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Abstract—High-radix, low-diameter dragonfly networks will be
a common choice in next-generation supercomputers. Prelim-
inary studies show that random job placement with adaptive
routing should be the rule of thumb to utilize such networks,
since it uniformly distributes traffic and alleviates congestion.
Nevertheless, in this work we find that while random job place-
ment coupled with adaptive routing is good at load balancing
network traffic, it cannot guarantee the best performance for
every job. The performance improvement of communication-
intensive applications comes at the expense of performance
degradation of less intensive ones. We identify this bully behav-
ior and validate its underlying causes with the help of detailed
network simulation and real application traces. We further
investigate a hybrid contiguous-noncontiguous job placement
policy as an alternative. Initial experimentation shows that
hybrid job placement aids in reducing the worst-case per-
formance degradation for less communication-intensive appli-
cations while retaining the performance of communication-
intensive ones.

1. Introduction

Low-latency and high-bandwidth interconnect networks
play a critical role in ensuring HPC system performance.
The high-radix, low-diameter dragonfly topology can lower
the overall cost of the interconnect, improve network band-
width and reduce packet latency [1], making it a very
promising choice for building supercomputers with millions
of cores. Even with such powerful networks, intelligent job
placement is of paramount importance to the efficient use
of dragonfly connected systems [2], [3].

Recent studies suggest that random node allocation for
parallel jobs, coupled with adaptive routing, can allevi-
ate local congestion, eliminate hot-spots and achieve load-
balancing for dragonfly networks [3], [4], [5]. These studies
explore the possible job placement and routing configura-
tions that could optimize the overall network performance
without examining how different configurations impact the
progress of individual applications. In this paper, we study
the implications of contention for shared network links
in the context of multiple HPC applications running on
dragonfly systems when different job placement and routing

configurations are in use. Our analyses focus on the overall
network performance as well as the performance of con-
currently executing applications in the presence of network
contention.

We choose three representative HPC applications from
the DOE Design Forward Project [6] and analyze the in-
terference among them. Our study is based on simulation
with CODES, a high-fidelity, flit-level HPC network sim-
ulation toolkit [7]. For each application, we examine its
performance with two job placement policies and three rout-
ing policies. We make the following observations through
extensive simulations.

• Concurrently running applications on a dragonfly
network interfere with each other when they share
network resources. Communication-intensive appli-
cations “bully” their less intensive peers and obtain
performance improvement at the expense of less
intensive ones.

• Random placement of application processes in
the dragonfly can improve the performance of
communication-intensive applications by enabling
network resource sharing, though it introduces in-
terference causing performance degradation to the
less intensive applications.

• Contiguous placement can be beneficial to the con-
sistent performance of less communication-intensive
applications by minimizing network resource shar-
ing, because it reduces the opportunities for traffic
from other applications to be loaded on links that
serve as minimal routes for the less intensive appli-
cation. However, this comes with the downside of
reduced system performance due to load imbalance.

Based on the aforementioned key observations, one
would expect that an ideal job placement policy on dragonfly
systems would take relative communication intensity into
account, and mix contiguous and non-contiguous placement
based on application needs. To explore this expectation,
we investigate a hybrid job placement policy, which as-
signs random allocations to communication-intensive appli-
cations and contiguous allocations to less intensive ones.
Initial experimentation shows that hybrid job placement
aids in reducing the worst-case performance degradation for

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE



less communication-intensive applications while retaining
the performance of communication-intensive applications,
though without eliminating the problem entirely.

To the best of our knowledge, using real application
traces from production systems for the study of job in-
terference on dragonfly networks has not been reported in
the literature so far. We believe the observations and new
placement policy presented in this paper are valuable to the
HPC community.

The rest of this paper is organized as follows. Section 2
describes an implementation of the dragonfly network, intro-
duces the placement policies and routing policies. Section 3
discusses the use of CODES as a research vehicle and three
representative applications from the DOE Design Forward
Project. Section 4 presents the observations and analysis
of three applications running on a dragonfly network with
different placement and routing configurations. Section 5
validates the observations we obtain from previous section.
Section 6 presents a alternative placement policy for the
dragonfly network. Section 7 discusses the related work.
Finally, the conclusion is presented in Section 8.

