload on Mira, the 48-
rack IBM Blue Gene/Q (BGQ) system at Argonne National
Laboratory (Figure 1). The histogram displays percentages
partitioned by size ranging from single rack jobs to full sys-
tem runs. The power consumption of those jobs varies from
around 40 kW/rack to 90 kW/rack. It can’t tell from the fig-
ure that the size of these jobs affects their energy efficiency
or not.

We hypothesize that it is possible to save a significant
amount on an electric bill by exploiting a dynamic elec-
tricity pricing policy. To date, dynamic electricity pricing
policies have been widely adopted in Europe, North Amer-
ica, Oceania, and parts of Asia. For example, in the U.S.A,
wholesale electricity prices vary by as much as a factor of
10 from one hour to the next [23]. Under dynamic pricing,
the power grid has on-peak time (when it bears a heavier



burden and consequently the electricity price is higher) and
off-peak time (when there is less demand for electricity and
the price is lower) alternatively in a day.

In this work, we develop a job power aware scheduling
mechanism. The novelty of this scheduling mechanism is
that it can reduce system’s electricity bill by scheduling and
dispatching jobs according to their power profiles and the real
time electricity price, while causing negligible impact on the
system’s utilization and scheduling fairness. Preferentially,
it dispatches the jobs with higher power consumption during
the off-peak period, and the jobs with lower power consump-
tion during the on-peak period.

A key challenge in HPC scheduling is that system utiliza-
tion should not be impacted. HPC systems require a tremen-
dous capital investment, hence taking full advantage of this
expensive resources is of great importance to HPC centers.
Unlike the utilization of Internet data centers, which only
fluctuate about 20%, systems at HPC centers are highly
employed with a typical utilization around 50%-80% [3]. To
address this challenge, we propose a novel window-based
scheduling mechanism[26]. In this work, rather than allo-
cating jobs one by one from the front of the wait queue as
existing schedulers do, we schedule and dispatch a ”window”
of jobs at a time. Those jobs placed into the window are cho-
sen to maintain job fairness, and the allocation of these jobs
onto system resources is done in such a way as to minimize
electricity bill. Two scheduling algorithms, namely a Greedy
policy and a 0-1 Knapsack based policy, are presented in this
work for decision-making.

We evaluate our job power aware scheduling design via
extensive trace-based simulations and a case study of Mira.
In this paper, we present a series of experiments comparing
our design against the popular first-come, first-serve (FCFS)
scheduling policy, with backfilling done in three different as-
pects (electricity bill saving, scheduling performance, and
job performance). Our preliminary results demonstrate that
our design can cut electricity bill by up to 23% without an
impact on overall system utilization. Considering HPC cen-
ters often spend millions of dollars on even the least ex-
pensive energy contracts, such savings can translate into a
reduction of hundreds of thousands in terms of TCO.

The structure of the paper is as follows. In section 2, we
discuss the existing work about energy reduction for HPC
systems. Section 3 describes the job power aware schedul-
ing problem. Section 4 gives a detailed description of our
job power aware scheduling design. Sections 5-7 present
our evaluation methodology, trace-based simulations, and a
case study by comparing our design against the widely-used
FCFS scheduling policy under a variety of configurations.
Our findings are presented in Section 8.

2. RELATED WORK
First, we give a brief survey of dynamic electricity pricing

policies in different countries to demonstrate the applicabil-
ity of this work. The European Exchange Market (EEX)
in Germany, PowerNext in France, and APX in the Nether-
lands and Iberian market all vary their cost of electricity
on an hourly basis[12]. In [20], the author stated dynamic
electricity pricing policies are well adopted in Nordic coun-
tries as Norway, Finland, Sweden, and Denmark. Other
power markets such as England, New Zealand, and Aus-
tralia also have similar policies. Since the electricity crisis
in 2011-2012, the Japanese Ministry of Economy, Trade and

Industry (METI) has initiated the Smart Community Pilot
Projects in four cities in Japan(Yokohama, Toyota, Kyoto,
and Kitakyushu) to investigate the effect of dynamic pric-
ing and smart energy equipment on residential electricity
demand[15]. In China, major cities such as Beijing, Shang-
hai, Guangzhou have initiated dynamic electricity pricing for
both domestic and industrial use since 2006. Dynamic elec-
tricity pricing has also been carried out in several provinces
such as Zhejiang, Jiangsu, and Guangdong.

