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Abstract —Speedup models are powerful analytical tools for evaluating and predicting the performance of parallel applications.
Unfortunately, the well-known speedup models like Amdahl’s law and Gustafson’s law do not take reliability into consideration and
therefore cannot accurately account for application performance in the presence of failures. In this study, we enhance Amdahl’s law
and Gustafson’s law by considering the impact of failures and the effect of coordinated checkpointing/restart. Unlike existing analytical
studies relying on Exponential failure distribution alone, in this work we consider both Exponential and Weibull failure distributions
in the construction of our reliability-aware speedup models. The derived reliability-aware models are validated through trace-based
simulations under a variety of parameter settings. Our trace-based simulations demonstrate these models can effectively quantify
failure impact on application speedup. Moreover, we present two case studies to illustrate the use of these reliability-aware speedup
models.
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1 INTRODUCTION

1.1 Motivations

COmputing power has experienced tremendous growth
over the past decades. Production systems today already

contain hundreds of thousands of processors [6]. Exa-scale
systems are expected to become available in less than a decade
[37], which are projected to consist of millions of processing
units. For parallel applications running on these extreme scale
systems, speedup is a critical metric [38]. It not only measures
the inherent parallelism of an application, but also provides an
important guidance of application performance as system size
increases.

Amdahl’s law [3] and Gustafson’s law [4] are two well-
known speedup models. They are used to estimate the perfor-
mance of parallel applications at scales: Amdahl’s law focuses
on parallel execution relative to the serial execution under the
assumption of a fixed workload (i.e., fixed-sized speedup),
while Gustafson’s law emphasizes the amount of workload
that can be finished in a fixed time (i.e., fixed-time speedup).
Both models implicitly assume that the application can com-
plete without experiencing any failure.Nevertheless, with the
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increasing scale and complexity of computer systems, failure
becomes a commonplace scenario rather than an exception.
Recent studies have shown that MTBFs (mean-time-between-
failures) of teraflop and petaflop-scale systems are only on
the order of 10-100 hours, even for systems based on ultra-
reliable components [7]. As a result, parallel applications are
very difficult to make any forward progress because of failures
[5]. The occurrences of failures force the application to wait
for system recovery, which may take up to nearly 100 hours
[1], and then roll back to the beginning or the latest checkpoint.
Due to the impact of failures, application speedup in the
presence of failures is different from its speedup in an ideal
failure-free environment [16].

Despite the importance of reliability-aware speedup mod-
eling, only a few analytical studies have been conducted to
understand application performance under failures [22], [12],
[11], [16]. Reliability analysis is a hard problem, especially
in parallel systems with unprecedented scale and complexity.
To simply the problem, existing studies typically assume a
constant failure rate and adopt Exponential failure distribution
in their modeling process. Nevertheless, recent studies onfield
data from production systems clearly show that Weibull distri-
bution with decreasing failure rate provides a better goodness
of fit than Exponential distribution [2], [8], [46], [51]. The
key challenge is that Weibull distribution is hard to study
analytically due to its complicated and dynamic failure rate
nature [40]. Furthermore, validating reliability-aware speedup
models is also difficult due to the scarcity of failure data from
production supercomputers.

To address the aforementioned problems, in this paper we
present a set ofreliability-aware speedup modelsto extend
Amdahl’s law and Gustafson’s law by considering failure im-
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pact. The goal of this work is to provide a more accurate mea-
surement of application speedup in a practical failure-prone
environment. More importantly, we consider both Exponential
and Weibull failure distributions in the model construction. To
tackle the challenge of dynamic failure rate inherent in Weibull
distribution, we derive lower and upper bounds of application
speedup under Weibull failure distribution.

Checkpointing/restart is a well-known fault tolerance
method to mitigate the impact of failures. In particular, coor-
dinated checkpointing is a widely used technique in the field
of high performance computing due to its simplicity [26],
[56], [58]. It periodically coordinates application processes
and stores a consistent snapshot of the application. In case
of failure from any process, all the processes roll back to
the last checkpoint for recovery [30]. Although coordinated
checkpointing can effectively reduce work loss, it also in-
troduces some inevitable costs to the computation such as
checkpointing overhead and recovery cost [47], [23]. As shown
in the studies [16], [48], for an application running on a large-
scale system, its overall checkpoint/restart overhead could
consume more than 50% of its execution time due to the
high failure rate and the high checkpoint frequency. In this
study, we also quantify coordinated checkpointing effectson
application speedup in the design of reliability-aware models.
Furthermore, our models can be extended to study other fault
tolerance technologies such as uncoordinated checkpoint with
message logging [56] and hybrid checkpointing protocols [58],
[60].

To comprehensively and realistically assess our models, we
conduct trace-based simulations using the real failure traces
from production supercomputers [35], [51]. We develop an
event-driven simulator to simulate parallel execution. The
simulator is designed to parse discrete events from the failure
traces and also provide a flexible interface to allow various
configurations of application parameters. Our experimentsare
structured to assess model accuracy under different appli-
cation workloads, parallel fractions and computing scales.
Together, these experiments provide a comprehensive eval-
uation of model accuracy under various configurations. Our
results indicate that the newly derived speedup models can
more accurately reveal application performance in a practical
failure-present environment than the original Amdahl’s and
Gustafson’s laws. Further, our results clearly show that the
reliability-aware models based on Weibull distribution greatly
outperform those based on Exponential distribution.

In this study we also present two case studies to illustrate
the usefulness of the aforementioned speedup models. One
is to identify the optimal computing scale and the maximal
speedup for an application under a given system, and the other
is to project node reliability and checkpoint overhead thatare
needed in future exascale systems in order to maintain good
computing efficiency.

The rest of the paper is organized as follows. Section 2
briefly discusses related studies. Background and assumptions
are presented in Section 3. In Section 4, we present reliability-
aware application performance models. Based on the mod-
els listed in Section 4, the enhanced Amdahl’s models and
Gustafson’s models are derived in Section 5 and 6 respectively.

