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Abstract—As failure rate keeps on increasing in large systems, applications running atop restart more frequently than ever. Existing

research on checkpoint/restart mainly focuses on optimizing checkpoint operation, without paying much attention to the restart

operation. As a result, application restart latency maybe substantial, which greatly threatens system dependability and performance.

To attack the restart latency problem, in this paper, we present FREM, a fast restart mechanism for general checkpoint/restart

protocols. By dynamically tracking the process data accesses after each checkpoint, FREM masks restart latency by overlapping

application recovery with the retrieval of its checkpoint image. We have implemented FREM as a prototype system and tested it under

Linux environments. Extensive experiments with real applications demonstrate that it can effectively reduce restart latency by over

50 percent on average, as compared to the conventional restart mechanisms.

Index Terms—Fast restart, operating system, Linux, fault tolerance, high performance computing.
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1 INTRODUCTION

CHECKPOINT/RESTART (C/R) is a long-standing fault
tolerance technique to alleviate the impact of system

failure. It saves the state of a running application to a stable
storage, and in case of failure the application can restart
from the latest checkpoint image, rather than from scratch.
Further, it provides a great flexibility for networked
computing by allowing a failed application to restart on
an alternative machine rather than waiting for the repair of
the failed machine, e.g., via a mounted NFS file system.
Nevertheless, existing checkpoint-based restart involves
nontrivial restart latency. Here, restart latency is the amount
of time that elapses from the initiation of checkpoint
retrieval to the reexecution of the failed application.
Existing restart protocols typically require the entire
checkpoint image to be available on the destination machine
before reexecuting the failed application. A substantial
amount of time is required for network transmission and
disk I/O of the checkpoint image. Moreover, the fast-
growing memory consumption of modern applications
further deteriorates failure restart [10], as the memory
footprint is a major contributor to the checkpoint image.

Traditional C/R research mainly focuses on optimizing

checkpoint frequency [1], [4], [18], [28], [39], [42] or reducing

checkpoint overhead [26], [27], [32], with little attention paid

to restart latency. While failure recovery has been previously

studied in various fields including operating systems,

databases, and internet services [2], [24], [25], these studies

are either specific to a particular problem domain or hardly

applicable to improve checkpoint-based restart.

With the rapid development of networked systems,
reducing restart latency is becoming critical and needs to be
treated as a first-class citizen, just like optimization of
checkpoint operation itself. There are two major reasons for
this. First, due to the increasing failure rates, failure restarts
are becoming as a norm rather than an exception on large-
scale networked systems. Recent studies have pointed out
that the mean-time-between-failure (MTBF) of teraflop and
petaflop machines are only on the order of 10-100 hours [6],
[14], [22], [33]. As a result, applications running on these
systems are forced to restart more frequently than ever.
Second, due to the increasing system scale and application
size, restart latency grows rapidly. Experiments have
shown that restart latency of a typical large-scale applica-
tion could be as high as over 10 minutes [1]. Hence, in this
study, we focus on optimizing checkpoint-based restart.

1.1 Key Observations

Delving into the current restart mechanisms, we have made
three important observations:

1. They fail to explore parallel opportunities provided by
modern hardware devices. Modern computer periph-
eral devices, such as network cards and disk
controllers, can offload heavy I/O duties from CPUs,
thereby providing abundant opportunities for over-
lapping the retrieval of the checkpoint image with
the reexecution of the failed application.

2. Not all checkpoint data are immediately needed for
application restart. With existing restart protocols,
the application must restore its entire address space
from the checkpoint image before moving forward.
This is not necessary since most applications only
require a small portion of its checkpoint data for
restarting during a short period of time. Existing
restarting mechanisms do not explore such a
temporal locality for application restart.

3. Data access patterns of an application are tractable after
its resurrection. Upon failure restart, the application
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rolls back to the last checkpoint and repeats its
execution done before the failure. During this replay,
we can precisely know which data are immediately
needed for restart. This information could be utilized
to reduce restart latency.

1.2 Paper Contributions

Motivated by the above observations, we propose FREM, a
Fast REstart Mechanism to enhance general C/R protocols by
reducing their restart latency. The core idea is to enable quick
restart on a partial checkpoint image based on the knowl-
edge of process data accesses after each checkpoint. More
specifically, after each checkpoint, a user-transparent system
support is provided to record the data accessed within a
time interval (denoted as the tracking window). The recorded
datum is called the touched set, which is defined as the
intersection of the process working set during the tracking
window and the latest checkpoint. The description of the
touched set is stored to the stable storage, along with the
checkpoint image. Upon failure recovery, rather than
retrieving the entire checkpoint image for restart, FREM
first retrieves the touched set and restarts the application on
this partial checkpoint image. Meanwhile FREM spawns a
dedicated thread to simultaneously load the remaining of
the checkpoint data to the process address space. By doing
so, FREM hides restart latency by overlapping application
restart with checkpoint retrieval.

While the idea is straightforward, the design and
implementation of FREM is challenging, especially given
the complexities of modern computer hardware and soft-
ware. In this paper, we present a suite of techniques for the
design of FREM. These include a tracking mechanism to
precisely identify the touched set, an adaptive mechanism to
determine the tracking window, and a partial image loading
mechanism to coordinate checkpoint retrieval with process
recovery. Together, they form a transparent runtime support
for fast recovery of user applications in networked systems.

We have implemented FREM in Linux and evaluated its
effectiveness under a variety of networked environments.
The implementation is built on a well-known checkpoint
tool called Berkeley Lab Checkpoint/Restart (BLCR) tool
[10]. Our experiments with the SPEC CPU2006 [31] bench-
mark suite demonstrate that FREM can effectively reduce
restart latency by over 50 percent on average, as compared
to generic checkpoint/restart protocols. In addition, this
substantial performance improvement comes with a modest
tracking overhead. To the best of our knowledge, this is the
first effort to reduce restart latency in general C/R protocols.

While FREM is built on our previous work [15], the
FREM system presented in this paper has made two crucial
improvements. First, we employ an adaptive approach to
estimate the tracking window, which will greatly reduce
restart latency and improve the reliability of FREM. Second,
we redesign the entire restart part by allowing on-demand
remote page fault handling and efficient data loading.
Together, not only the correctness of data loading is
enhanced, but also the overhead of data loading is reduced.