As we can see from the survey above, the dynamic elec-
tricity pricing policy has already been carried out in power
markets in Europe, North America, Oceania, and China.
Japan has initiated preliminary tests in some major cities
to see the effect of this dynamic electricity pricing policy on
the reduction of electricity consumption. While in this study
we evaluate our design based on the on-/off-peak electricity
pricing in U.S.A, we believe our design is applicable to other
countries(e.g., those listed above) for cutting the electricity
bill of their HPC systems.

Although there is no known effort to provide job power
aware scheduling support in the field of HPC, there is a
large body of related work. Due to space limitations, in this
section we discuss some closely related studies and point out
key differences among them.

From the hardware perspective, hardware vendors are ded-
icated to produce energy-efficient devices. For instance, Bar-
roso and Holzle [5] argued that the power consumption of
a machine should be proportional to its workload, i.e., it
should consume no power in idle state, almost no power
when the workload is very low, and eventually more power
when the workload is increased. Ideally, an energy propor-
tional system could save half of the energy used in data
center operations. Li [18] optimized the power/ground grid
to make the power supply more efficient for the chip.

Since processor power consumption is a significant portion
of the total system power (roughly 50% under load [14]),
DVFS is widely used for controlling CPU power [7]. By
running a processor at a lower frequency/voltage, energy
savings can be achieved at the expense of increased job ex-
ecution time. In order to meet user’s SLAs (Service Level
Agreements), DVFS is typically applied at the period of low
system activity. Some research studies on this topic can be
found in [22] [19] [9] [16].

In a typical HPC system, nodes often consume consider-
able energy in idle state without any running application.
For example, an idle Blue Gene/P rack still has a DC power
consumption of about 13 kW [13]. During low system uti-
lization, some nodes or their components could be shut down
or switched to a low-power state. This strategy tries to min-
imize the number of active nodes of a system while still sat-
isfying incoming application requests. Since this approach
is highly dependent on system workload, the challenge is to
determine when to shut down components and how to pro-
vide a suitable job slowdown value based on the availability
of nodes.

Hikita et al.[14] performed an empirical study by imple-
menting an energy-aware scheduler for an HPC system. The
operation of the scheduler is simple: if a node is inactive for
30 minutes, it is powered off; when the node is required for
job execution, it is powered on and moved to an active state.
Powering up a node on their system takes approximately 45
minutes, which is substantial. This strategy can improve
power efficiency by 39% at best. Because the rebooting of a



node may consume significant time that will lead to a per-
formance degradation if it happens to be peak job request
period and more nodes are required than the active ones.

Pinheiro et al. [22] presented a mechanism that dynam-
ically turns cluster nodes on and off. This approach uses
load consolidation to transfer workload onto fewer nodes so
that idle nodes can be turned off. The experimental tests
on a static 8-node cluster indicate a 19% saving in energy.
It takes about 100 seconds to power on a server and 45 sec-
onds to shut it down on the cluster. The degradation in
performance is approximately 20%.

Thermal management techniques are another method fre-
quently discussed in the literature [19] [16]. The rationale
is that higher temperatures have a large impact on system
reliability and can also increase cooling costs. By using ther-
mal management, system workload is adjusted according to
a predefined temperature threshold: if the temperature on
a server rises above that threshold, its workload is reduced.
Disadvantages of thermal management are delayed response,
high risk of overheating, excessive cooling and recursive cy-
cling [16].

Many data centers use power capping or power budgeting
to reduce the total power consumption. The operator can
set a threshold of power consumption to ensure the actual
power of the data center does not exceed it [10]. It prevents
sudden rises in power supply and keeps the total power con-
sumption under a predefined budget. Basically, the power
consumption can be reduced by rescheduling tasks or CPU
throttling, for example, Etinski et al. proposed a parallel
job scheduling policy based on integer linear programming
under a given power profile [9]. Lefurgy et al. presented
a technique for high density servers that controls the peak
power consumption by implementing a feedback controller
[17].

This work has two major differences as compared to our
previous work presented in [30]. First, our previous work
targets Blue Gene/P systems, which have a special require-
ment on job scheduling, i.e., available nodes must be con-
nected in a job specific shape before they can be allocated
to a job[26] [24]. This work intends to provide a generic job
power aware scheduling mechanism for various HPC sys-
tems. Second, our previous work relies on a power budget
(similar to power capping) for energy cost saving, which de-
grades system utilization slightly during on-peak electricity
price period. The scheduling policies presented in this work
do not use power budget, and they minimize the electric-
ity bill without impacting system utilization, during both
on-peak and off-peak electricity pricing periods.