2. Background

In this section, we review the dragonfly topology, includ-
ing the placement and routing policies examined in previous
work.

2.1. Dragonfly Network

The dragonfly is a two-level hierarchical topology, con-
sisting of several groups connected by all-to-all links. Each
group consists of a routers connected via all-to-all local
channels. For each router, p compute nodes are attached
to it via terminal links, while h links are used as global
channels for intergroup connections. The resulting radix of
each router is k = a+h+p−1. Different computing centers
could choose different values for a, h, p when deploying
their dragonfly network. The adoption of proper a, h, p
involves many factors such as system scale, building cost
and workload characteristics.

It is recommended that for load balancing purposes, a
proper dragonfly configuration should follow a = 2p =
2h [8]. According to this configuration, the total number
of groups, denoted as g in the dragonfly network would be
g = a ∗ h+ 1, the total number of compute nodes denoted
as N in the network would be N = p ∗ a ∗ g. An example
dragonfly network is illustrated in Figure 1. There are six
routers in each group (a = 6), three compute nodes per
router (p = 3), and three global channels per router (h = 3).
This dragonfly network consists of 19 groups and 342 nodes
in total.

2.2. Routing on Dragonfly

The routing policy refers to the strategy adopted to route
packets from the source router to the destination router.

Router

Local Channel

Compute Node

Global Channel

Group

Node assigned to J1 Node assigned to J2

…

Figure 1: Five group slice of a 19-group dragonfly network.
Job J1 is allocated using random placement, while Job J2
is allocated using contiguous placement.

Previously studied routing policies for dragonfly networks
include minimal routing, adaptive routing [1], progressive
adaptive routing [9] and variations thereof [10]. In this work
we study three alternative routing policies considered by the
community for dragonfly networks.

Minimal: In this policy, a packet takes the minimal
(shortest) path from the source to the destination. The packet
first routes locally from the source node to the global
channel leading to the destination group. It traverses the
global channel to the destination group and routes locally
to the destination node. Minimal routing can guarantee
the minimum hops a packet takes from the source to the
destination. However, it usually results in congestion along
the minimal paths.

Adaptive: In this policy, the path a packet takes will
be adaptively chosen between minimal and non-minimal
paths, depending on the congestion situation along those
paths. For the non-minimal path, an intermediate router in
a separate group will be randomly chosen. The packet is
forwarded to the intermediate router, connecting the source
and destination groups through two separate minimal paths.
Adaptive routing can avoid hot-spots in the presence of
congestion and collapses to minimal routing otherwise.

Progressive Adaptive: As opposed to adaptive routing,
the decision to adaptively route a packet is continually re-
evaluated within the source group until a non-minimal route
is chosen; the re-evaluation does not occur in intermediate
groups [9]. Progressive adaptive routing is capable of han-
dling scenarios where the minimal route is congested but
the source router has not been informed yet.



2.3. Job Placement on Dragonfly

For a parallel application requiring multiple compute
nodes, the job placement policy refers to the way of as-
signing the required number of nodes to the application by
system software such as the batch scheduler [11]. In this
work, we study two alternative placement policies consid-
ered by the community for dragonfly systems:

Random Placement: In this policy, an application gets
the required number of nodes randomly from the available
nodes in the system. As illustrated in Figure 1, J1 is ran-
domly allocated nodes attached to different routers in differ-
ent groups. Routers may be shared by different applications
and more routers are involved in serving each application
when random placement is in use. Random placement can
distribute the tasks of an application uniformly across the
network to avoid the possible local congestion.

Contiguous Placement: In this policy, the compute
nodes are assigned to an application consecutively. The as-
signment first fills up a group, then crosses group boundaries
as necessary. As illustrated in Figure 1, J2 is allocated
eight nodes by contiguous placement. Contiguous placement
confines the tasks of an application into the same group
and uses the minimum number of routers to serve each
application, which may result in local network congestion
and increase the possibility of hot-spots.