1.3 Paper Organization

The remainder of this paper is organized as follows: Section 2
briefly discusses the related work. Section 3 gives an

overview of FREM, followed by a detailed description of
its postcheckpoint tracking in Section 4 and its fast restarting
mechanism in Section 5. Section 6 presents our evaluation of
FREM with a number of real-world applications under
various networked configurations. Finally, Section 7 sum-
marizes the paper and points out future directions.

2 RELATED WORK

The idea of fast restart is not new, and has been studied in
several fields. For example, Baker and Sullivan have
discussed the use of a “recovery box” (a protected area of
nonvolatile memory) in the Sprite system to store crucial
process state needed for fast recovery [2]. In database
systems, quickly resuming transaction process is the focus.
For example, the Oracle systems have applied “on-demand
rollback” to allow new transactions to execute while the
rollback is still being performed [24]. Recently, more attention
has been paid to fast recovery for Internet services. A
representative work is the ROC project from Berkeley and
Stanford [25]. It focuses on providing a holistic solution for
postfailure recovery of Internet services by using fine-grained
system partitioning and recursive restart. Rao et al. have
proposed a class of hybrid protocols to enable the failure-free
performance of sender-based protocols while approaching
the performance of receiver-based protocols during recovery
[29]. FREM is fundamentally different from these studies in that it
emphasizes the reduction of restart latency for general C/R-based
applications.

Existing studies on C/R mainly focus on checkpoint
optimization. One major direction is to determine an optimal
checkpoint frequency. Young has derived a simple first order
approximation of the optimal checkpoint interval, based on
the assumption of Poisson failure arrivals [39]. By consider-
ing failures during checkpointing or recovery, Daly has
proposed a higher order interval approximation model by
extending Young’s work [4]. Vaidya has developed an
improved checkpoint interval by differentiating checkpoint
latency and overhead [39]. Plank and Thomason have
investigated the optimal checkpoint interval for parallel
applications [28]. Additionally, there are numerous papers
on dynamic checkpoint scheduling, such as aperiodic
checkpointing [18] and cooperative checkpointing [22]. The
other major direction is to reduce checkpoint overhead,
especially the disk I/O time. Latency hiding and memory
exclusion are two key techniques [26]. The studies in this
category include copy-on-write [17], incremental checkpoint-
ing [32], and diskless checkpointing [19], [27], [43]. More
checkpointing optimization techniques can be found in [26].

While checkpoint optimization has attracted most re-
search attention over the past, there are only a few studies
focusing on the recovery component in C/R protocols. Plank
and Thomason have considered allocating extra compute
nodes to reduce application downtime, assuming the
checkpoint is stored on a shared remote storage [28]. Some
efforts have been done to optimize the recovery time by using
improved message logging protocols. Rao et al. have
proposed a hybrid logging protocol to reduce log retrieval
and roll forward time during the recovery of message
passing applications [29]. Gupta et al. have expedited failure
recovery in communication-induced checkpoint through the
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elimination of unnecessary comparisons when determining
the consistent global state [9]. In some C/R protocols, the
reduction of recovery time is achieved as a byproduct of
checkpointing optimization. For example, in diskless check-
pointing protocols [19], [27], the recovery of a process takes
less time since the checkpoint image is stored in the RAM of
spare nodes. Similarly, the double-in-memory checkpointing
technique used in FTC-Charm++ helps reduce recovery time
[43]. Despite the technical differences, all these C/R protocols
share a common feature, that is, an application cannot restart
only until its entire checkpoint data are restored, either from
a disk or RAM. Instead, FREM aims to reduce restart latency by
overlapping checkpoint retrieval with application execution. It
provides a set of fast recovery enhancements for general C/R tools.

Utilizing paging mechanism to optimize system perfor-
mance is a common approach in system research. For
example, demand paging is widely used in modern
operation systems [37]. It allows a process to begin execution
with portion of its pages available in the physical memory.
Read-ahead is another popular technique, which prefetches
data pages so that the amortized I/O latencies can be
decreased when locality is expected [40]. Similarly, in
distributed systems, many process migration protocols
leverage page-level data access patterns to achieve fast
process restart on the destination machine [20]. The Choices
system allows the minimal state of a process to be sent to the
remote node for execution while the remaining data are
being transferred in parallel [30]. Clark et al. have applied
precopy to migrate live Xen virtual machine by iteratively
transferring dirty pages, for the purpose of reducing
application freeze time [3]. While FREM also exploits paging
mechanism, it distinguishes itself from the above studies at two
aspects. First, it is able to track the precise pages that will be
immediately needed for process reexecution. Second, unlike
existing migration protocols focusing on efficient page transfer-
ring between the source and the destination machines, FREM
intends to reduce restart latency. Further, it does not require any
live copy of the application from the source machine.

3 SYSTEM OVERVIEW

As shown in Fig. 1, FREM is a kernel module residing in the
OS kernel to provide transparent C/R support. It consists of
a postcheckpoint tracking (CT) subsystem and a fast restarting
(FR) subsystem. The CT subsystem contains two compo-
nents: the checkpointer and the tracker.

Upon each checkpoint, the checkpointer dumps the
application state to a remote storage, and the tracker tracks
and collects the touched set after each checkpoint. The

FR subsystem contains two components: the restarter and
the parallel loader. Upon failure recovery, the restarter
retrieves the touched set and reruns the application. The
parallel loader loads the remaining bulky checkpoint data
concurrently with application execution.

To illustrate how these components collaborate with
each other, Fig. 2 presents the steps of a typical FREM
workflow in detail.

The CT subsystem takes the following steps during
prefailure execution:

. Step 1. At time t0, the checkpointer is triggered by an
external signal, such as a checkpoint request. The
checkpointer first stops all application threads and
dumps their state to a stable remote storage.

. Step 2a. At time t1 when the checkpointer finishes its
operation, the application execution is resumed.

. Step 2b. At the same time, the tracker starts tracking
the touched set during the time period [t1, t1 þ tw].
The tracker uses the access bit of each page table
entry (PTE) to track which pages have been accessed
during the tracking window tw (i.e., the touched set).
The information of the touched set is saved as a
descriptor file to the stable storage, along with the
checkpoint image. The above checkpointing and
tracking steps repeat upon each checkpoint cycle.
In case that a failure occurs during the tracking
window, the application resumes to the conventional
restart approach to recover the process.

The FR subsystem takes the following steps during
postfailure recovery:

. Step 1. At recovery time t3, the restarter starts to read
in the touched set descriptor from the remote
storage. According to the descriptor, the restarter
retrieves the touched set pages and other necessary
process information such as registers, signals, and
file descriptors from the checkpoint file to the
destination machine.
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. Step 2a. At time t4 when the touched set is loaded,
the application process overlays the restarter process
and starts its execution.