3. PROBLEM DESCRIPTION
Typically, user jobs are submitted to an HPC system

through a batch scheduler, and then wait in a queue for
the requested amount of system resources to become avail-
able. There may be one or multiple job queues with different
priories. A job is generally defined by its arrival time, its es-
timated runtime, the amount of computing nodes requested,
etc. The scheduler is responsible for assigning computing
nodes to the jobs in the queues. FCFS with backfilling is a
commonly used scheduling policy in HPC [11]. Under this
policy, the scheduler picks a job from the head of the wait
queue and dispatches it to the available system resources.
The nodes assigned to a job become unavailable until the
job is complete (i.e., space sharing).

As mentioned in Section 1, our work is based on two
key observations in HPC: (1) electricity price is dynamically
changing within a day; and (2) HPC jobs have distinct power
consumption profiles. We shall point out that usually HPC
jobs also tend to be repetitive. These repetitive jobs can
be easily identified by user ID, project, expected runtime,
etc. A batch scheduler can extract job power profile based
on historical data and use it for power aware scheduling.
For the simplicity of method description, we assume that a
daily electricity price is divided into on-peak and off-peak
periods, where on-peak period is referred to the time when
more electricity is demanded (e.g., during the daytime). By
exploring these two observations, the basic idea of our work
is to allocate jobs with lower power consumption profiles
during on-peak time and to allocate jobs with higher power
consumption profiles during off-peak time. Furthermore, the
allocation is made under the assumption that there will be
no impact to system utilization, meaning that a situation
where a job is waiting in the queue while there is a sufficient
amount of idle/available computing nodes is not allowed.

Getting job power consumption profiles is feasible on to-
day’s supercomputers. Most production HPC systems are
deployed with built-in sensors that monitor the health sta-
tus of its hardware components. These sensors, deployed
in various locations inside the system, report environmen-
tal conditions such as motherboard, CPU, GPU, hard disk
and other peripherals for temperature, voltage, and/or fan
speed. A number of software tools/interfaces are publicly
available for users to access these sensor readings[6] [2] [4]
[28].

Figure 2 pictorially illustrates an example to highlight
the key idea of our design as compared to the conventional
FCFS. Suppose five jobs J0, J1, J2, J3, J4 are submitted to a
12-node system. Each job is associated with several param-
eters, such as the amount of nodes needed, the estimated
runtime, etc. Further, each job is also associated with a
power consumption profile pi, which can be determined from
historical data[28]. Suppose these jobs have the following
parameters:

Job Power Profile (W/node) Job Size
J0 50 6
J1 20 3
J2 40 3
J3 30 3
J4 10 6

Under the conventional FCFS policy, the scheduling se-
quence is always < J0, J1, J2 > in spite of the scheduling
time. Our scheduling mechanism provides different schedul-
ing sequences depending on the dynamic electricity price
and job’s power profile. More specifically, our scheduling
algorithm allocates < J4, J1, J3 > during the on-peak pe-
riod, and allocates < J0, J2, J3 > during the off-peak pe-
riod. By comparing the total power consumptions of using
FCFS to that of our design, it is clear that our design is able
to reduce the accumulated power consumption during the
on-peak time where as to increase the accumulated power
consumption during the off-peak time, hence reducing the
overall electricity bill.

4. METHODOLOGY
In Table 1, we list the nomenclature that will be used in

the rest of this paper. Figure 3 gives an overview of our job



Table 1: Nomenclature
Symbol Description

ni Job size, i.e., the number of nodes that are requested by Job i
pi Job power consumption profile, i.e., the average power consumption per node.
Nt the amount of available nodes in the system at time t.
N System size, i.e., the number of nodes in the system.
T The time span from the start of the first job to the end of the last job.
w Scheduling window size, i.e., the number of jobs in the window .

Figure 2: Job scheduling using FCFS(left) and our
job power aware design at on-peak time(top right)
and off-peak time (bottom right). For each job, its
color represents its power profile, where dark color
indicates power expensive and light color indicates
power efficient.

power aware scheduling design. Our design contains two key
techniques. One is the use of a scheduling window to take
into consideration job features such as job fairness, and the
other is the scheduling policy to balance energy usage and
scheduling performance.

Figure 3: Overview of Job Power Aware Scheduling

4.1 Scheduling Window
Balancing fairness and system performance is always a

big concern for a scheduling algorithm. The simplest way
to ensure fairness and high system performance is to use a
strict FCFS policy combined with backfilling, where jobs are

started in the order of their arrivals [11].
In this work, rather than allocating jobs one by one from

the front of the wait queue, we propose a novel window-based
scheduling mechanism that allocates a window of jobs. The
selection of jobs into the window is based on certain user-
centric metrics, such as job fairness while the allocation of
these jobs onto system resources is determined by certain
system-centric metrics such as system utilization and energy
consumption. By doing so, we are able to balance different
metrics, representing both user satisfaction and system per-
formance.