Model validation and model usage are listed in Section 7 and
Section 8. We discuss the extension of our models for new
fault tolerance techniques in Section 9. Finally, we conclude
the paper in Section 10.

2 RELATED WORK

Scalability has been studied for decades from various aspects.
Amdahl’s [3] and Gustafson’s [4] are two well-known models.
Amdahl’s model is for fixed-size problems (strong scaling),
while Gustafson’s model is for fixed-time problems (weak
scaling). Both models have made tremendous impacts on par-
allel and distributed computing. A number of analytical studies
have extended these basic models to examine application scal-
ability under various system constraints. Kumar et al. develop
scalability models for a specific parallel architecture [27]. Yero
and Henriques analyze the speedup and scalability of Master-
Slave applications on heterogeneous clusters [39]. Woo et al.
extend the Amdahl’s law for many-core architectures [28].
Jogalekar and Woodside introduce an adaptation of scalability
for the distributed system era [42]. Sun and Ni develop
memory-constrained scalability in [9]. In [10], a power-aware
speedup is proposed to predict the scaled execution time
and power consumption. However, neither of them studies
the impact of failures — which is an important aspect as
systems and applications scale to very large sizes. This work is
focused on extending Amdahl’s model and Gustafson’s model
by considering system failures and resilience mechanisms.
Further, our models can be easily integrated with existing
studies to analyze more complicated scenarios.

Analytical modeling of failure and checkpointing on appli-
cation performance has been presented in [22], [12], [11], [45],
[17], and most studies assume failure arrivals follow a Pois-
son’s process, i.e., the inter-arrival time of failures follows an
identical Exponential distribution. In [22], Young derives the
optimal checkpointing interval via the first order estimation.
Daly improves the model by using higher order estimation
and derives the expected completion time with checkpointing
in [12]. William et. al. use Daly’s model to study the impacts
of failures and checkpointing on application efficiency in [43].
In [11] and [45],the authors use an M/G/1 model to describe
system failures and derive performance models to estimate
the mean, variation and distribution function of application
completion time. While Exponential distribution is commonly
used for modeling, recent studies have shown that Weibull dis-
tribution provides a better goodness of fit [2], [8], [46]. There
are very few studies considering Weibull distribution. In [41],
Liu et. al. use a stochastic renewal reward process to study
optimal checkpointing interval based on Weibull distribution.
In [40], Gottumukkala et al. study system-wide time-to-failure
distribution under Weibull failure arrivals. Distinguishing from
existing analytical modeling studies, in this paper we derive
reliability-aware speedup models under both Exponential and
Weibull failure distributions, and examine these models under
the scenarios where checkpointing may or may not be used.

Experimental studies of failure impact on parallel com-
puting have been discussed in [16], [21], [44]. Based on
simulation results, Elnozahy and Plank point out that the



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 3

optimal speedup decreases rapidly as the number of nodes
grows beyond a certain point [16]. In [21], a reliability-aware
resource allocation algorithm is presented to select an optimal
number of nodes for the execution of an application. In [44],
Taerat et. al analyze Blue Gene/L logs in a period of six
months and study the job interruptions through simulation.
Unlike these studies, this paper develops analytical models to
explicitly express application speedup in the presence of fail-
ures, using both Exponential and Weibull failure distributions.

3 ASSUMPTIONS

For the development of reliability-aware speedup models, we
make several assumptions based on existing studies.

First, the time interval between failures on each node
i follows a certain distribution with a probability density
function of fi(t). In this paper, we study two commonly used
distributions, i.e. Exponential and Weibull. Their probability
density functions are as follows:

fi(t) =







λie
−λit Exponential

βi
ηi
(
t

ηi
)βi−1e(−t/ηi)

βi
Weibull

(1)

In Exponential density function, the constantλi > 0 is
the constant failure arrival rate of nodei. In Weibull density
function,ηi > 0 is the scale parameter andβi > 0 is the shape
parameter. We assume that all the nodes on a system have the
same shape parameter, i.e.,β1 = · · · = βN = β, andβ < 1.
This assumption is based on the observations in [2], [46].

Second, we assume the system adopts a space sharing
mechanism for job scheduling, where each compute node is
dedicated to one application process once it is allocated toan
application. Most supercomputing centers adopt space sharing
mechanism for their job scheduling. Further, we assume a
fail-stop mode [30], where the failure of any single node
interrupts the entire application. Many tightly-coupled parallel
applications like MPI applications fall into this category.

Third, failure repair time follows a general distribution with
a mean ofµ [11]. Further,µ is not sensitive to system size in
homogeneous systems, which is based on the observation in
[2].

Lastly, the overhead of a single coordinated checkpointing
Oc is a linear function of application sizeN (i.e., number of
nodes used for running the application), and is much less than
application workload [47], [48], [12]. The overhead consists
of two parts, i.e., I/O overhead and message passing overhead
[18]. For augmented Amdahl’s models, since the problem size
does not change, we assume I/O overhead is fixed [18], [14],
i.e. Oc = a + bN . For augmented Gustafson’s models, since
the problem size or the checkpoint image size is proportional
to the number of nodes, the I/O overhead in this case linearly
increases with the number of nodes. Hence the overhead is
Oc = aN + bN [25], [30].

Table 1 lists a set of nomenclatures that will be frequently
used in the rest of the paper. Unless otherwise specified, in
the rest of the paper, the term of checkpointing indicates
coordinated checkpointing.

4 EXPECTED APPLICATION PERFORMANCE

Given a system withN nodes, we assume the inter-arrival
times of failures for each node are independent and identically
distributed (iid) and the failure of a single node interrupts the
entire application (the fail-stop mode). LetW be the failure
free execution time of an application running on N nodes, then
application reliability function at timeT is given as

Rapp(T ) =
N
∏

i=1

1−
∫ ti+T

0
fi(t)dt

1−
∫ ti
0
fi(t)dt

, (2)

whereti is the time of the last failure. The expected application
execution time in the presence of failureEf (TW ), is different
depending on whether checkpointing is adopted or not. For
the systems without checkpointing support, it can be derived
based on a model from [13] as below.