. Step 2b. At the mean time, the parallel loader starts as
a dedicated thread to retrieve the remaining bulky
checkpoint data. The time range of [t4, t5] is called
the overlapping time. During the overlapping time, the
application execution and data retrieval are per-
formed concurrently.

. Step 3. When the loader thread finishes the check-
point retrieval at time t5, the application starts to
execute on its full address space.

The rationale of FREM is to achieve the overlapping
between process execution and checkpoint retrieval. Con-
sequently, the restart latency is reduced to the retrieval time
of a small portion of its checkpoint data, e.g., (t4 � t3) shown
in Fig. 2.

Our design of FREM intends to follow three principles:

1. Efficiency. FREM should not only reduce restart
latency, but also keep its runtime overhead low.

2. Generality. FREM should be independent of specific
characteristics of the underlying hardware plat-
forms and checkpoint protocols. It should be easily
integrated with any general checkpointing tool in
various environments.

3. Transparency. FREM is intended to be transparent to
user applications by residing in the OS kernel. It
should be plugged into the kernel in a nonintrusive
way such that the OS code can accommodate FREM
without any modification.

Because of the increasing complexities of computer
hardware and software, the design and implementation of
FREM is challenging. In the following two sections, we will
describe a suite of techniques to address these challenges,
i.e., how to accurately identify the touched set, how to set the
tracking window, and how to effectively and correctly load data
during the overlapping time.

4 DESIGN AND IMPLEMENTATION OF

POSTCHECKPOINT TRACKING

The CT subsystem consists of two components: the
checkpointer and the tracker. Since the checkpointer follows
general checkpointing protocols, for brevity, we focus on
the design of the tracker here. The tracker addresses the first
two challenges listed in Section 3, namely how to accurately
identify the touched set and how to appropriately set the
tracking window size.

4.1 Identification of the Touched Set

FREM uses the access bits to track the touched set. However,
to merely scan the access bits at the end of the tracking
window is not sufficient. There are two types of potential
inaccuracies in the identification of the touched set: 1) false
positives where pages not of interest are included in the
touched set and 2) false negatives where pages of interest are
missing from the touched set. These errors have serious
performance implications. False positives increase restart
latency as unnecessary checkpoint data are delivered for
quick process restart. False negatives cause extra execution

overhead. As some data immediately needed by the resumed
process are not available on the destination machine, the
application must be interrupted to handle cross-network
remote page faults during execution. A naı̈ve mark-and-scan
algorithm cannot accurately capture the touched set.

In essence, all potential inaccuracies stem from the
interferences on the access bits due to the hardware and
software complexity in modern computer systems. Through
a systematic analysis, we classify the interferences from three
system layers in a top-down manner: application dynamic
memory usages, OS intervention, and hardware bypassing.

4.1.1 Application Dynamic Memory Usage

For a typical application, its process addresses constantly
change and thus introduce complications in the identifica-
tion of the touched set. As shown in Fig. 3, we identify three
types of representative pitfalls stemming from dynamic
memory usage.

In Fig. 3a, at time t1, the memory region r (the region of
[a, b] in address space) is saved on stable storage as part of
the checkpoint image. At time t2, a deallocation operation
shrinks r to [a, c] and frees all the pages in (c, b]. Therefore,
when FREM scans for the touched set at time t1 þ tw, a false
negative error may occur—the pages in (c, b] accessed
during time (t1, t2) are lost. In Fig. 2b, the memory region r is
checkpointed at time t1. At time t2, an allocation operation
extends r to [a, c]. At the scan time t1 þ tw, the pages in (b, c]
accessed during time (t2, t1 þ tw) should not be counted in
the touched set; otherwise a false positive error is
introduced. Recall that the touched set is defined as the
intersection of the process address space saved in the
checkpoint image and its working set during the tracking
window. Although the pages in (b, c] were accessed during
time (t2, t1 þ tw), they are not part of the checkpoint image,
indicating they do not need to be retrieved during the restart
phase. In Fig. 3c, the memory region r is checkpointed at
time t1. At time t2, a deallocation operation shrinks r to [a, c].
Then at time t3, an allocation operation extends it to [a, d].
The question is whether we should scan the pages in (c, b] or
not? The answer is twofold. At time t2, just before their
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deallocation, the pages in (c, b] should be tracked because

they are part of the checkpoint image; otherwise a false

negative error is introduced. At time t1 þ tw, the pages in

the same range (c, b] are actually newly allocated and should

not be counted in the touched set; otherwise a false positive

error is introduced.
The above analysis indicates that recording memory

deallocation is critical since the touched set is always a
subset of the memory regions at the checkpoint time, which
monotonically decreases during the tracking window.
Based on this key observation, we develop a simple yet
effective algorithm to track the touched set. At the beginning
of the tracking window, FREM records the memory regions
saved by the checkpointer (denoted as the candidate range).
Next, FREM intercepts the standard POSIX system calls brk
and mmap to track memory deallocation. Whenever a
memory region is freed, FREM scans the intersection
between this region and the candidate range, and then
update the candidate range by removing this intersection.
The algorithm can eliminate the false positives and false
negatives shown in Fig. 3.

4.1.2 OS Intervention

OS intervention is another contributing factor to the
identification errors. Most modern operation systems adopt
some variant of clock algorithm that periodically sweeps
the page table to collect page usage information [12]. This
process cleans the access bits. As a result, false negatives
will be produced when the sweeping activity takes place
inside the tracking window. To address this issue, FREM
monitors such sweeping activities and scans the access bits
before they are cleaned by the OS.

4.1.3 Hardware Bypassing

Two types of hardware optimizations will cause memory
accesses bypass the access bits, thereby leading to false
negatives: the Translation Lookaside Buffer (TLB) cache in
processors and DMA operations in peripheral devices.

TLB translates logic addresses to physical addresses so
that the processor could bypass the PTE and directly
address the RAM. In other words, TLB hits may introduce
false negatives. For instance, suppose that an access bit of a
PTE is marked as unaccessed while its TLB entry remains
valid at the beginning of the tracking window. In the
subsequent access of a datum in this page, the CPU directly
read the address translation information from the TLB entry,
thereby leaving its access bit in the PTE stale. When the
tracker walks the page table at the end of the tracking
window, this page would be excluded from the touched set,
thereby resulting in a false negative.