Given that FCFS is commonly used by production batch
schedulers in HPC, we now describe how our window based
scheduling works with FCFS. We maintain a scheduling win-
dow in front of the job queue, and the submitted jobs enter
the job queue first and then into the scheduling window.
The selection of jobs is based on job arrival times, thereby
guaranteeing job fairness; the allocation of the jobs from the
window to the available system nodes is based on job power
profiles, which will be described later.

Typically, the window size should be determined based
on system workload such that a large window is preferred in
case of high workload. For typical workloads at production
supercomputers, we find that a window size from 10 to 30
jobs can achieve reasonable electricity bill savings.

4.2 Job Power Aware Scheduling Policies
In this work, we develop two power aware scheduling poli-

cies. The first is a Greedy policy, where jobs are allocated
entirely based on the values of their power profiles. The sec-
ond is a 0-1 Knapsack based policy, where both job power
profile and system utilization are taken into consideration
during decision making.

4.2.1 Greedy Policy
All the jobs in the scheduling window are first sorted by

their power profiles. During the on-peak electricity price
period, all the jobs in the scheduling window are sorted in
a decreasing order based on their power profiles; conversely,
they are sorted in an increasing order during the off-peak
period. After the sorting, the scheduler will dispatches the
ordered jobs out of the scheduling window.

Greedy policy is simple and fast. Suppose the number
of jobs in the window size is n, then the complexity of the
algorithm is O(nlgn).

4.2.2 O-1 Knapsack based Policy
The only difference between on-peak and off-peak schedul-

ing selection is the aggregated power consumption: during
the on-peak period, the goal is to minimize the value; dur-
ing the off-peak period, the goal is to maximize the value.



In the following, we present the 0-1 Knapsack based policy
works at off-peak time.

Suppose there are Nt available nodes in the system, the
scheduling window size is w {Ji, |1 6 i 6 w}, and each job
Ji requires ni nodes, with a power profile of pi. Now, the
scheduling problem can be formalized as follows:

Problem 1. To selecting a subset of {Ji, |1 6 i 6 k}
from the scheduling window such that the aggregate nodes∑

1≤i≤k ni is no more than Nt, with the objective of maxi-

mizing the aggregated power consumption
∑

1≤i≤k ni · pi.
The above problem can be formalized into a 0-1 Knapsack

problem. We set the available nodes Nt as the knapsack’s
size and consider the jobs in the scheduling window as the
objects that we intend to put into the knapsack. For each
job, its power profile (measured in W/node or kW/rack) is
its value, the number of required node is considered as the
weight. Hence we can further transform Problem 1 into a
standard 0-1 Knapsack model.

Problem 2. To determine a binary vector
X = {xi, |1 6 i 6 k} such that:

maximize
∑

1≤i≤k

xi · pi, xi = 0 or 1

subject to
∑

1≤i≤k

xi · ni ≤ Nt

(1)

The standard 0-1 Knapsack model can be solved in pseudo-
polynomial time by using dynamic programming[8]. To avoid
redundant computation, when implementing this algorithm
we use the tabular approach by defining a 2D table G,
where G[k,w] denotes the maximum gain value that can be
achieved by scheduling jobs {ji|1 ≤ i ≤ k} which require no
more than Nt computing nodes, where 1 ≤ k ≤ J . G[k,w]
has the following recursive feature:

G[k,w]=

{
0 kw = 0
G[k−1,w] wi ≥ w
max(G[k−1,w],vi+G[k−1,w−wi]) wi ≤ w

(2)

The solution G[J,Nt] and its corresponding binary vector
X determine the selection of jobs scheduled to run. The
computation complexity of Equation 2 is O(J ·Nt).

During on-peak time, 0-1 Knapsack-based policy is mod-
ified by changing the selection criterion into minimizing the
total value of the objects in the knapsack with the constraint
of knapsack size.

5. EVALUATION METHODOLOGY
We conduct a series of experiments using trace-based sim-

ulations. In our experiments, we compare our design as
against the well-known FCFS scheduling policy [11]. In the
rest of the paper, we simply use Greedy, Knapsack, and
FCFS to denote our scheduling policies and the conven-
tional batch scheduling policy. This section describes our
evaluation methodology, and the experimental results will
be presented in the next section.

5.1 CQSim: Trace-based Scheduling Simula-
tor

Simulation is an integral part of our evaluation of vari-
ous scheduling policies as well as their aggregate effect on
performance and power consumption. We have developed
a simulator named CQSim to evaluate our design at scale.