Ef (TW ) =W +
µ(1−Rapp(W ))

Rapp(W ) −
∫
W
0

td(Rapp(t))

Rapp(W )
(3)

In an environment with checkpointing support, we adopt a
segment based model presented in [45], where the execution
time of an application is divided into a set of checkpointing
segments. Each segment is a period of time between two
consecutive checkpoints and its length can be represented as
δ = τ +Oc, whereτ is the checkpoint interval andOc is the
checkpoint overhead. In each segment, once a failure occurs,
the application needs to roll back to the last checkpoint (i.e.,
the beginning of the current segment). Assume there arekf
failures occurring during a segment and each failure results
in a rework costX and a system downtimeY , the expected
completion time of a segmentE(Tδ) can be defined as

E(Tδ) = δ + kf ∗ (E(X) + E(Y )), (4)

where E(X)=
∫ δ

t=0 t
fi(t)∫
δ
0
fi(t)dt

dt and E(Y )=µ. As we need

at least⌊Wτ ⌋ segments to finish the whole application, the
expected execution time of the application with checkpointing
is estimated as

Efckp(TW ) = ⌊
W

τ
⌋ ∗ E(Tδ) (5)

4.1 Exponential distribution

In the case of Exponential distribution for failure arrivals,
based on Equation (1) and (2), due to the memoryless property
of this distribution, i.e.,P (t > ti + T |t > ti) = P (t > T ),
Rexpapp(T ) is independent ofti and can be calculated as

Rexpapp(T ) = e−Tλapp (6)

whereλapp =
∑N
i=1 λi. If all the nodes have the same failure

rateλ, it can be simplified asλapp = Nλ [31], [36].
Based on Equation (3) and (6), we can obtain the expected

application performance without checkpointing

Efexp(TW ) = (µ+ λ−1
app)(e

λappW − 1) (7)

Lan
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TABLE 1: Nomenclature

Symbol Description
N Number of computing nodes (i.e., the computing scale)
Ri Reliability function of node i
Rapp Reliability function of an application running on N-node system
λi Failure arrival rate of node i (per hour) in Exponential distribution
λapp Failure arrival rate of an application running on N-node system (per hour)
β, η shape and scale parameters of Weibull distribution
µ Mean-Time-To-Recover(MTTR) (hour)
W Application workload (hour)
Wp The parallel workload (hour)
TW Application execution time for a given workload ofW , TW = W in the case of failure-free execution
α The fraction of the application that can be parallelized
Oc, τ , δ Checkpoint overhead, interval, segment, andδ = τ +Oc

SA Amdahl’s speedup model
SG Gustafson’s speedup model
Sf Speedup model (SA or SG) in the presence of failures
Sexp Speedup model (SA or SG)under Exponential failure distribution, without checkpointing
Swb Speedup model (SA or SG) under Weibull failure distribution, without checkpointing
Sexp,ckp Speedup model (SA or SG) under Exponential failure distribution, with checkpointing
Swb,ckp Speedup model (SA or SG) under Weibull failure distribution, with checkpointing

In case of checkpointing support, based on Equation (4)
and Equation (5), we can estimate the expected application
execution time as follows:

Efexp,ckp(TW ) =
eµλapp

λapp
(eδλapp − 1)

W

τ
(8)

whereτ is the checkpoint interval,δ = τ+Oc is the checkpoint
segment, andOc = a + bN is the checkpoint overhead.
According to [12], [30], the optimal checkpoint interval can
be approximated as follows:

τ =















√

2Oc
λapp

[1 + 1
3 (
Ocλapp

2 )
1
2+

1
9 (
Ocλapp

2 )]−Oc Oc <
2

λapp
1

λapp
Oc ≥

2
λapp

(9)

4.2 Weibull Distribution

In the case of Weibull distribution for failure arrivals, based
on Equation (1) and (2),Rwbapp(T ) can be derived as

Rwbapp(T ) = e

∑N
i=1

t
β
i
−(ti+T)β

η
β
i (10)

Unlike the case of Exponential distribution,Rwbapp depends
on the time of the last failureti, suggesting a change once
failures occur in one or more nodes [40]. To tackle the
problem, we derive a lower bound and an upper bound for
Rwbapp.

Theorem 1. For Weibull failure distribution withβi < 1
(i = 1 to N ), the lower bound and the upper bound ofRwbapp
are

Rwbapp(T ) = e
−N(Tη )β

(lower bound) (11)

R
wb

app(T ) = eN−N(η+Tη )β (upper bound) (12)

whereη = min
i
(ηi) and η = max

i
(ηi). If βi = 1 and η =

η,Rwbapp(T ) = R
wb

app(T )

Proof: For the lower bound, we note the inequalitytβi −
(ti+T )

β ≥ −T β holds whenti ≥ 0 and0 < β < 1, therefore

Rwbapp(T ) ≥ e
−

∑N
i=1

Tβ

η
β
i ≥ e

−N(Tη )β
.

For the upper bound, we assume a situation in which all
the nodes survive until a failure occurs atti = ηi, then

system reliability becomesRwbapp(T ) = e

∑N
i=1

η
β
i
−(ηi+T)β

η
β
i . To

achieve this situation, all the nodes need to be failure-free
during the time interval fromti = 0 to ηi, with the probability
Ri(ηi)

N = e−N(ηi/ηi)
β

= e−N decreasing to 0 as the growth
of N . In other words, the probability thatRwbapp is as high

as e
∑N
i=1

η
β
i
−(ηi+T)β

η
β
i is very low and decreases as the scale

grows. As a result, an approximation for the upper bound

is eN−N(η+Tη )β ≥ e

∑N
i=1

η
β
i
−(ηi+T)β

η
β
i . The reason of choosing

ti = ηi is to simplify the mathematical expression.

If βi = 1, e

∑N
i=1

ηβi−(η+T)βi

η
βi
i = e

∑N
i=1

η−(η+T)
ηi =

e
∑N
i=1

T
ηi = e

∑N
i=1

Tβi

η
βi
i . Therefore ifη = η, Rwbapp = R

wb

app.