3. Methodology

Configurable dragonfly networks that allow us to per-
form the exploration presented in this paper are hard to
come by for the time being. Even with access to systems
with such networks, job placement and routing policies are
part of system configuration, which is impossible for users
to make changes at will [3], [4], [12], [13]. Therefore, we
resort to simulation in our work.

3.1. Simulation Tool

We utilize the CODES simulation toolkit (Co-Design of
Multilayer Exascale Storage Architectures) [7], which builds
upon the ROSS parallel discrete event simulator [14], [15]
to enable exploratory study of large scale systems of interest
to the HPC community. CODES supports dragonfly [7],
[16], torus [17], [18], and Slim Fly [19] networks with
flit-level high-fidelity simulation. It can drive these models
through an MPI simulation layer utilizing traces generated
by the DUMPI MPI trace library available as part of the
SST macro toolkit [20]. The behavior and performance of
the CODES dragonfly network model has been validated by
Mubarak et al. [16] against BookSim, a serial cycle-accurate
interconnection network simulator [21].

3.2. Parallel Applications

We use a trace-driven approach to workload genera-
tion, choosing in particular three parallel application traces

gathered to represent exascale workload behavior as part
of the DOE Design Forward Project [6], [22]. Specifically,
we study communication traces representing the Algebraic
MultiGrid Solver (AMG), Geometric Multigrid V-Cycle
from Production Elliptic Solver (MultiGrid) and Crystal
Router MiniApp (CrystalRouter).

AMG: The Algebraic MultiGrid Solver is a parallel
algebraic multi-grid solver for linear systems arising from
problems on unstructured mesh physics packages. It has
been derived directly from the BoomerAMG solver de-
veloped in the Center for Applied Scientific Computing
(CASC) at LLNL [23].

MultiGrid: The geometric multi-grid v-cycle from the
production elliptic solver BoxLib is a software framework
for massively parallel block-structured adaptive mesh refine-
ment (AMR) codes [24], which are used in structured grid
physics packages.

CrystalRouter: The Crystal Router MiniApp is a com-
munication kernel of Nek5000 [25], a spectral element CFD
application developed at Argonne National Laboratory. It
features spectral element multi-grid solvers coupled with a
highly scalable, parallel coarse-grid solver that is widely
used for projects including ocean current modeling, thermal
hydraulics of reactor cores, and spatiotemporal chaos.

3.3. System Configuration

The parameters for building the dragonfly network stud-
ied in our work are chosen based on the model proposed by
Kim et al. [8]. In our dragonfly network, each group consists
of a = 8 routers connected via all-to-all local channels. For
each router, there are p = 4 compute nodes attached to it via
terminal links. Each router also has h = 4 global channels
used for intergroup connections. The radix of each router is
hence k = a+h+p−1 = 15. The total number of groups is
g = a ∗ h+ 1 = 33 and the total number of compute nodes
is N = p ∗ a ∗ g = 1056. The dragonfly link bandwidths
are asymmetric, 2Gib/s for the local and terminal router-
ports and 4GiB/s for the global ports, indicated by the Cray
Cascade system [26]. In this work, we simulate the net-
work performance and job interference across six different
job placement and routing policy combinations, which are
summarized in Table 1.

TABLE 1: Nomenclature for different placement and routing
configurations

Routing Policies

Placement Policies Minimal Adaptive Progressive Adaptive

Contiguous cont-min cont-adp cont-padp

Random rand-min rand-adp rand-padp

We analyze both the overall network performance and
the performance of each application. Our analysis focuses
on the following metrics:

• Network Traffic: The traffic refers to the amount of
data in bytes going through each router. We analyze



the traffic on each terminal and on the local and
global channels of each router. The network reaches
optimal performance when the traffic is uniformly
distributed and no particular network link is over-
loaded.

• Network Saturation Time: The saturation time
refers to the time period when the buffer of a certain
port in the router is full. We analyze the saturation
time of ports corresponding to terminal links, local
and global channels. The saturation time indicates
the congestion level of routers.