To address this issue, at the beginning of the tracking
window, FREM not only clears the access bit in the PTE, but
also invalidates the corresponding TLB entry. By doing so,
FREM enforces a TLB miss upon the first access of a page to
update the corresponding access bit in the PTE.

In addition, a direct memory access (DMA) operation on
user-space memory like direct I/O also bypass the CPU,
thereby causing false negatives. We suggest to instrument the
corresponding device driver to appropriately set the access
bits of PTEs whenever such a DMA transfer is initiated.

4.2 Estimation of the Tracking Window

The tracking window size tw plays an important role in the
identification of the touched set. A short window may yield
an inadequate touched set and consequently cause a
significant amount of remote page faults during recovery.
Here, a remote page fault refers to the case when the
restarting application accesses a page that has been not
retrieved yet. On the other hand, a long tracking window
may produce a large touched set and thus slow down the
restart process. Furthermore, a large window size makes
FREM more vulnerable to failure as the likelihood of failure
grows with time.

Ideally, the tracking window should be set such that
when the recovered application first accesses a datum
outside the touched set, the retrieval of the remaining
checkpoint image just finishes at the very moment. In other
words, the size of the tracking window, tw, should be equal
to the time for FREM to retrieve the remaining image:

tw ¼
checkpoint size� touched set size

data transfer rate
: ð1Þ

Here, data_transfer_rate refers to the data transfer rate from
the remote storage to the local RAM, which can be
measured through benchmarking [41].

Based on the above rationale, an adaptive method is
adopted to estimate the tracking window. More specifi-
cally, initially we set the window size t0w to the retrieval
time of the entire checkpoint image; during each check-
point cycle i, at the end of the tracking window, FREM
records the size of the touched set and calculates its
generation rate (i.e., touched set sizei=tiw); during the next
checkpoint cycle (iþ 1), FREM applies the LAST prediction
method [5], and the touched set generation rate obtained
from cycle i will be used as an estimate for the generation
rate of cycle (iþ 1). Thus,

tiþ1
w ¼ ðcheckpoint sizeiþ1 � touched set sizeiþ1Þ=

ðdata transfer rateÞ
¼ ðcheckpoint sizeiþ1 � tiþ1

w

� touched set generation rateiþ1Þ=
ðdata transfer rateÞ

� ðcheckpoint sizeiþ1 � tiþ1
w

� touched set generation rateiÞ=ðdata transfer rateÞ
¼
�
checkpoint sizeiþ1 � tiþ1

w �
�
touched set sizei=tiw

��
=

ðdata transfer rateÞ:

After simple mathematic transformation, we obtain the
following equation:

tiþ1
w ¼ checkpoint sizeiþ1

date transfer rateþ touched set sizei

tiw

: ð2Þ

Compared with our previous work [15] that employs a
conservative method, the above adaptive strategy allows
FREM to capture the recent behavior of the application and
thus to make more accurate runtime estimation.

The value of tw calculated by (2) could be very large
when the data transfer rate is low, e.g., when data are
transferred across a wide area network. This may increase
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the failure possibility of FREM during the tracking window.
To prevent this case, FREM adopts an upper bound
threshold to cap tw, usually in a couple of minutes in
practice. By adaptively tuning the tracking window, FREM
is capable of adapting to dynamic application behaviors.

4.3 CT Implementation in Linux

We have implemented the CT subsystem in Linux as a
kernel module. We summarize our specific implementation
as follows:

1. To invalidate a TLB entry, the architecture-indepen-
dent kernel function flush_tlb_page is used.

2. In Linux, both brk and mmap system calls reply on
the kernel function do_munmap. Hence, for conve-
nience FREM directly intercepts this function to
track memory deallocation.

3. To monitor page table sweeping from OS, FREM
instruments the kernel daemon thread kswapd so
that the access bits are scanned by FREM before they
are cleared by the kernel.

4. To ensure the efficiency of the search and insertion
operations, the double linked list and red-black tree
data structures are used to store the information of
the touched set and the candidate ranges.

We shall point out that the design principles of the CT
subsystem are generic and do not depend on any specific
architecture or system. It is feasible to port the above
implementation to other systems like FreeBSD [38], Open-
Solaris [23], etc.

5 DESIGN AND IMPLEMENTATION OF FAST

RESTARTING

The FR subsystem consists of two components: the restarter
and the parallel loader. The restarter is invoked first to
restore the geometry of the address space of the failed
application and retrieve the touched set. It, then, is overlaid
by the application thread which resumes the application
execution immediately. In the meantime, the parallel loader
thread is spawn to retrieve the remaining checkpoint data.
As the design of the restarter is relatively simple and
straightforward, in this section, we mainly focus on the
design of the parallel loader. The parallel loader addresses
the third challenge listed in Section 3, that is, how to
effectively and correctly load the partial image.

Fig. 4 presents the main tasks performed by the parallel
loader. With only the touched set pages loaded by the
restarter, the address space contains a number of separated
memory holes. FREM records and organizes them into a hole
list. Fig. 4a illustrates the iterative hole populating mechan-
ism to fill in memory holes from the checkpoint image, and
Fig. 4b presents the detailed steps of remote page fault
handling used in FREM.

Directly handling a remote page fault in the same thread
context where it is triggered can substantially increase
synchronization cost, as well as complicate the design.
Hence, FREM adopts a quasi on-demand remote page fault
handling approach. When a remote page fault occurs, the
application thread is suspended and the remote page fault
request is delegated to the loader thread. The loader always
serves any outstanding remote page fault request before

populating memory holes from the hole list. The detailed
steps of remote page fault handling are as follows:

. Step 1. The application execution triggers a remote
page fault in the page x, which is in the memory
hole m.

. Step 2. The application thread is suspended and a
request for page x is inserted to a remote page fault
queue maintained by FREM.

. Step 3. Before loading a memory hole, the loader first
checks whether there are any outstanding remote
page fault requests in the queue.

. Step 4. In case that the queue is not empty, the loader
retrieves and loads page x from the checkpoint
image into the address space.

. Step 5. The loader resumes the suspended applica-
tion thread and updates the hole list. As an example,
the hole m of page x will be split into two smaller
holes m0 and m0 þ 1.

. Step 6. Once the remote page fault queue is empty,
the loader continues to populate memory holes
iteratively as presented in Fig. 4a.

The loader needs to guarantee both the correctness and
the efficiency of data loading. In the following two sections,
we present how FREM achieves these goals.