To estimate the expected execution time without checkpoint-
ing, we replace (3) with (11) and (12) as follows:

Efwb(TW ) =W − µ+ µ

e−ϕ
+

(η/Nξ)γ(1+ξ,ϕ)

e−ϕ
(13)

E
f

wb(TW ) =W − µ+ µ
eN−ϕ+

η/Nξ(γ(1+ξ,ϕ)−γ(1+ξ,N))+ηe−ϕ−ηe−N

e−ϕ ,
(14)

where ξ = 1/β, ϕ = N(W/η)β , ϕ = N(1 + W/η)β ,
andγ(x, y) =

∫ y

0 t
x−1e−tdt is the lower incomplete gamma

function with parameterx andy [49].
To estimate the expected execution time with checkpointing,

we integrate (11) and (12) into (5). We usekf = δ
MTBF to
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represent the number of failures occurring in one checkpoint-
ing segment, whereMTBF is the mean time between failures.
Under Weibull failure distribution,MTBF = ηΓ(1 + ξ) and
Γ(·) is the gamma function. The results are shown below.

Efwb,ckp(TW ) = δ(1 + µ
(η/Nξ)Γ(1+ξ)

+
γ(1+ξ,ψ)

(1−e−ψ)Γ(1+ξ)
)Wτ (15)

E
f

wb,ckp(TW ) = δ(1 + µ
ηeN

Nξ
Γ(1+ξ,N)−η

+

ηeN

Nξ
(γ(1+ξ,ψ)−γ(1+ξ,N))+ηeN−ψ−η

(1−eN−ψ)( ηe
N

Nξ
Γ(1+ξ,N)−η)

)Wτ

(16)

where ψ = N(δ/η)β , ψ = N(1 + δ/η)β , and Γ(x, y) =
∫∞

y
tx−1e−tdt is the upper incomplete gamma function with

parameterx andy [49]. The optimal checkpoint intervalτ and
τ can be identified via numeric method like Newton’s method.

5 RELIABILITY -AWARE AMDAHL’S MODELS

According to Amdahl’s law, application workload per process
isWp = (1−α)W+αW/N , whereW is the entire application
workload andα is the fraction of the application that can be
parallelized. Hence the fixed-size speedup is defined as:

SA =
W

(1− α)W + αW/N
=

N

N(1− α) + α
(17)

5.1 Exponential distribution

In the case of Exponential failure distribution, we can derive
the following reliability-aware model based on Equation (7)
and Equation (8)

SAfexp =
W

(µ+ λ−1
app)(e(1−α+

α
N )λappW − 1)

(18)

SAfexp,ckp =
λappτ

eµλapp (eδλapp−1)(1−α+ α
N ) (19)

5.2 Weibull distribution

In the case of Weibull failure distribution without checkpoint-
ing, we estimate the lower bound and upper bound based on
(13) and (14) as follows:

SAfwb =
W

Efwb(TWp )
=

We−ϑ

e−ϑ(Wp−u)+u+(
η

Nξ
)γ(1+ξ,ϑ)

(20)

and

SA
f

wb =
W

E
f
wb(TWp )

=

WeN−ϑ

eN−ϑ(Wp−u+η)+u+η+
η

Nξ
(γ(1+ξ,N(

Wp
η )β)−γ(1+ξ,N))

,
(21)

whereϑ = N(Wp/η)
β andϑ = N(1 +Wp/η)

β .
For the models based on checkpointing support, we can ob-

tain the following lower and upper bounds based on Equations
(15) and (16):
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SAfwb,ckp =
W

Ef
wb,ckp

(TWp )
=

τ

δ(1+ µ

(η/Nξ)Γ(1+ξ)
+

γ(1+ξ,φ)

(1−e
−φ

)Γ(1+ξ)
)(1−α+ α

N )

(22)

and

SA
f

wb,ckp =
W

E
f
wb,ckp(TWp )

=

τ

δ(1−α+ α
N )(1+ µ

ηeN

Nξ
Γ(1+ξ,N)−η

+

ηeN

Nξ
(γ(1+ξ,φ)−γ(1+ξ,N))+ηeN−φ

−η

(1−eN−φ)(
ηeN

Nξ
Γ(1+ξ,N)−η)

)

(23)
whereφ = N(δ/η)β andφ = N(1 + δ/η)β .

Theorem 2.SA is a special case ofSAfexp, andSAfexp is a
special case ofSAfwb.

Proof: ForSAfexp, when the recovery time can be ignored
(µ = 0), each node has the same failure rate (λa = Pλ), and
theλa is much larger than the parallel workload (1

Pλ >> Wp),
based on the first-order Taylor series, we obtain

SAfexp =
W

(Pλ)−1(e(1−α)PλW eαλW−1)

≈ W
(Pλ)−1((1−α)PλW+αλW )

= SA.

Based on Theorem 1, it is obvious thatSA
f

wb = SAfwb =
SAfexp whenβ = 1.

5.3 Model Analysis

The above models provide two interesting properties about
reliability-aware fixed-size speedup.

Property 1. Reliability-aware fixed-size speedups, in case of
Exponential or Weibull failure distributionwithout checkpoint-
ing, decrease with the growth of application workload.

Property 2. Reliability-aware fixed-size speedups, in case of
Exponential or Weibull failure distributionwith checkpointing,
are independent of application workload.

To illustrate Property 1, Figure 1 presents reliability-aware
fixed-size speedups under different workloads. By comparing
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Property 1 and 2, we can clearly observe that the use of
checkpointing can promote application scalability.

6 RELIABILITY -AWARE GUSTAFSON ’S MOD-
ELS

Different from Amdahl’s law, Gustafson’s law emphasizes the
amount of workload that can be finished in a fixed time [4].
It assumes that only a fraction (denoted asα) of the workload
can be parallelized and scaled with the number of computing
nodes, and the rest of the workload does not grow with the
number of nodes [4]. Hence it defines fixed-time speedup as
follows:

SG =
(1 − α)W + αWN

W
= 1− α+ αN (24)

In an ideal failure-free case, Gustafson’s law shows that
the fixed-time speedup is independent ofW (i.e., application
workload) and linearly grows withN (i.e., computing scale).
In practice, however, asW increases, the application becomes
more vulnerable to failures. Considering the impact of failures,
we define theachievable workloadW ∗ as the workload for
user application duringW execution.