• Communication Time: The communication time
of each MPI rank refers to the time it spends in
completing all its message exchanges with other
ranks. Due to the use of simulation, we are able
to measure the absolute (simulated) time a message
takes to reach its destination. The performance of
each application is measured by the communication
time distribution across all its ranks.

Note that we do not model computation for each MPI
rank due to both the complexities inherent in performance
prediction on separate parallel architectures as well as the
emphasis on the side of the Design Forward traces on
communication behavior rather than compute representation;
users are instructed to treat the traces as if they came
from one MPI rank-per-node configuration, despite being
gathered using a rank-per-core approach. We follow the
recommended interpretation in our simulations.

3.4. Workload Summary

Two sets of parallel workloads are used in this study.
Workload I consists of AMG, MultiGrid and CrystalRouter.
As shown in Table 2, AMG has the least amount of data
transfer, making it the least communication-intensive job in
the workload. Workload II consists of sAMG, MultiGrid
and CrystalRouter. sAMG, a synthetic version of AMG, is
generated by increasing the data transferred in AMG’s MPI
calls by a factor of 100, making it the most communication-
intensive job in the workload. We add sAMG for reasons
that will become clear in the following sections.

As a significant portion of our experiments rely on
nondeterministic behavior (random application allocation),
we ran each configuration a total of 50 times with differing
random seeds. We then chose a representative execution
for presentation based on the median performance of each
application. While there is variation in repeated runs of the
following experiments, the resulting trends and observations
are representative of the full suite of experimentation.

4. Study of Parallel Workload I

The study of Workload I consists of two parts. First, we
analyze the overall network performance when Workload I
is running under different placement and routing configura-
tions. Second, we isolate each application from the workload
and analyze its performance on both a per-rank basis as well

TABLE 2: Summary of Applications

App Name Num. Rank Avg. Data/Rank Total Data

AMG 216 0.6MB 130MB

MultiGrid 125 5MB 625MB

CrystalRouter 100 35MB 3500MB

sAMG 216 60MB 13000MB

as by considering router traffic resident to application ranks.
The analysis allows us to identify the “bully” in Workload I.

4.1. Network Performance Analysis

We first study the network performance at the system
level by analyzing the degree of traffic and saturation seen
at each router.

Figure 2 shows the aggregate traffic for terminal links,
local and global channels, as well as the corresponding
saturation time for Workload I under the placement and
routing configurations summarized in Table 1. When con-
tiguous placement is coupled with minimal routing (cont-
min), application traffic is confined within the consecutively
allocated groups, causing congestion on some routers along
minimal paths to and from application nodes. Both local and
global channels experience significant congestion, as appli-
cations span multiple groups. Similarly, the saturation time
for both local and global channels are the highest compared
with other configurations. When contiguous placement is
coupled with adaptive (cont-adp) and progressive adaptive
(cont-padp) routing, traffic is able to take non-minimal paths
via intermediate routers, helping to alleviate congestion
along the minimal paths. The resulting traffic through the
most utilized local and global channels are greatly reduced,
as shown in Figures 2a and 2b. Similarly, the corresponding
saturation time on local and global channels is also reduced
significantly, demonstrating the efficacy of adaptive routing
in this case. For contiguous placement, we see no perceptible
difference in behavior between adaptive and progressive
adaptive routing.

In most cases, the random placement policy behaves
similarly across routing policies. Random placement uni-
formly distributes MPI ranks over the network, balancing
the resulting traffic load. As shown in Figures 2a and 2b,
no router experiences an exceptionally high volume of traffic
on its local and global channels. When random placement
is coupled with minimal routing (rand-min), less traffic is
generated on account of the packets avoiding intermediate
forwarding. At the same time, there is still significant con-
gestion on local channels due to the lack of ability of packets
to traverse non-minimal routes, falling into the same trap as
the contiguous-minimal configuration. Coupled with (pro-
gressive) adaptive routing, saturation times are effectively
minimized on both global and local channels when random
placement is in use, as shown in Figure 2d and 2e. Further,
in comparison to contiguous allocations, random allocations
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Figure 2: Aggregate traffic and saturation time for Workload I under the configurations listed in Table 1. In these plots,
”adp” and ”padp” exhibit similar behaviors, and their curves are overlapped.

result in a more evenly distributed load on the resulting
channels, as expected.