The simulator is written in Python, and is formed by sev-
eral modules such as job module, node module, scheduling
policy module, etc. Each module is implemented as a class.
The design principles are reusability, extensibility, and ef-
ficiency. The simulator takes job events from a trace, and
an event may be job submission, job start, job end, and
other events. Based on these events, the simulator emulates
job submission, allocation, and execution based on specific
scheduling policy. CQsim is open source, and is available to
the community [1].

5.2 Job Traces
In this work, we use two real workload traces collected

from production supercomputers to evaluate our design. The
objective of using multiple traces is to quantify the impact
of different factors on electricity bill saving. The first trace
we used is from a machine named Blue Horizon at the San
Diego Supercomputer Center (denoted as SDSC-BLUE in
the paper), which ran 14,4830 jobs in 2001.

Figure 4: (A) Job size distribution of ANL-BGP, (B)
Job size distribution of SDSC-BLUE

The second trace we used is from two racks of the IBM
Blue Gene/P machine named Intrepid at Argonne (denoted
as ANL-BGP in the paper)[25] [29]. This trace contains
26,012 jobs. Since this trace is extracted out of the origi-
nal 40-rack workload, the utilization rate is relatively low.
A well-known approach to remedy this problem is to de-
crease job arrival intervals by a certain rate [27]. After we
decrease job arrival intervals by 40%, the trace becomes 5-
month long with the utilization rate ranging between 39%
and 88%. Figure 4 summarize job size distribution of these
traces. ANL-BGP is used to represent capability comput-
ing where the computing power is explored to solve larger
problems, whereas SDSC-BLUE is used to represent capac-
ity computing where the computing power is utilized to solve
a large number of small problems.

5.3 Dynamic Electricity Price
In our experiments, we set two different electricity prices:

on-peak and off-peak pricing. We set the price in on-peak
time (from 12pm to 12am) higher than the off-peak time
(from 12am until 12pm). This is done to simplify our calcu-
lation and statistical analysis. Indeed, we are not concerned
about the absolute value of electricity price; instead the ra-
tio of on-peak price to off-peak price is more important.
According to [23], the most common ratio of on-peak and
off-peak pricing varies from 1:2 to 1:5. Hence we set the
default ratio to 1:3.

5.4 Job Power Profile
Since job power profile is not included in the original

traces, we assign each job with a power profile between 20



to 60W per node using a normal distribution according to
the power profile presented in Figure 1. Similarly, we are
not concerned about the absolute power profile value; in-
stead the ratio of maximum power profile to minimal power
profile is more important. The default ratio is set to 1:3.

5.5 Evaluation Metrics
In this work, we use three metrics to evaluate our design

against the conventional FCFS.

Electricity Bill Saving. We calculate the relative differ-
ence between the electricity bill using our design and
FCFS to measure the electricity bill savings achieved
by our design. The simulator sums up electricity bill
on a daily basis for the calculation of this metric.

System Utilization Rate. This metric denotes the ratio
of the node-hours that are used for useful computation
to the elapsed system node-hours. Specifically, let T be
the total elapsed time for J jobs, ci be the completion
time for job i and si be its the start time, and ni be the
size of job i, then system utilization rate is calculated
as ∑

0≤i≤J (ci − si) · ni

N · T (3)

Average Job Wait Time. For each job, its wait time refers
to the time elapsed between the moment it is submit-
ted to the moment it is allocated to run. This metric
is calculated as the average across all the jobs sub-
mitted to the system. This metric is a user-centric
metric, measuring scheduling performance from user’s
perspective.

6. EXPERIMENT RESULTS
We conduct four sets of experiments on the traces de-

scribed in Section 5.2 to evaluate our design as against FCFS.

6.1 Baseline Results
Baseline results are presented in Figures 5 - 10, where we

use the default setting described in Sections 5.3-5.4, mean-
ing that job power profile ratio is 1:3 and the off-peak/on-
peak pricing ratio is 1:3. On production supercomputers,
the scheduling frequency is typically on the order of 10 to
30 seconds. Hence, the simulator is set to make a scheduling
decision every 10 seconds.

Since our evaluation focuses on the relative reduction of
electricity bills, so the absolute value of idle power consump-
tion, which is set to 0 in our experiments, does not impact
the results.

Figure 5 and Figure 6 compare system utilization rates
achieved by using different job scheduling policies. It is clear
that the utilization degradation introduced by our design
is always less than 5%, no matter which scheduling policy
we choose (Greedy or Knapsack). Moreover, for the 3rd
and 5th month of SDSC-BLUE trace, both our scheduling
policies may achieve higher system utilization compared to
FCFS. These results clearly demonstrate that our scheduling
design brings negligible impact on system utilization, which
is critical to HPC systems.