6.1 Exponential distribution

In the case of Exponential failure distribution,SGfexp can be
derived from Equation (7) as

SGfexp = 1− α+
N ln( W

u+λ
−1
app

+1)

Wλapp
− (1− α)N (25)

Similarly, we can deriveSGfexp,ckp based on Equation (8)
as follows:

SGfexp,ckp = 1− α+
τNλapp

eµλapp (eδλapp−1)
− (1 − α)N (26)

Theorem 3.SG is a special case ofSGfexp.
Proof: When the recovery time can be ignored (µ = 0),

each node has the same failure rate (λapp = Pλ), andλapp is
much larger than the execution time (1

Pλ >> W ), based on
the first-order Taylor series we obtain

SGf = 1− α+ ln(WPλ+1)
Wλ − P (1− α)

≈ 1− α+ WPλ
Wλ − P (1− α)

= SG.

(27)

6.2 Weibull distribution

In the case of Weibull failure distribution without checkpoint-
ing, the achievable workloads are derived from the transcen-
dental equationsEfwb(TW ) =W andE

f

wb(TW ) =W , which
have no analytical solutions. We adopt a numeric method to
solve the equations, as shown in Algorithm 1. Here the value
of SGfexp is used as the initial point and the Newton’s method
is used to search the numeric solutions.

Algorithm 1 Numeric algorithm to obtain augmented
Gustafson’s model in the case of Weibull failure distribution,
without checkpointing

Definition:g(T ∗

W ) ≡ E
f
wb(T

∗

W ) −W , g(T ∗

W ) ≡ E
f
wb(T

∗

W ) −W , ε
is a positive real number sufficiently close to zero.
Objective: SGf

wb andSG
f
wb

T ∗

Ws
← N

η
ln( W

u+N/η
+ 1)

T ∗

Witer
← T ∗

Ws

while |g(T ∗

Witer
)| > ε do

T ∗

Witer
← T ∗

Witer
−

g(T∗

Witer
)

g′(T∗

Witer
)

end while
TW

∗

opt
← T ∗

Witer

SG
f
wb ←

(1−α)W+(TW
∗

opt
−(1−α)W )N

W
T ∗

Witer
← T ∗

Ws

while |g(T ∗

Witer
)| > ε do

T ∗

Witer
← T ∗

Witer
−

g(T∗

Witer
)

g′(T∗

Witer
)

end while
TW

∗

opt ← T ∗

Witer

SG
f
wb ←

(1−α)W+(TW
∗

opt−(1−α)W )N

W
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Fig. 2: Comparison ofSG, SGf
exp, and SG

f
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application workloads where the computing scale is set to 16. Here,
the parameters areα = 0.9, λ = η = 1

7500
hours,β = 0.8, µ = 0.2

hours.

In the case of Weibull failure distribution with checkpoint-
ing, based on Equations (15) and (16), the lower bound and
upper bound speedups are estimated as follows:

SGfwb,ckp = 1− α− (1− α)N

+ τN

δ(1+ µ

(η/Nξ)Γ(1+ξ)
+

γ(1+ξ,ψ)

(1−e
−ψ

)Γ(1+ξ)
)

(28)

SG
f

wb,ckp = 1− α− (1− α)N+
τN

δ(1+ µ

ηeN

Nξ
Γ(1+ξ,N)−η

+

ηeN

Nξ
(γ(1+ξ,φ)−γ(1+ξ,N))+ηeN−φ

−η

(1−eN−φ)(
ηeN

Nξ
Γ(1+ξ,N)−η)

)

(29)

6.3 Model Analysis

The above models provide two interesting properties about
reliability-aware fixed-time speedup.

Property 3. Reliability-aware fixed-time speedups, in case of
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Exponential or Weibull failure distributionwithout checkpoint-
ing, decrease with the growth of application workload.

Property 4. Reliability-aware fixed-time speedups, in case of
Exponential or Weibull failure distributionwith checkpointing,
are independent of application workload.

To illustrate Property 3, Figure 2 presents reliability-aware
fixed-time speedups under different workloads. By comparing
Property 3 and 4, we can clearly observe that the use of
checkpointing can promote application scalability with high
workload.

7 MODEL VALIDATION

We evaluate our models by means of real failure traces from
production supercomputers. Specifically, we select two failure
traces from the public failure archive [35], denoted as LANL
#8 and LANL #9 in the rest of the paper. We also use
a failure log from the 40-rack Blue Gene/P system named
Intrepid at Argonne [51]. The use of multiple traces from
different machines is to ensure that our models are not biased
to any specific systems. For the LANL systems, we select 128
nodes that have sufficient failure records for testing; for the
BlueGene/P system, we test our models at the rack-level. The
summary of failure traces is shown in Table 2.

TABLE 2: Summary of failure traces.

LANL #8 LANL #9 Blue Gene/P
MTBF (hour) 30.26 37.41 30.47
MTTR (hour) 2.26 3.33 0.21
Number of failures 3,292 3,007 549

Figure 3 depicts our evaluation design. For the purpose
of model verification, we have developed an event-driven
simulator. It takes two inputs: failure events and parallel
applications. The failure event is extracted from the fail-
ure trace log. Each failure event is associated with a time
stamp, location, and recovery time. The parameters of parallel
application is specified by users, or randomly created by
the job generator. Each application is described in terms of
failure-free execution timeW , computing scaleN , the parallel
fraction α, checkpointing configuration (i.e., with or without
checkpointing) and checkpointing overheadOc.

Upon initiating the execution of an application, the sim-
ulator randomly assigns a set of machine nodes to the ap-
plication and selects a time stamp within the failure trace
to represent application start time. For each application,the
results presented in the following subsections are the average
of 10,000 simulation tests with randomly selected start times
and execution nodes. When the execution is completed, the
simulator returns a value (denoted asmeasured value).