5.1 Correct Data Accessing

During the overlapping time, the execution of the loader
thread and the application thread share the same address
space. They need to be synchronized properly; otherwise
race condition occurs and consequently leads to incorrect
data accesses.
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Dynamic memory management of the application thread
may cause two types of data access errors: invalid access and
data overwrite (see Fig. 5). Fig. 5a illustrates the case of invalid
access. Suppose at time t0, the memory region rð¼ ½a; b�Þ is a
hole and will be populated by the loader thread sometime
later. At time t1 before r is filled, the application thread
executes a deallocation operation and shrinks r to [a, c].
Hence, at time t2 when the loader tries to populate rwith the
data from the checkpoint image, segment fault occurs since
(c, b] is no longer within the valid address range.

Fig. 5b illustrates the case of data overwrite, which is
more subtle. At time t1, the application thread executes a
deallocation operation and shrinks the hole r from [a, b] to
[a, c] and then at time t2, the application reallocates the
memory region [c, d], which will be gradually filled with
user data written by the application threads. The loader,
however, does not have the knowledge of this change.
Hence, at time t3 when the loader tries to populate region
[a, b] according to the hole list, the useful data in [c, b] is
already overwritten.

To avoid the above data access errors, we need to
synchronize the application thread with the loader thread in
such a way that the hole list can be updated timely to reflect
the latest address space changes made by the application
thread. Similar to the approach described in Section 4.1.2,
FREM monitors every memory deallocation operation
during the overlapping time. When the application thread
shrinks a memory region, FREM intercepts the Linux
do_munmap call and updates the hole list. It first identifies
the intersections of the memory region to be freed and the
hole list, and then excludes these intersections from the hole
list. By doing so, FREM ensures that the loader always
works on the updated geometry of the memory holes,
thereby avoiding the above data access errors.

5.2 Efficient Image Loading

As indicated in Fig. 4, the loader is responsible for handling
remote page faults and populating memory holes. These
tasks may involve both fine-grained I/O (e.g., reading one
page at a time) and bulky I/O operations (e.g., reading tens

of thousands of remote pages at a time). The mix of these
I/O operations can cause two efficiency issues:

1. Application freeze. Application freeze refers to the
phenomenon when the application thread is stalled
for a long period of time due to a remote page fault.
When a remote page fault request is sent to the page
fault queue, the loader maybe in the middle of
populating a large hole requiring bulky I/O opera-
tions. Thus, the remote page fault request must wait
for the loader to complete filling this hole, and the
application has to wait, which is undesirable espe-
cially for interactive applications.

2. Fragmental loading. Fragmental loading is caused by
excessive fine-grained remote I/O operations. There
are two sources for fragmental loading. First, each
remote page fault incurs a single-page size remote
I/O operation. Second, as shown in Fig. 4b, serving a
remote page fault page may split an existing hole
into two smaller ones. Eventually, a large amount of
small holes maybe created, leading to fragmental
I/O operations. Fragmental loading can decrease the
overall I/O throughput. Another side effect of
fragmental loading is that as the number of holes is
large enough, the search and update operations
required to maintain the hole list also become slow.

To mitigate application freeze and fragmental loading,
the parallel loader enforces an appropriate granularity for
data loading by using a threshold called CHUNK_SIZE.
Upon populating a hole or serving a remote page fault, the
loader attempts to read in CHUNK_SIZE pages. In case of
hole-populating, either the entire hole is loaded if its size is
less than CHUNK_SIZE or the first CHUNK_SIZE pages in
the hole are loaded. The handling of remote page faults
is similar, except that the loader attempts to read in
CHUNK_SIZE pages centering at the fault address. This is
done to exploit spatial locality of an application, with the
goal to minimize the number of remote page faults.

Algorithm 1 presents the pseudocode of the parallel
loader. In terms of implementation, a red-black tree is built to
construct the hole list, for the purpose of expediting the
search and update operations. To guard the hole list against
concurrent access, a mutex synchronization primitive is
used. To ensure nonintrusiveness, the remote fault handling
logic is transparently hooked to the kernel via the no_fault
callback interface and the interception of the do_munmap call
is done through the jprobe instrument interface. Note that
these do not need any change in the kernel code.

Algorithm 1. FREM Image Loading

1: main procedure of the loader thread {

2: while hole list not empty do

3: while remote page fault queue is not empty do

dequeue a remote page fault request and service it

4: by retrieving CHUNK_SIZE pages around the

faulted address
5: wake up the app thread blocked on the request

6: split the hole list

7: end while

8: retrieve the first CHUNK_SIZE pages in hole list

9: update the hole list
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Fig. 5. Erroneous data access. (a) invalid access, and (b) data overwrite.



10: end while

11: }

12: upon a page fault {

13: if the fault address falls into the hole list then

14: insert the fault address to the remote fault queue

15: suspend current thread

16: else

17: turn to the default page fault handling
18: }

19: upon each memory deallocation {

20: search out the intersections between the hole list and

the memory region to be freed

21: if the intersections exist, update the hole list by

excluding those intersections

22: }

5.3 FR Implementation in Linux

The FR subsystem is implemented as a Linux kernel
module using similar techniques mentioned in Section 4.3.
In addition, the customized fault handler is injected via the
no_fault interface provided by Linux kernel. Again, the
design of FR subsystem is generic and the implementation
can be ported to other systems as long as their kernel
sources are available.

6 EXPERIMENTS

We have implemented FREM in Linux 2.6.23 kernel
currently, built upon the BLCR tool [10]. In the experiments,
we compare FREM-enhanced BLCR as against the native
BLCR. To make the comparison general to other checkpoint
tools like EPCKPT [7] and TICK [32], we disable the BLCR-
specific optimizations. We set the upper bound of the
tracking window to 120 seconds and the CHUNK_SIZE to
100 pages.

Our testbed consists of a PC machine equipped with a
Intel Core2Duo 2.4 GHz processor and 2 GB RAM, an NFS
file server to provide remote storage, and an interconnected
network to connect the PC machine to the NFS server. To
evaluate FREM under different networking environments,
two network configurations are tested: 1) FAST, which
denotes a local area network (LAN) with the data transfer
rate ranging from 8.5 to 12.0 MB/s and 2) SLOW, which
represents a wide area network (WAN) with the data
transfer rate ranging from 1.2 to 3.5 MB/s.

The benchmark suite SPEC CPU2006 is tested in our
experiments [31]. The suite contains a variety of programs
from the scientific and engineering domains. As FREM
targets applications with large memory demands, we choose

the applications whose memory footprints are greater than
150 MB. Totally, we have tested 27 application cases.