Figures 2c and 2f are presented for the purpose of
symmetry, showing the traffic per terminal link as well as
the saturation time experienced at each terminal. The ter-
minal traffic distribution corresponds directly to application
traffic, as we are using one MPI rank per node (terminal).
However, saturation times are different, resulting from the
aforementioned network behavior. Particularly, contiguous
allocations coupled with minimal routing results in a “long-
tail” distribution of saturation time.

4.2. Individual Application Analysis

Now that the system-level view has been analyzed, we
turn to evaluate the behavior of each application within
Workload I. Figure 3 shows the communication time distri-
bution across application ranks for different placement and
routing configurations.

The relative behavior of contiguous allocations is
roughly similar in all three applications. Contiguous place-
ment with minimal routing results in poor relative perfor-
mance across the board compared to the adaptive routing
alternatives. Given the analyses in Section 4.1, this is to be
expected – the contiguous-minimal configuration results in
significant congestion.

For the MultiGrid and CrystalRouter applications (Fig-
ures 3a and 3b, respectively), using random allocation with
any routing method results in performance improvements
over contiguous allocations, which is largely in agreement
with the literature (see Section 7). The high-radix nature

of the network topology ensures that the benefits from the
resulting load balancing outweigh the costs of extra hops
for point-to-point messages.

The AMG application (Figure 3c), however, shows
markedly different behavior when using random allocation.
Random allocation with minimal routing results in com-
parable performance to contiguous-adaptive configurations,
while using adaptive routing results in significant perfor-
mance regressions. As this is a counterintuitive result not
discussed in other works, we investigate further.

We step back to a network-level system view to identify
the culprit behind AMG’s abnormal behavior with random
placement. This time, however, we identify the compute
nodes that each MPI rank resides on and the routers that
are serving each application, and analyze the traffic on a
per-application basis. The results of this experimentation
are presented in Figure 4. Note that different numbers of
routers are used in the contiguous and random allocation
configurations, as each router serves multiple terminals.

The system behavior with respect to the CrystalRouter
application arguably best matches expectations. Use of con-
tiguous allocations results in a subset of channels with a
significant traffic load while a significant portion are un-
used. Use of random allocations results in a comparatively
smoother traffic distribution, with some variation on the
margins due to the randomness.

MultiGrid shows roughly similar behavior for contigu-
ous allocations, but different behavior along the local chan-
nels. There is a significant variation in the traffic distribution
on local channels, even with adaptive routing, which nev-
ertheless has the net effect of reducing the maximal traffic
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Figure 3: Communication time distribution across application ranks in Workload I.
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Figure 4: Aggregate workload traffic for routers serving specific applications. More routers are involved in serving each
application when random placement is in use, compared to contiguous placement. In these plots, ”adp” and ”padp” exhibit
similar behaviors, and their curves are overlapped.

load.
AMG shows a similar level of variation to MultiGrid in

this case. However, it is the least communication-intensive
application of the three by a significant factor. As evidenced
by the wide gap between the router traffic in contiguous
and random placement configurations, the routers serving
the AMG application are being utilized by MultiGrid and
CrystalRouter, resulting in AMG traffic contending with
traffic of other applications. The net effect, as shown in
Figure 3c, is significant slowdowns for AMG. We refer to
this phenomenon as AMG being “bullied” by MultiGrid and
CrystalRouter.

4.3. Key Observations

In summary, based on the simulations presented in Sec-
tion 4.1 and 4.2, we make the following observations.

System-level performance is significantly improved when
random placement and adaptive routing are in use. Random
placement can uniformly distribute MPI ranks of application
over the network, and adaptive routing can redirect the
traffic from congested routers to other less busy routers. The
combination of the two minimizes hot-spots and promotes
load-balanced distribution. The resulting increased number
of hops per message was not a significant detriment in
comparison. This matches what is seen in the literature.

The performance of communication-intensive jobs in
the system improves through use of random allocation
policies. Both CrystalRouter and MultiGrid, the two most
communication-intensive jobs, saw improved distributions
of communication performance when moving to a random
allocation. Again, this matches what is seen in the literature.