With respect to Amdahl’s models, the simulator scans
through the failure trace in the order of event occurrence time
and emulates a failure when any of the assigned nodes to the
application encounters a fatal event according to the failure
trace. Without checkpointing, the application is stopped,waits
for the recovery, and then rolls back to the beginning. The
measured application time includes the failure-free execution

Fig. 3: Model validation.

time, the work loss, and the recovery time. With check-
pointing, the simulation process is similar except that the
application performs periodic checkpointing. Upon a failure,
the application rolls back to the last checkpoint, and the
checkpointing overhead is added to the measured application
time.

With respect to Gustafson’s models, the simulator measures
the achievable workload of the application during theTW
time. Similar to the cases of calculating Amdahl’s speedup,the
simulator scans through the failure trace in the order of failure
time stamp. Upon a failure on any of the assigned nodes,
without checkpointing, the achievable workload is calculated
as the application workload between the last failure and the
completion time; with checkpointing, it is calculated as the
sum of workload except for the checkpoint overhead, the
recovery time and work loss due to rolling back.

Meanwhile, we extract reliability related parameters from
the failure log, including failure rate and repair time. These
parameters, along with application information, are fed into
our reliability-aware models to calculate various speedup
values (denoted aspredicted values). By comparing mea-
sured values and predicted values, we assess model accu-
racy by calculating their relative difference (i.e.,error =
|predicted value−measured value|

|measured value| ).

In our experiments, checkpoint overheadOc on LANL
systems is a linear function of computing scaleN (i.e., number
of nodes used for running the application), and is much less
than application workload [47], [48], [12]. It consists of two
parts, namely I/O overhead and message passing overhead
[18]. For augmented Amdahl’s models, as the problem size
does not change, the I/O overhead is assumed fixed [18], [14],
i.e.Oc = a+ bN . For augmented Gustafson’s models, as the
problem size or the checkpoint image size is proportional to
the number of nodes, the overhead is defined asOc = aN+bN
[25], [30]. Based on our experience as well as existing
literatures [18], [50], [47], [48], we seta to 0.335 andb to
0.0364. For the Blue Gene/P system, I/O bandwidth scales
linearly with the number of nodes at the beginning and then
becomes level off at about 25 GB/s when the application scales
to 16 racks (16,384 nodes) [50], hence we set 120 seconds
of Oc for augmented Amdahl’s models and 600 seconds of
Oc for augmented Gustafson’s models if the application uses
less than 16 racks; otherwise we set 240 seconds ofOc for
augmented Amdahl’s models and 1200 seconds ofOc for
augmented Gustafson’s models.
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Fig. 4: Error comparison of various Amdahl’s models under different computing scales. Here application workload is 100hours
and its parallel fraction is set to 0.9.

7.1 Under Different Computing Scales

In the first set of experiments, we study the accuracy of our
reliability-aware speedup models under different computing
scales. We set the workloadW to 100 hours and the parallel
fraction α to 0.9. The results are shown in Figure 4 and
Figure 5.

From the figures, we make two important observations.
First, the original Amdahl’s model and Gustafson’s model
tend to deviate far from the actual application performance
as the computing scale increases, no matter whether check-
pointing is adopted or not. Our reliability-aware models can
better represent application speedup, especially under large
scales. For example, as shown in Figure 4(a), the error of
Weibull based models is always less than2%, which is only
about one-sixth of the original Amdahl’s model. Second, our
Weibull based models generally outperform the Exponential
based models. Without checkpointing, eitherSAfwb or SA

f

wb

shows the best accuracy. With checkpointing,SA
f

wb always
outperforms other models with an error of less than1% under

different computing scales. Furthermore, its error typically
does not increase with the growth of computing scale.

7.2 Under Different Workloads

In the second set of experiments, we study the accuracy of our
reliability-aware speedup models under different workloads.
We use the maximal computing scales, i.e., 128 nodes for
the LANL systems and 40,960 nodes for the BlueGene/P
system, and setα to 0.9. In terms of Amdahl’s models, we
test application workloads from 200 hours to 1000 hours. In
terms of Gustafson’s models, we test application execution
time from 40 hours to 200 hours. Due to space limitation, we
only present the results from the LANL #8 system in Figure 6.
The results from other systems are very similar.

Without checkpointing, the accuracy of the original Am-
dahl’s modelSA dramatically decreases with the growth of
application workload. For example, as shown in Figure 6, the
error of SA is more than100% when application workload
is increased beyond 800 hours. Our reliability-aware models
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Fig. 5: Error comparison of various Gustafson’s models under different computing scales. Here application workload is100
hours and its parallel fraction is set to 0.9.

significantly outperformSA and SAfexp with the error less
than 9%. Similarly, the original Gustafson’s modelSG can
lead to substantial errors as the growth of workload. Instead,
SGfwb quantifies the impact of failures, thereby greatly out-
performing SG. These results clearly indicate that without
considering failure impact, the original Amdahl’s model and
Gustafson’s model cannot accurately represent application
speedup, especially for long-running applications. Further-
more, the models based on Weibull distribution (e.g.,SAfwb,
SAfwb,ckp, SG

f
wb, andSGfwb,ckp) outperform the models based

on Exponential distribution (e.g.,SAfexp, SA
f
exp,ckp, SG

f
exp,

andSGfexp,ckp), especially under high application workload.
For example, for the application with a workload of 1000 hours
with checkpointing, the Exponential based modelSAfexp,ckp
introduces an error of13%, whereas the upper bound Weibull
based modelSAfwb,ckp only has an error of 0.1%. This is due
to the fact the Exponential based models do not consider the
dynamic feature of failure arrivals, which can greatly influence
model accuracy under high application workload.

7.3 Under Different Parallel Fractions

In the third set of experiments, we examine our reliability-
aware models under different parallel fractions. We set the
application workloadW to 1000 hours for Amdahl’s models
and 200 hours for Gustafson’s models, withα varying from0.7
to 0.999. Again, we only present the results from the LANL
system #8 in Figure 7, and omit the results from other systems
as they are similar.