Based on the size ratio of the touched set to the checkpoint
image measured in the FAST network, we categorize all the
27 applications into three groups: 1) small group, containing
10 test cases whose ratios are less than 33 percent; 2) medium
group containing 14 test cases whose ratios are between 33.3
and 66.7 percent; and 3) large group containing four test cases
whose ratios are greater than 66.7 percent. We randomly
select eight applications from these groups (see Table 1) and
present their experimental results in the following sections.
Among them, the applications 4, 5, and 7 are from the small
group, the applications 1-3 and 8 are from the medium group,
and the application 6 is from the large group.

6.1 Restart Latency Improvement

In this set of experiments, we compare application restart
latencies by using FREM-enhanced BLCR as against the
native BLCR.

6.1.1 Measurement of Checkpoint and Touched Set

Table 2 lists our measured data, including application
checkpoint image size, checkpointing overhead, tracking
window, and the touched set. For the touched set, we not only
list its size in MB, but also present its ratio to the checkpoint
image. The results from both FAST and SLOW network
configurations are presented here. In the experiment, for the
applications with stable memory requirements, we randomly
trigger a checkpointing during their lifetimes; for the
applications whose memory requirements vary during their
lifetimes, we randomly trigger a checkpointing during the
period when their memory footprint size is moderate.

By comparing the checkpoint size and the touched set
size, we can observe that generally only a small portion of the
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TABLE 1
Application Cases from SPEC CPU2006

TABLE 2
Measurement of Checkpoint and Touched Set

The numbers in the tracking window columns are the average values.
The parenthesized numbers in the table are the ratios of the touched
sets to the checkpoint image sizes (in percentage).



checkpoint image is immediately needed for application restart.
These also justify the fundamental assumption made by
FREM. In the FAST network configuration, among eight
test cases, seven applications yield the touched sets less
than half of their checkpoint footprints, with the ratio
ranging from 0.25 to 41.18 percent and with the average at
34.35 percent. The reason for the small touched sets is due
to good data locality and/or dynamic memory usage. The
only exception is the application #6 showing extremely
poor locality, for which the touched set is 85.64 percent of
its checkpoint image. With respect to the SLOW network
configuration, except for the application #6, the touched
sets generally oscillate between 0.44 and 56.25 percent of
their checkpoint images, with the average at 45.58 percent.
Due to the slow data transfer rate in the SLOW configura-
tion, for the application #6, the predefined tracking window
size of 120.0 seconds is occasionally used.

As shown in Table 2, generally the larger a checkpoint
image, the longer its checkpointing overhead. There is one
exception in the SLOW configuration where the application
#1 has an unexpectedly shorter checkpoint overhead while
its checkpoint size is relatively large. We attribute this to the
volatility and instability of the WAN networking connection.

6.1.2 Measurement of Restart Latency

Table 3 lists the raw restart latencies by using FREM and
BLCR under both the FAST and SLOW configurations.
Fig. 6 illustrates relative improvements achieved by FREM
over BLCR. It is clear that the performance achieved by
FREM is very promising. For all the cases, FREM outper-
forms BLCR with the average raw reduction of 36.75 sec-
onds (61.26 percent) under the FAST configuration and
209.00 seconds (50.82 percent) under the SLOW config-
uration. The improvement on restart latency mainly stems
from data locality and existence of useless “dead data” in
most applications.

Further, we have two interesting observations. First,
network performance has a substantial impact on FREM’s
performance. In general, under the FAST environment,
FREM achieves more relative improvement as compared to
the SLOW environment. In a low-performance networked
environment like SLOW, a longer tracking window is
needed, thereby resulting in a larger touched set and a lower
relative improvement on restart latency. We shall also point
out that the raw gain on restart latency, however, grows

when data transfer takes longer time. In other words, FREM
is able to provide different improvements under different
network configurations: in a fast networking environment, it
can effectively improve relative gain on restart latency,
whereas in a slow networking environment it can substan-
tially reduce the raw restart latency.

Second, checkpoint image transmission time is positively
correlated with, but not strictly proportional to, its size. By
examining the latency reduction ratio presented in Fig. 6 and
the proportion of the checkpoint data immediate needed for
restart listed in Table 2 (i.e., the ratio between the touched
set and the checkpoint image), we find that the former is
always modestly smaller than the latter. While the tracking
window calculated in (1) provides us a good estimation, this
observation indicates that our estimation is relatively
conservative and there is a room to further improve it.

6.2 FREM Overhead

The use of FREM introduces two types of overhead: the
postcheckpoint tracking overhead OCT and the fast restart
overhead OFR. The former is introduced after each
checkpoint, and the latter is only triggered upon a failure
occurrence.

6.2.1 Postcheckpoint Tracking Overhead

The postcheckpoint tracking overhead can be broken down
into three parts: 1) the page table scanning time to go
through the entire process address space at the end of the
tracking window (denoted as PTE Scan), 2) the monitoring
cost to identify the touched set pages (denoted as Touched
Set Monitoring), and 3) the I/O time to store the touched set
descriptor (denoted as Touched Set I/O). Moreover, the
touched set monitoring cost is influenced by two types of
operations: the search operations to calculate the intersection
of the candidate ranges and the memory region to be freed,
and the update operations (e.g., scans and insertions) to
insert the touched set pages into the touched set descriptor
tree (See Section 4.1.2).

Tables 4 and 5 present postcheckpoint tracking over-
heads, which are divided into different components,
collected in both FAST and SLOW environments.

Generally speaking, the overall tracking overhead is
trivial, ranging from 32.32 to 411.56 milliseconds. They are
typically several orders of magnitude less than the gains
achieved by FREM on restart latency (Table 3). The PTE
scan cost dominates in the overall overhead. This is due to
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Fig. 6. Relative improvement on restart latency by FREM.

TABLE 3
Restart Latencies by Using FREM and BLCR



the large memory demands of the applications and the costs
of capturing dynamic pages. The touched set I/O cost
is normally less than 10.96 milliseconds. This low cost is
achieved due to the use of red-black trees in FREM.

We also note an exception with the application #5. For
this application, high numbers of touched set monitoring
operations (i.e., 83,499 and 123,943 in the FAST and SLOW
settings, respectively) are observed. As a result, its tracking
overhead is larger than other cases.