The performance of less communication-intensive jobs



in workload regresses when random placement and adaptive
routing are in use. AMG in Workload I is “bullied” by its
concurrently running communication-intensive peers, Multi-
Grid and CrystalRouter. AMG shares routers and groups
with MultiGrid and CrystalRouter under random placement.
The traffic from MultiGrid and CrystalRouter is (re)directed
to the routers that serve AMG, slowing down AMG’s com-
munication. 1

In contrast, performance consistency of each application
is achieved only when contiguous placement and minimal
routing are in use. As a corollary to the previous observa-
tion, router and group sharing among applications are guar-
anteed to be prohibited when using contiguous placement
with minimal routing (sharing of spare nodes within a group
notwithstanding). This renders the “bully” behavior moot,
though with the downside of significant performance degra-
dation, so such approaches must be carefully considered.

5. Study of Parallel Workload II

In this section, we use a different experimental con-
figuration to verify and explore the observations made in
the previous section. Specifically, we conduct the same
sets of experiments through Workload II, which consists of
sAMG, MultiGrid and CrystalRouter. The “bully” becomes
the “bullied” with the presence of sAMG in Workload II.

5.1. Network Performance Analysis

Figure 5 shows aggregate traffic and saturation times for
Workload II, corresponding to Figure 2 in Workload I. Re-
placing AMG with sAMG results in greater aggregate traffic
as well as more saturation than in Workload I, but regardless,
similar patterns can be observed. Contiguous placement with
minimal routing results in load imbalance with respect to
both traffic and saturation. The addition of adaptive routing
alleviates these effects to some degree, particularly with
respect to global channel usage, while trading off saturation
in global channels for saturation in the local channels. Using
random placement again shows roughly similar performance
characteristics across routing configurations, with adaptive
routing helping to balance aggregate load while increasing
the aggregate traffic due to the related indirection.

5.2. Individual Application Analysis

We study the performance of each application individu-
ally in the same manner as in Section 4.2. Figure 6 shows
the communication time distributions of the ranks of the
three applications, running concurrently in Workload II. The
“bully” in Workload I becomes the “bullied” in Workload II.
MultiGrid and CrystalRouter are in this instance the less
communication-intensive applications. With random place-
ment and (progressive) adaptive routing, both MultiGrid and

1. We have tried three different congestion “sensing” schemes in the
literature for adaptive routing [10]. Although there are some variations
between the results, none of the congestion sensing scheme prevent the
“bully” behavior.

CrystalRouter experience prolonged communication time,
as shown in Figure 6a, 6b. On the other hand, sAMG
(Figure 6c) benefits from those configurations in a similar
manner to CrystalRouter in Workload I. Contiguous place-
ment coupled with minimal routing, while preventing the
“bully” behavior, results in poor performance for all of the
applications except CrystalRouter, which we expect is due
to a higher degree of network isolation.

Once again, we look at the network-level system view
to scrutinize the traffic through the routers serving each
application. The routers serving sAMG have a high volume
of traffic on both local and global channels when contiguous
placement is in use, as shown in Figures 7c and 7f. As
in previous results, the use of random placement alleviates
the local congestion by uniformly distributing the traffic of
sAMG over the network, getting more routers involved in
serving sAMG. In this case, a majority of those less busy
routers are also serving MultiGrid and CrystalRouter.

MultiGrid in Workload II is similar to AMG in Work-
load I when considering resident channel behavior, as shown
in Figures 7a and 7d. There is a large gap in traffic volume
between the contiguous and random placement approaches,
due to other applications (sAMG in particular) utilizing the
same links. CrystalRouter in Workload II additionally expe-
riences more load on its channels using random allocation
configurations, as shown in Figure 7b and 7b. However, the
maximal load under random allocation is closer to that ob-
served in contiguous allocations as compared to MultiGrid.