Without checkpointing, the originalSA andSG provide ex-
tremely low accuracy, especially when parallel fraction islow.
Whenα is 0.7 (i.e., meaning that70% of the application can be
parallelized), the original Amdahl’s model produces an error of
2, 851% and the original Gustafson’s model gives an error of
188%, whereas our models achieve much better accuracy with
error being less than10%. With checkpointing, our models
still significantly outperform the original models. For example,
the best accuracy achieved by the original Amdahl’s model is
3.5% whenα is set to0.999, whereasSA

f

wb,ckp can provide an
almost perfect prediction with an error of only0.2%; the best

Lan
Cross-Out

Lan
Replacement Text
an
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Fig. 6: Error comparison under different workloads (a) Amdahl’s model without checkpointing (b)Amdahl’s model with
checkpointing (c) Gustafson’s model without checkpointing (d) Gustafson’s model with checkpointing. Here the parallel fraction
is 0.9 and the computing scale is 128.
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Fig. 7: Error comparison under different parallel fractions (a) Amdahl’s models without checkpointing (b) Amdahl’s models with
checkpointing (c) Gustafson’s models without checkpointing (d) Gustafson’s models with checkpointing. Here the computing
scale is 128, workload for Amdahl’s models is 1000 hours, andworkload for Gustafson’s models is 200 hours.
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accuracy achieved by the original Gustafson’s model is9%,
whereasSG

f

wb,ckp has an error of only0.1%. Moreover, by
comparing the errors produced by Exponential based models
and Weibull based models, we can observe that Weibull based
models are more accurate than Exponential based models. For
example, without checkpointing, the error ofSAfexp is 50%
when theα is 0.7, whereas the Weibull based models always
present less than10% error. With checkpointing,SA

f

wb,ckp and

SG
f

wb,ckp produce extremely lower errors under different par-
allel fractions. This demonstrates that Weibull based models
can better describe application speedup in the failure-present
environment as compared to Exponential based models.

7.4 Validation Summary

Our trace-based simulations demonstrate the significant impact
of failures on application speedup and the high accuracy of our
newly developed speedup models. Below we summarize the
key observations.

• The original SA and SG cannot accurately represent
application speedup in a failure-present environment,
especially under large computing scale, high workload,
and small parallel fraction.

• The Exponential based speedup models quantify the im-
pact of failures and the effect of checkpointing and their
accuracy decrease under high workload and small parallel
fraction. Without checkpointing support, the Exponential
based speedup models may lead to an error of up to 50%.

• The Weibull based speedup models are highly accurate
with the error typically ranging between0.4% − 5.1%
for Amdahl’s models and0.3%− 17.5% for Gustafson’s
models, which significantly outperform the Exponential
based models.

8 MODEL USAGE

As shown in Section 7, our Weibull based models can represent
application speedup with high accuracy. In this section, we
present two case studies to demonstrate the use of Weibull
based models. Given an application, the first case study shows
the use of our models to identify the optimal computing scale.
The second one is to estimate node MTBFs and checkpoint
overhead that are needed in future exascale systems in order
to maintain the computing efficiency achieved on current
systems.

8.1 Identification of Optimal Computing Scale

According to the original Amdahl’s law and Gustafson’s law,
the fixed-size speedupSA monotonically increases as the
computing scaleN grows with the bound 1

1−α , and the
fixed-time speedupSG can grow infinitely as the computing
scale increases in a failure-free system. Nevertheless, ina
realistic failure-present environment, our derived models show
that both fixed-size speedup and fixed-time speedup drop
down when the computing scale increases beyond a certain
point due to the increasing failure rate. As a result, for a
parallel application, it is necessary to identify the optimal

computing scale at which the application can achieve the
maximal speedup.

Suppose a homogenous system where all the nodes have the
same Weibull failure distribution, the optimal computing scale
can be determined by solving the equations∂Sf/∂N = 0
and∂Sfckp/∂N = 0. Figure 8 presents the fixed-size speedup
results on a homogeneous system where the computing scale
ranges from1 to 105. There are five curves in the plot,
representing the original Amdahl’s model and our reliability-
aware models with and without checkpointing respectively.As
shown in the figure, unlike the originalSA, reliability-aware
fixed-size speedup decreases as the computing scale increases
beyond a certain point. Furthermore, by comparing the curves
with and without checkpointing, we observe that the use of
checkpointing can considerably boost application speedupby
increasing the maximal achievable speedup. For the specific
application listed in the figure, without checkpointing, the
optimal scale is about 4500-5000 which achieves a speedup of
about 550-680; with checkpointing, the optimal scale is about
16000− 21000 which achieves a speedup of about 820-920.
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Similarly, Figure 9 presents the fixed-time speedup as the
computing scale grows from1 to 105. Obviously, these curves
indicate that the achievable fixed-time speedups ofSGf and
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Fig. 10: The efficiency with different computing scales. Here the
parameters areα = 0.9, β = 0.6, W = 168 hours. The MTBFs of
Intrepid system is 109,718 seconds, and checkpointing overhead on
existing systemOc = 30 minutes.

SGfckp are much smaller than the speedup given by the original
Gustafson’s law. The curves ofSGf show that the maximal
speedup can only achieve about1.5 × 104 althoughα is as
high as 0.999. With checkpointing, the growth ofSGfckp is

still much slower than the original Gustafon’s law, butSGfckp
can achieve4.5 × 104 when computing scale is105. The
difference betweenSGf andSGfckp indicates that the use of
checkpointing can increase the optimal computing scale and
boost application speedup.