With respect to the overhead of TLB invalidation, a
benchmark is conducted to show that a single TLB miss leads
to 17.1 nanoseconds. So with 256 TLB entries in the processor,
the upper bound of the TLB invalidation per checkpoint is
about 4.4 microseconds. It is negligible compared to the
performance gain at the macrosystem level. This is because
such TLB invalidations don’t entail cache miss or context
switch and are handled by hardware efficiently.

6.2.2 Fast Restarting Overhead

When using FREM, the restart of the process is overlapped
with the image retrieval until the remaining image is
delivered to the destination machine. This overlapping
inevitably incurs some overhead to the program execution

due to resource contention. From the perspective of
process execution, there are three sources of restarting
overhead: 1) the cost to retrieve remote page faults
(denoted as Page Fault Retrieval), 2) the cost to maintain
the hole list (denoted as Hole List Monitoring), and 3) the
concurrency overhead (e.g., memory contention and con-
text switch) introduced by the simultaneous execution of
the parallel loader thread and the applications thread
(denoted as Concurrency Cost). The page fault retrieval cost
is dependent on the number of remote page faults, whereas
the hole list monitoring cost is influenced by the numbers
of search and update operations to maintain the hole list.

Tables 6 and 7 list fast restarting overheads, which are
divided into different components, collected in both FAST
and SLOW environments. The overall overhead ranges
from 0.50 to 16.35 seconds in the FAST environment and
from 1.61 to 74.99 seconds in the SLOW environment. This
may seem daunting at the first glance. However, we shall
point out that restart overhead is only triggered upon a
failure occurrence. By comparing with the data listed in
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TABLE 4
Postcheckpoint Tracking Overhead in the FAST Configuration

It includes three parts: 1) PTE Scan to go through the entire process
address space at the end of the tracking window, 2) Touched Set
Monitoring to identify the touched set pages, and 3) Touched Set I/O
to store the touched set descriptor. The last column lists the
aggregated cost.

TABLE 5
Postcheckpoint Tracking Overhead in the SLOW Configuration

TABLE 6
Fast Restarting Overhead in the FAST Environment

It includes three parts: 1) Page Fault Retrieval to obtain the missing
pages from the remote storage, 2) Hole List Monitoring to update the
hole list when the address space shrinks, and 3) Concurrency cost
introduced by the simultaneous execution of multiple threads. The last
column gives the aggregated cost.

TABLE 7
Fast Restarting Overhead in the SLOW Environment



Table 3, we can see that this overhead is easily offset by the
improvement on restart latency.

Concurrency cost is generally the most significant
contributor in restarting overhead, which ranges from 0.10
to 16.03 seconds in the FAST environment and from 0.33 to
31.57 seconds in the SLOW environment. It is mainly
determined by the amount of remaining image in the
remote storage.

The data also indicate that page fault retrieval cost is
nontrivial, varying from 10.55 to 9,638.30 milliseconds in the
FAST environment and from 1,023.71 to 57,506.46 milli-
seconds in the SLOW environment. This cost is directly
influenced by the number of remote page faults, which is
usually less than 60 for most of the test cases. The exception
is for the application #8, where an exceptionally large
number of remote page faults occurs and thus introduces a
high overhead to handle these faults. By analyzing the
application, we find out that this is caused by a specific
stride data pattern of the application. The pattern disperses
the remote page fault addresses in different parts of the hole
list, thereby making the prefetching strategy ineffective as
currently we prefetch the pages within the same hole node
at a time.

The hole list monitoring cost is relatively small, up to
4.26 milliseconds. This indicates that the hold list main-
tenance algorithm presented in Section 5.2 not only
guarantees the correctness of the restart protocol, but also
achieves good performance by excluding unused data (i.e.,
the FR subsystem will not retrieve the checkpoint data
whose memory space is freed by the application during the
overlapping time). This data exclusion could be substantial
when the unused data are large and the network is slow.

To investigate the impact of the reloading chunk size, we
vary the parameter CHUNK_SIZE from 10 to 2,000 pages
and measure the restarting overhead of three representative
applications: test case 1, 2, and 5 (see Table 8). Test case 1
represents the applications whose touched sets increase
rapidly with time; test case 2 represents the applications
whose touched sets are relative stable; and test case 3
represents the applications whose touched sets are highly
dynamic due to memory allocation/deallocation. The
normalized restart overheads (ratio to the base case with
CHUNK SIZE ¼ 100) are presented in Table 8. For test case 1,
the restart overhead goes down when CHUNK_SIZE
increases from 10 to 200. This is because a small reload

chunk size cannot satisfy the aggressive data demand from
the application, thereby leading to large remote page fault
overhead. When CHUNK_SIZE increases beyond 200, the
overhead grows. A large reloading chunk size causes a long
freeze of the application since it must wait for the completion
of each chunk loading. For test case 2, the overhead
monotonically increases with CHUNK_SIZE. As test case 2
has a stable and constant working set, FREM can accurately
capture the touched set. Consequently, remote page faults
rarely occur for these applications. For these applications,
application freeze time caused by chunk reloading becomes
the dominant overhead factor. For test case 3, a similar
phenomenon is observed as test case 2. Furthermore, by
using large CHUNK_SIZE, FREM may end up with loading
more unused data, thereby entailing unnecessary overhead.
Based on this experiment, we believe a modest CHUNK_-
SIZE like the base case is a balanced choice which can
mitigate both remote page cost and application freeze time.

To illustrate the improvement brought by adaptive
window estimation, we compare it with the conservative
estimation presented in our previous work [15]. In Table 9,
we list window size reduction, restart latency reduction,
and the reduction of application execution time after restart.
As we can see, the adaptive method can significantly reduce
the window size by 33.7 percent and the restart latency by
12.5 percent on average. A smaller window size means less
risk of FREM failure. The adaptive method dynamically
captures the trend of application data accesses, thereby
resulting in more accurate touched set and lower restart
latency. With respect to application execution time after
restart, the adaptive method still outperforms the conser-
vative method, but with a less significant margin. Because
the adaptive method produces smaller touched sets, the
overlap time to reload the remaining image becomes longer.
Therefore, concurrent execution overhead becomes larger,
which offsets the gain brought by reducing restart latency.