Figure 7 and Figure 8 present electricity bill savings ob-
tained by our designs as against FCFS. In general, the monthly
electricity bill saving ranges from 0.5% to 10% by using

Figure 5: System Utilization of SDSC-BLUE

Figure 6: System Utilization of ANL-BGP

Figure 7: Electricity bill saving obtained on SDSC-
BLUE using Greedy and Knapsack scheduling com-
pared with FCFS. The average electricity bill saving
obtained by using Greedy and Knapsack scheduling
policy are 4.33% and 3.16% respectively.

Greedy, and it is from 2% to 10% by using Knapsack. The
average electricity bill saving is 3.16%-5.53%. We also make
two interesting observations. First is that Greedy achieves
more electricity bill saving on SDSC-Blue, whereas Knap-
sack brings in more cost saving on ANL-BGP. Second, we
can see that more energy saving is obtained from ANL-BGP.
As we can see from Figure 4, these traces have distinctive
job characteristics in term of job size. In ANL-BGP trace,
38% jobs request 512 nodes, 19% request 1024 nodes and
8% request 2048 nodes. Given the system size is 2,048, this
means 65% jobs are relatively large in the sense that these



Figure 8: Electricity bill saving obtained on ANL-
BGP using Greedy and Knapsack scheduling com-
pared with FCFS. The average electricity bill saving
obtained by using Greedy and Knapsack scheduling
policy are 5.06% and 5.53% respectively.

jobs request more than a quarter of the system resources.
In contrast, SDSC-BLUE has different characteristics, most
jobs are relatively small: 71% of the jobs smaller than 32,
whereas the system size is 1,152. In other words, ANL-BGP
represents big capability computing and SDSC-BLUE repre-
sents small capability computing. The results indicate that
our design provides more benefits for big capability comput-
ing.

Figure 9: Job Wait Time of SDSC-BLUE

Figure 10: Job Wait Time of ANL-BGP

Figure 9 and Figure 10 show the average job wait times in-
troduced by our design and FCFS. In general, job wait time

is influenced by many factors, such as job arrival rate, job
size, etc. Hence, the average job wait time varies from month
to month. While our scheduling policies might impact the
average job wait time, on both traces we observe that the
maximum change on this metric caused by our design is less
than 10 seconds as compared to FCFS. This implies that our
design does not degrade the scheduling performance from
user’s perspective as compared to FCFS.

Due to space limitations, we will omit the presentation of
job wait time in the following experiments.

6.2 Impacts of Electricity Prices and Job Power
Profiles

In this set of experiments, we conduct a sensitivity study
to investigate the amount of electricity bill savings that
could be achieved by our design under different combina-
tions of power and pricing ratios. We set three different
job power consumption profiles, namely 1:2 (e.g., 20W per
node as the lowest profile and 40W per node as the highest
profile,) 1:3, and 1:4. We also set three off-peak versus on-
peak pricing ratio (i.e., 1:3, 1:4, and 1:5). The results are
summarized in Table 2 and 3.

Table 2 and 3 present the electricity bill savings obtained
by our scheduling policies on ANL-BGP and SDSC-BLUE
respectively, under different pricing and power profile combi-
nations. As the job power profile ratio increases, so does the
electricity bill saving obtained by both Greedy and Knap-
sack. The same situation happens as the pricing ratio goes
up. The highest electricity bill saving is achieved in the case
of when the job power profile ratio is set to 1:4 and the
off-peak over on-peak pricing is set to 1:5.

This is quite reasonable, because the greater the job power
profile ratio is, the more power consumption saving our de-
sign can obtain. With higher off-peak/on-peak price ratio,
the same amount power consumption saving can yield more
electricity bill saving.

Table 2: Electricity bill savings obtained by our
scheduling policies on ANL-BGP. In each cell, the
top number is the electricity bill saving obtained by
Greedy and the bottom number is the electricity bill
saving obtained by Knapsack

Pricing Ratio

Power Ratio 1:3 1:4 1:5

1:2 3.54% 4.33% 4.79%
4.18% 5.07% 5.64%

1:3 5.06% 6.13% 6.85%
5.35% 6.48% 7.25%

1:4 6.27% 7.58% 8.40%
7.21% 8.52% 9.86%

From both Table 2 and Table 3, we can observe that for
the ANL-BGP trace, Knapsack outperforms Greedy under
all power and pricing ratio combinations and for SDSC-
BLUE trace the situation is just opposite. As mentioned
earlier, the ANL-BGP trace contains a large percentage of
large jobs. During on-peak period, the Greedy policy al-
ways selects a job with the least power profile, whereas the
Knapsack policy often picks out a job with a small power