5.3. Key Observations

Revisiting the observations in Section 4.3, we find that
those observations are held under this separate configuration.
System-level performance is still much improved in terms
of load-balancing with random placement. sAMG, being
far and away the most communication-intensive application
in Workload II, benefits greatly from random placement,
whereas in Workload I AMG was effectively penalized for
being less communication-intensive. CrystalRouter, being
the comparatively less communication-intensive application
in Workload II, experiences performance regressions in
Workload II under random and adaptive policies.

Interestingly, in both Workload I and II, MultiGrid ex-
periences a more subtle performance variatioin than the
significant swings in performance observed in the other
applications. These behaviors persisted across multiple runs
with different random seeds. Additionally, CrystalRouter in
Workload II has less drastic changes in maximal load, but
still experiences performance regressions. We are continuing
to work towards understanding the root causes and impli-
cations of this behavior, for which we expect application-
specific communication patterns to be an important factor.

6. Hybrid Job Placement

Based on our experiments with Workloads I and II, the
“bully” behavior is exhibited when the dragonfly network is
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Figure 5: Aggregate traffic and saturation time for Workload II under the configurations listed in Table 1. In these plots,
”adp” and ”padp” exhibit similar behaviors, and their curves are overlapped.
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Figure 6: Communication time distribution across application ranks in Workload II. The “bully”, sAMG, benefits from
random placement and adaptive routing, while the “bullied”, MultiGrid and CrystalRouter, suffer performance degradation.

configured with random placement and (progressive) adap-
tive routing, and there is a large gap between the communi-
cation intensity of applications running on the network. As
shown through our experimentation, contiguous placement
policies give up too much in terms of congestion and load
balance, hence being an impractical solution. Further, run-
ning each job with a dedicated routing policy is unrealistic,
since routing policy is part of system configuration which
can not be changed on the fly upon job submission.

As a natural extension of our observations, one ques-
tion that arises is whether we can combine the merits of
random and contiguous placement policies in which each
application receives the performance benefits from system
load balancing while avoiding the “bully” behavior. As
an initial exploration of the question, we set up a mock
hybrid job placement policy, in which less communication-

intensive jobs receive contiguous allocations to avoid the
“bully” effect, while the communication-intensive jobs are
allocated randomly in order to distribute the communication
load. For Workload I, this means AMG gets a contiguous
allocation while MultiGrid and CrystalRouter get random
allocations. Note that we do not consider challenges in-
herent in designing an allocation policy for production
usage, such as backfilling, reserving large contiguous sets
of nodes, determining a metric for communication intensity,
etc., preferring a restricted-scope experiment looking at the
design space of dragonfly allocation policies in light of our
experimental observations.

For the purpose of brevity, we only present the com-
munication time distribution of each application under all
placement and routing configurations, including the hybrid
placement method. These results are presented in Figure 8.
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Figure 7: Aggregate workload traffic for routers serving specific applications. More routers are involved in serving each
application when random placement is in use, compared to contiguous placement. In these plots, ”adp” and ”padp” exhibit
similar behaviors, and their curves are overlapped.
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Figure 8: Application communication time. Workload I is running with all placement and routing configurations. Methods
prefixed with “hyb” represent the hybrid allocation approach.

As shown in Figure 8a and 8b, MultiGrid and CrystalRouter
exhibit similar performance in both hybrid and random
placement, as nodes are being placed randomly in each case.
While the performance of AMG under hybrid placement,
shown in Figure 8c, still appears to exhibit significant com-
munication interference on account of the other applications
as opposed to the best contiguous placement policies, the
effects are reduced compared to a random-adaptive policy.
We believe this to be a result of more AMG-specific traffic
occupying a smaller set of routers/groups, both reducing the
probability of traffic entering them through adaptive routing
and increasing the relative proportion of link utilization by
AMG. Of course, this comes with the costs associated with
contiguous allocation, in which AMG’s traffic is less likely
to load balance across multiple dragonfly groups.

These initial experiments demonstrate some degree of
benefit derived from using a hybrid approach, helping to

alleviate the “bully” effect while retaining the performance
of communication-intensive applications. However, the be-
havior is still not ideal in this case – AMG’s communications
still experience performance degradation versus the contigu-
ous configurations. Hence, more work in this area is needed
to fully understand the intricate relationships between job
scheduling and system/application communication behavior
to achieve optimal network utilization and application per-
formance in high-radix networks.