6.3 Application Lifetime Performance Analysis

The results shown so far indicate that FREM can signifi-
cantly reduce restart latency, but also introduces some
runtime overheads. Given that checkpoint frequency is
usually greater than that of recovery, a key question is
whether FREM is capable of producing positive performance gain
in the long run. To answer this question, in this section, we
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TABLE 8
Normalized Restart Overhead (Ratio to the Base Case)

with Different Reload Chunk Sizes in FAST Network

TABLE 9
Adaptive Window versus

Conservative Window in FAST Network



conduct statistical studies to examine application lifetime

performance. Here, “lifetime” means that we statistically

evaluate application performance during each failure cycle,

i.e., between two restarts.
In the experiments, we simulate Poisson failure arrivals

with the MTBF varying from 1 to 6,400 hours. This range

covers the realistic MTBF values that we have observed in

the failure traces collected from production systems [14],

[16], [33]. The checkpoint interval is set according to

Young’s first order approximation [42].
Two evaluation metrics are used to measure the overall

performance of FREM: 1) Egain, the expected restart

improvement achieved by FREM between two restarts and

2) Eoverhead, the expected runtime overhead introduced by
FREM between two restarts. They are calculated as follows:

Egain ¼ Restart Latency Gain� 1� fð Þ;
Eoverhead ¼ OCT �Nckp þOFR � 1� fð Þ:

ð3Þ

Here, f is the failure probability during the tracking

window and Nckp is the number of checkpoints per failure

cycle. Note that OCT is the postcheckpoint tracking over-

head and OFR is the fast restart overhead. The improvement

on application lifetime performance is the difference

between Egain and Eoverhead.
Figs. 7 and 8 present the improvements on application

lifetime performance achieved by FREM in the FAST and
SLOW environments, respectively. Overall speaking, the

results are impressive: the average improvement is 22.18 sec-

onds in the FAST environment with the maximum gain of

71.5 seconds achieved by the application #4; the average

improvement is 171.6 seconds in the SLOW environment

with the maximum gain of 419.9 seconds achieved by the
application #1. The larger improvement achieved in the
SLOW environment is attributed to the larger reduction on
restart latency.

By examining the curves plotted in the figures, we can
see that the performance gain achieved by FREM is higher
when the MTBF is smaller. When failure rate is high, the
fast restart mechanism is invoked more frequently, thus
leading to more reduction on restart latency. When the
MTBF is extremely large, e.g., 6,400 hours, we notice that
the performance gain achieved by FREM may become
negative for some cases. The reason is that a larger MTBF
leads to more checkpoints per failure cycle. As a result, the
accumulated tracking cost could overshadow the gain on
restart latency. This is especially true for the application #5,
which has a significant tracking overhead due to a huge
amount of memory deallocation calls (see Tables 4 and 5).

6.4 Discussion

In summary, the above experimental studies have provided
the following key points regarding FREM:

1. For the 27 applications from the SPEC CPU2006
suite, FREM has demonstrated a pronounced im-
provement in terms of reducing restart latency over
by 50 percent on average and improving application
lifetime performance by up to 419.9 seconds.

2. Our prototype implementation has also demon-
strated a successful example to exploit hardware
parallelism at the system level for better application
performance. This is becoming increasingly impor-
tant with the prevailing use of multicore architectures.

3. In addition to the touched set, additional knowledge
about process data patterns is also needed to further
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Fig. 7. Improvement of application lifetime performance in the FAST
environment.

Fig. 8. Improvement of application lifetime performance in the SLOW
environment.



improve the efficiency of FREM. This can help to
reduce remote page faults.

4. For the applications exhibiting poor data locality,
FREM provides less impressive benefit. There are
two possible solutions to address the issue. One is to
rely on users to provide some guidance on applica-
tion locality for a better use of FREM. The other is to
design an adaptive mechanism to dynamically
(de)activate FREM at runtime based on online
monitoring of application locality.

The current implementation of FREM has several
limitations. First is related to optimization for applications
with large amount of dynamic memory activities. Two out
of 27 test cases in the SPEC CPU2006 suite (one of them is
the application #5) have such characteristics. For these
applications, the tracking overhead is quite high and may
outweigh the performance gain achieved by FREM. Our
analysis shows that exploiting an in-depth understanding
of application access patterns can help to address the issue.
For example, with regard to the application #5, despite its
high volume of deallocation calls, only a few of them
overlap with the candidate ranges, and consequently the
actual necessary update operations are much less. Further-
more, these update operations are highly clustered together
right after the checkpoint. Hence, we can optimize FREM by
only tracking the beginning tens of deallocation calls to
reduce the overhead without losing too many touched set
pages. Our preliminary test shows that with this optimiza-
tion, for these applications, FREM can reduce the tracking
cost by a thousand times. How to automatically detect and
exploit in-depth access patterns of applications in a
systematic way remains as one of our future tasks.

Another potential drawback of FREM is that when the
MTBF value gets very large, e.g., greater than 6,400 hours,
the overall performance gain on application lifetime
becomes marginal or even negative. In these circumstances,
we suggest turning off FREM if application execution time
is the primary concern. Nevertheless, empirical studies of
various production systems have shown that in realistic
environments systemwide MTBFs are generally far less
than 6,400 hours [14], [19], [22], [33]. As the size and
complexity of computer systems continue to grow, un-
expected failures could frequently occur. Hence, effective
failure recovery tools are indispensable and we believe that
FREM can greatly mitigate failure impact on user applica-
tions by effectively reducing their restart cost.

7 CONCLUSIONS

In this paper, we have presented the design and implementa-
tion of FREM, a kernel-level fast restart mechanism to tackle
the restart latency problem of general checkpoint/restart
protocols in networked environments. It complements the
state-of-the-art fault tolerance research by improving failure
restart. Through user-transparent system support, FREM
hides restart latency by parallelizing the application restart
with checkpoint image retrieval. Our extensive experiments
with the SPEC CPU2006 suite have indicated that FREM can
greatly reduce application restart cost by over 50 percent on
average, with the maximum raw reduction of 433.9 seconds.

Our prototype implement is currently built upon the BLCR

tool, under Linux 2.6.23 kernel. The principle of FREM

should be easily ported to other operating systems or

checkpoint/restart tools.
There are lots of rooms for improvement on FREM. We

are currently investigating a systematic approach to extract

in-depth data patterns of user applications, with the goal to

further improve the efficiency of postcheckpoint tracking

for FREM. Further, an adaptive triggering design is under-

way to make runtime decisions on whether and when to

invoke FREM by considering system and application

characteristics. We also plan to investigate a systematic

way for the choice of system parameters used in FREM.

Finally, our ultimate goal is to integrate FREM with

prefailure fault tolerance tools including our own work

[14], [16] as a compound solution for fault management.
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