Table 3: Electricity bill savings obtained by our
scheduling policies on SDSC-BLUE. In each cell, the
top number is the electricity bill saving obtained by
Greedy and the bottom number is the electricity bill
saving obtained by Knapsack

Pricing Ratio

Power Ratio 1:3 1:4 1:5

1:2 3.84% 4.84% 6.19%
2.39% 3.01% 3.85%

1:3 4.33% 5.46% 6.98%
3.16% 3.98% 5.10%

1:4 5.55% 6.98% 8.95%
3.05% 3.84% 4.92%

profile under the constraint of the available system resources.
While the Knapsack policy may not schedule the job with
the least power profile, it is capable of identifying the job
which consumes the least amount of aggregated power con-
sumption on all the nodes.

6.3 Impact of Scheduling Frequencies
Typically batch schedulers make allocation decisions peri-

odically. On production supercomputers, the scheduling fre-
quency is generally on the order of 10 to 30 seconds. Hence,
in this set of experiments, we evaluate the impact of differ-
ent scheduling intervals (i.e., 10 seconds, 20 seconds, and 30
seconds) on the amount of electricity bill savings.

Table 4 shows the average electricity bill savings obtained
by our design compared to the conventional FCFS with three
different scheduling periods on ANL-BGP and SDSC-BLUE.
As we can see that the longer the scheduling period is, the
more electricity bill savings our design can get. This is be-
cause with a relative high job arrival rate, a longer schedul-
ing period means more system nodes can be accumulated
for job allocation at a time. As such, our design is able to
allocate more low power profiled jobs during on-peak period
or more high power profiled jobs during off-peak period, re-
sulting in more electricity bill savings.

Table 4: Electricity bill Savings obtained by our
scheduling policies under different scheduling fre-
quencies. In each cell, the top number is on ANL-
BGP and the bottom number is on SDSC-BLUE.

Scheduling Policy

Frequency Greedy Knapsack

10-Second 7.49% 7.13%
4.33% 3.16%

20-Second 10.07% 8.91%
9.70% 9.80%

30-Second 17.52% 22.43%
19.69% 23.07%

Table 5 shows the average system utilization of ANL-BGP
and SDSC-BLUE trace under different scheduling frequen-

Table 5: System utilization rate under different
scheduling frequencies. In each cell, the top num-
ber is on ANL-BGP and the bottom number is on
SDSC-BLUE.

Scheduling Policy

Frequency FCFS Greedy Knapsack

10-Second 70.0% 69.70% 69.07%
69.59% 69.53% 69.50%

20-Second 68.56% 69.03% 65.97%
68.56% 69.25% 65.06%

30-Second 63.77% 60.42% 60.84%
67.38% 68.85% 66.21%

cies by our design and FCFS. As we can see that both
Greedy and 0-1 Knapsack scheduling policy employed in our
design have almost no impact on the system utilization rate
when the scheduling period is 10 seconds. When the schedul-
ing period is increased to 30 seconds, some available nodes
will have to wait for a relatively long time until they are
assigned to new jobs. Thus the system utilization rate suf-
fers slightly, however is always less than 3%. Combining the
results shown in Table IV and V, it is observed that a longer
scheduling frequency can bring in more electricity bill sav-
ings, at a cost of a slightly degraded system utilization (less
than 3%).

6.4 Impact of Scheduling Window
The use of scheduling window, rather than one by one job

scheduling adopted by the conventional batch scheduling, is
a key technique of our design. Typically, an optimal window
size is influenced by many factors, in particular job arrival
rate. In general, a larger window means more opportuni-
ties for our design to make an optimal decision. However,
large window size can result in high scheduling overhead,
especially Knapsack policy, since window size is a dominant
factor of its computational complexity.

We conduct a sensitivity study of scheduling window by
varying its size from 10 to 200. For both traces, our results
show that the variations of all three metrics are not substan-
tial (e.g., within 5%). More importantly, our results indicate
that when the window size is set to 10 to 30, for both traces,
the variations of all three metrics are negligible. Given the
high computation overhead introduced by large window size,
a window size of 10-30 jobs is preferable for typical workload
at production systems.

6.5 Result Summary
In summary, our trace-based experiments have shown the

following:

• Workload characteristics can impact the performance
of our design in terms of electricity bill savings. In
particular, our design can achieve more savings on big
capability computing systems than on small capacity
computing systems.