8.2 Projection on Exascale Systems

The efficiency of a parallel application is defined as the
proportion of speedup to the computing scale. It measures the
extent to which time is well used for the intended computation.
Assume a future system composing of nodes with the same
reliability as those on the current Blue Gene/P machine
“Intrepid” at Argonne. We further assume checkpoint overhead
on this future system is maintained at the same level as on
Intrepid. Our field data show that on Intrepid, system-wide
MTBF is 30.5 hours, and checkpointing overhead typically
takes 30 minutes [51]. Figure 10 presentsefficiencytrend on
a large scale system (composing of105 − 106 nodes). Here,
we use the reliability-aware Gustafson’s model under check-
pointing. The curves show that efficiency exhibits decreasing
trend. Especially, the lower bound of efficiency becomes less
than 0.1 when computing scale reaches106. In other words,
the results here indicate that in order to effectively harness the
potential of extreme scale systems, we need to improve fault
tolerance.

A number of approaches have been studied to reduce the
impact of failures. These approaches can be broadly classified
into two main directions: improving the node reliability [19],
[52] or reducing the overhead of fault tolerance methods such
as checkpointing [16], [26], [33], [34]. Our derived models
can be applied to measure the benefits of these approaches
with regards to maintaining good computing efficiency.

In terms of node reliability, existing studies mainly focuson
increasing node MTBF. In Figure 11, we present the required
node MTBF on future systems in order to maintain the same
efficiency on Intrepid (Figure 10). Here, we assume checkpoint
overhead is the same as on Intrepid. As we can see, the shape
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Fig. 11: The node MTBF is required on future exascale systems to
maintain the same efficiency on Intrepid. Here200× represents 200
times over node MTBF in Intrepid. The parameters areα = 0.99,
µ = 0.2 hours,W = 168 hours.

valueβ plays a critical role with regard to node MTBF. There
are three curves representing different shape values in theplot.
It is shown that a smallerβ (e.g., whenβ = 0.6) generally
requires much faster growing node MTBF in order to maintain
the efficiency. The main reason is that a lower shape value
leads to a higher failure rate right after the occurrence of
failure [49], thus a higher MTBF is expected to reduce the
average number of failures during the application execution
time. In other words, it is essential to increase both the shape
value and the node MTBF to gain a good efficiency on future
systems.

Improving checkpointing performance is an active research
area, and a wide range of hardware and software technologies
are presented to reduce the checkpointing overhead [16], [26],
[33], [52]. Our models indicate that reducing checkpointing
overhead alone is insufficient to maintain computing efficiency
due to inevitable work loss. Reducing checkpointing overhead
can reduce the growth requirement on node MTBF, as shown
in Figure 12. As an example, for a future system composing of
106 nodes, if the system keeps the same checkpointing over-
head (i.e., 30 minutes), its node MTBF should be increased
69.2 times longer than that observed on Intrepid, in order to
maintain the same level of computing efficiency; nevertheless,
if the checkpointing overhead can be reduced to 10 minutes,
its node MTBF should be increased 32.9 times longer than
that on Intrepid.

9 MODEL DISCUSSION

In this paper, we focus on global coordinated checkpointing
given that it is the most popular fault tolerant mechanism used
in practice [26], [56], [58]. Nevertheless, as demonstrated in
Section 8.2, global coordinated checkpointing may be not a
viable resiliency solution as we move toward exascale com-
puting. Recently several new techniques are developed to ad-
dress the potential problem associated with global coordinated
checkpointing, and these include uncoordinated checkpointing
with message logging [56] and hybrid checkpointing proto-
col [58], [60]. With uncoordinated checkpointing, each process
can take its checkpoints independently and locally. Upon a
failure, only the failed process rolls back to the previous state.
Since uncoordinated checkpointing may lead to a domino
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as on Intrepid. Here70× represents 70 times over node MTBF in
Intrepid. The parameters areα = 0.99, µ = 0.2 hours,W = 168
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effect that forces the entire application to restart from the
beginning, message logging is adopted to replay the messages
for recovery. However, extensive message logging consumes
storage space and adds a significant overhead on communi-
cation bandwidth. To alleviate this issue, hybrid protocolis
proposed to combine coordinated checkpointing and message
logging. It conducts coordinated checkpointing inside clus-
ters of processes and message logging between the clusters.
Meanwhile, hybrid protocol leverages the common properties
of parallel applications such as send-determinism [56] and
channel-determinism [60] to reduce the amount of logging
messages and the performance overhead during recovery.

Our models can be extended for the aforementioned fault
tolerant techniques. Take hybrid checkpointing protocol as an
example. Within each cluster of processes, the speedup model
is identical to the coordinated checkpointing models. Upona
failure, only the impacted cluster of processes needs to roll
back and replays the corresponding inter-cluster messages.
As a result, the speedup of the application is determined
by the slowest cluster and the recovery performance of the
protocol. Suppose the cluster size isK, all the nodes have
exponential failure distribution with the same failure rate λ,
and the corresponding average recovery time isµK , we can
derive the augmented Amdahl’s model for hybrid protocol
from Equation 19:

SAfexp,hybrid =
KλτK

eµKKλ(eδKKλ−1)(1−α+ α
N ) (30)

whereτK is the optimal checkpointing interval for the cluster.
By studying the relation betweenµK andK, this model can
be used to identify the optimal cluster size.

10 CONCLUSIONS

In this paper, we have presented several reliability-aware
models to extend Amdahl’s law and Gustafson’s law by
considering the impact of failures and coordinated checkpoint-
ing. In particular, we have derived speedup models based
on Weibull failure distribution, and analyzed the cases with
and without checkpointing in these models. By means of
real failure data from various production systems, we have

demonstrated that these analytical models can better represent
application performance and speedup in the presence of fail-
ures. Moreover, our results clearly show that Weibull based
models outperform Exponential based models in terms of
characterizing application speedup in the presence of failures.

The newly derived speedup models can quantitatively guide
the community in terms of evaluating, optimizing, and pre-
dicting application performance in realistic failure-present
environments. One of our future work is to combine these
analytical models with our empirical log analysis studies [51],
[19], [55] to promote performance and resilience of extreme
scale computing. Furthermore, we will extend our models to
study the impact of other fault tolerance techniques such as
uncoordinated checkpointing with message logging [56] and
hybrid checkpointing protocol [58], [60].
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