7. Related Work

The impact of job placement on system behavior and
application performance has been the subject of many stud-
ies. We focus on the HPC-centric studies here. Skinner et al.
identified significant performance variability due to network
contention [27]. They found that performance variability is



inevitable on either torus or fat-tree networks when net-
work sharing among concurrently running applications is
allowed. Bhatele et al. studied the performance variability
of a specific application, p3FD, running on different HPC
production systems with torus network topologies [28]. They
obtained performance consistency in their application when
network resources were allocated compactly and exclusively
and wide variability otherwise. Jokanovic et al. studied the
impact of job placement to the workload and claimed that
the key to reduce performance variability is to avoid network
sharing [29].

Recently, several researchers have investigated job
placement and routing algorithms on dragonfly networks.
Prisacari et al. proposed a communication-matrix-based an-
alytic modeling framework for mapping application work-
loads onto network topologies [30]. They found that, in the
context of dragonfly networks, optimizing for throughput
and not workload completion time is often misleading and
the notion of system balance cited as a dragonfly design
parameter is not always directly applicable to all workloads.
Jain et al. conducted a comprehensive analysis of various job
placement and routing policies with regard to network link
throughput on dragonfly network [3]. Their work is based on
an analytical model and synthetic workload. Bhatele et al.
used coarse-grain simulation to study the performance of
synthetic workloads under the different task mapping and
routing policies on two-level direct networks [4]. Mubarak
et al. focused on the modeling of large-scale dragonfly net-
works with parallel event driven simulation. The dragonfly
network model for million-node configurations presented in
their work strongly scales when going from 1,024 to 65,536
MPI tasks on IBM Blue Gene/P and IBM Blue Gene/Q
systems [16]. The dragonfly model used in this paper is
from their work.

Our work complements the literature in the following
aspects. First, our simulations are driven by real appli-
cation traces intended to be representative of production-
scale application patterns. Second, we holistically examine
network behavior at both the overall system level as well
as the individual application level, though we do not con-
sider communication-pattern specific application mappings
as Prisacari et al. did. Third, with the CODES simulation
toolkit and related network models [16], [31], we are able
to simulate and examine system and application behavior
at a very fine grain, collecting data at the dragonfly link
level with packet-level fidelity. We believe these differences
allowed us to uncover the “bully” behavior, which to our
knowledge is unreported in the literature. However, in a
sense, Prisacari et al.’s work suggests these types of behav-
iors as possibilities deriving from the balance-first design
rationale for the dragonfly.

8. Conclusions and Future Work

In this paper, we have conducted extensive studies of
system and application behavior using various job place-
ment and routing configurations on a dragonfly network.
We took a simulation-based approach, utilizing the CODES

simulation toolkit and related models for high-fidelity drag-
onfly simulation, driving the network with three production-
representative scientific application traces. We found that,
under the prevailing recommendation of random process
placement and adaptive routing, network traffic can be well
distributed to achieve a balanced load and strong overall
performance, at the cost of impairing jobs with less intensive
communication patterns. We denoted this as the “bully”
effect. On the other hand, contiguous process placement
prevents such effects while exacerbating local congestion,
though this can be mitigated through the addition of adap-
tive routing. Finally, we performed initial experimentation
exploring a mock “hybrid” contiguous/random job place-
ment policy. Our preliminary study demonstrates the need
of specialized job placement strategy based on application
communication characteristics. We believe the findings and
methodology presented in this paper provide valuable in-
sights for efficient workload management on dragonfly net-
works, hence being valuable to the broad HPC community.

In the future, we plan to explore intelligent job place-
ment and routing configurations for diversified workloads
running on the dragonfly network. The dragonfly connected
system could have dedicated job placement and routing
configuration based on the characteristics of its workload.
We plan to collect workload traces from a production HPC
system, and experiment with the simulated network of the
system to explore the dedicated optimal job placement and
routing configuration. We envision that effectiveness of such
new placement and routing polices can be examined in
future on a configurable dragonfly system.
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