• Both the Knapsack policy and the Greedy policy are
capable of reducing electricity bill with little or no
impact to system utilization, as compared to FCFS.



Figure 11: Job characteristics in December of 2012
on the 48-rack Mira machine. Each red point indi-
cates a job submission

Further, the Knapsack policy seems to outperform the
Greedy policy for capability computing.

• The amount of electricity bill savings is also influenced
by scheduling frequency. The longer the scheduling fre-
quency is, the more electricity bill savings is achieved
by our job power profile aware scheduling.

• Higher power profile ratio and electricity pricing ra-
tion lead to greater electricity bill savings by using our
design.

• For typical workload at production systems, a schedul-
ing window of 10-30 jobs is sufficient.

7. CASE STUDY
In this section, we present a case study of using our job

power aware scheduler on Mira. We collected the job trace
from the machine in December 2012. During the month,
the first half of the month were jobs for acceptance testing
(hence most jobs are large jobs) and the second half was
used for early science applications from users (hence most
jobs are small sized such as single rack). There are totally
3,333 jobs executed on the machine during the month. A
summary of these jobs is described in Figure 11. For each
job, its power profile is extracted from the environmental log
[28], and the distribution of job power profiles is presented
in Figure 1.

In this case study, we compare the Knapsack policy to
FCFS. We apply two scheduling frequencies, i.e. 10-second
and 30-second. The scheduling window is set to 10-second.

Figure 12 presents the average utilization within a day.
Here system utilization at each time point is calculated as
the average over the month. During the off-peak time, sys-
tem utilization achieved by our scheduler is higher than that
achieved by FCFS. This is because during the off-peak time,
our design attempts to allocate jobs with high power pro-
files, as many as possible, by taking advantage of low elec-
tricity pricing. During the on-peak time, FCFS achieves a
slightly better system utilization over our design. This is
because our design intends to schedule large jobs with low
power profiles, leaving some idle nodes that are not sufficient
for other jobs. Nevertheless, despite some minor variation
at any time instant, the daily system utilization is not im-
pacted or degraded by using our design.

Figure 13 presents the average power consumption within
a day. Here power consumption at each time point is cal-
culated as the average over the month. During the off-peak

time, the amount of power consumed by our design is higher
than that consumed by FCFS. This phenomenon is more
obvious when we switch the scheduling frequency from 10
seconds to 30 seconds. This is reasonable as our design aims
to increase power consumption by taking advantage of low
electricity pricing during off-peak time. During the on-peak
time,while our design is supposed to decrease the overall
power consumption to avoid high electricity cost, the figure
doesn’t show such a pattern. As we mentioned earlier, the
job trace was collected in the month in which the second
half of the month was mainly used for early science test-
ing (i.e., most jobs submitted are small sized such as single
rack). As presented in Figure 1, small sized jobs have simi-
lar power profiles. Due to these unique characteristics of the
job trace (i.e., the same sized jobs with similar power pro-
files), our design ends up with the same scheduling sequence
as FCFS, hence giving the similar power consumption dur-
ing the on-peak time. We believe our design is capable of
providing more electricity bill saving when the machine is
used in production.

The monthly electricity bill saving obtained by our design
versus FCFS is 5.4% and 9.98% respectively by using 10-
second scheduling frequency and 30-second frequency. This
is substantial, given that approximately $1M annual elec-
tricity bill to power up this machine at Argonne.

8. CONCLUSIONS
In this paper, we have proposed an novel job power aware

scheduling design, with the objective to reduce the electric-
ity bill of HPC systems. Our design is based on the facts that
HPC jobs have different individual power profiles and that
electricity prices vary throughout a day. By scheduling jobs
with high power profiles during low electricity pricing period
and jobs with low power profiles during high electricity pric-
ing period, our scheduler is capable of cutting the electricity
bill of HPC systems by up to 23% without impacting system
utilization, which is critical to HPC systems.

To our knowledge, this is the first electricity bill study of
large-scale HPC systems using real job traces and job power
profiles from production systems. Our key findings and con-
tributions are: (1) a job power aware scheduling mechanism
and two scheduling policies designed to cut the electricity
bill of HPC systems; (2) a scheduling policy with real po-
tential to substantially reduce the electricity bill for HPC
systems by exploring distinct job power profiles and vary-
ing daily electricity prices; and (3) a trace-based scheduling
simulator named CQSim for evaluating various scheduling
policies at scale, which is available online.

Some avenues for future work include more experiments
with real job traces and job power profiles from various HPC
systems as well as integrating our design with the work on
environmental data analysis tool as [28] for automatically
obtaining job power profiles.
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