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Abstract —Speedup models are powerful analytical tools for evaluating and predicting the performance of parallel applications.
Unfortunately, the well-known speedup models like Amdahl's law and Gustafson’s law do not take reliability into consideration and
therefore cannot accurately account for application performance in the presence of failures. In this study, we enhance Amdahl’'s law
and Gustafson’s law by considering the impact of failures and the effect of coordinated checkpointing/restart. Unlike existing analytical
studies relying on Exponential failure distribution alone, in this work we consider both Exponential and Weibull failure distributions
in the construction of our reliability-aware speedup models. The derived reliability-aware models are validated through trace-based
simulations under a variety of parameter settings. Our trace-based simulations demonstrate these models can effectively quantify
failure impact on application speedup. Moreover, we present two case studies to illustrate the use of these reliability-aware speedup
models.

Index Terms —Speedup, Reliability, Amdahl's Law, Gustafson’s Law, Analytical Modeling
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1 INTRODUCTION increasing scale and complexity of computer systems,réailu
1.1 Motivations becomes a commonplace scenario rather than an exception.

. : %ecent studies have shown that MTBFs (mean-time-between-
Computmg power has experienced tremendous growll.

. ajlures) of teraflop and petaflop-scale systems are only on
over the past decades. Production systems today alreﬁ(# order of 10-100 hours, even for systems based on ultra-

contain hundreds of thousands of processors [6]. Exa—sc?eﬁ ble components [7]. As a result, parallel applicasiane
systems are expected to become available in less than aededad ' '

) : . S .~ very difficult to make any forward progress because of faiur
[37], which are projected to consist of millions of processi . o .
. o : [5]. The occurrences of failures force the application tatwa
units. For parallel applications running on these extreoaes .
. . . for system recovery, which may take up to nearly 100 hours
systems, speedup is a critical metric [38]. It not only measu

the inherent parallelism of an application, but also presidn [1], andthen roll back to the beginning or the latest cheakipo

. . L Due to the impact of failures, application speedup in the
important guidance of application performance as system si . - : . .
increases. presence of failures is different from its speedup in anlidea

Amdahl's law [3] and Gustafson's law [4] are two Well_falltgjtrei-firtzetﬁgvilrrr? n(r)?g:c[elﬂf reliability-aware speedup mod-
known speedup models. They are used to estimate the perfqr- P P Y P P

mance of parallel applications at scales: Amdahl’s law $esu €ling, only a feV.V ar_1a|yt|cal studies have bee_n conducted to
. : . . understand application performance under failures [24],[
on parallel execution relative to the serial execution uride

assumption of a fixed workload (i.e., fixed-sized speedu;g 1], [16]. Reliability gnaly5|s Is @ hard problem, espdyia .
i ) : in parallel systems with unprecedented scale and complexit
while Gustafson’s law emphasizes the amount of worklo . _ . :
- . ' ) . ) . 0 simply the problem, existing studies typically assume a
that can be finished in a fixed time (i.e., fixed-time Speedch’)nstant failure rate and adopt Exponential failure distion
Both models implicitly assume that the application can co PLEXP

plete without experiencing any failurblevertheless, with the in their modeling Process. Nevertheless, recent Stud'éﬂem.]
data from production systems clearly show that Weibullrdist

bution with decreasing failure rate provides a better gesdn
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pact. The goal of this work is to provide a more accurate melstodel validation and model usage are listed in Section 7 and
surement of application speedup in a practical failureaproSection 8. We discuss the extension of our models for new
environment. More importantly, we consider both Exporentifault tolerance techniques in Section 9. Finally, we codelu
and Weibull failure distributions in the model construatido the paper in Section 10.
tackle the challenge of dynamic failure rate inherent intbii
distribution, we derive lower and upper bounds of applarati
speedup under Weibull failure distribution. 2 RELATED WORK
Checkpointing/restart is a well-known fault toleranc&calability has been studied for decades from various &spec
method to mitigate the impact of failures. In particularpco Amdahl’s [3] and Gustafson’s [4] are two well-known models.
dinated checkpointing is a widely used technique in the fielimdahl's model is for fixed-size problems (strong scaling),
of high performance computing due to its simplicity [26]while Gustafson’s model is for fixed-time problems (weak
[56], [58]. It periodically coordinates application prases scaling). Both models have made tremendous impacts on par-
and stores a consistent snapshot of the application. In cadel and distributed computing. A number of analyticalés
of failure from any process, all the processes roll back twave extended these basic models to examine applicatibn sca
the last checkpoint for recovery [30]. Although coordimhteability under various system constraints. Kumar et al. tgve
checkpointing can effectively reduce work loss, it also inscalability models for a specific parallel architecture][2&ro
troduces some inevitable costs to the computation such @l Henriques analyze the speedup and scalability of Master
checkpointing overhead and recovery cost [47], [23]. Asxsho Slave applications on heterogeneous clusters [39]. Wod. et a
in the studies [16], [48], for an application running on agler extend the Amdahl's law for many-core architectures [28].
scale system, its overall checkpoint/restart overheaddcodogalekar and Woodside introduce an adaptation of sciyabil
consume more than 50% of its execution time due to tlier the distributed system era [42]. Sun and Ni develop
high failure rate and the high checkpoint frequency. In thimemory-constrained scalability in [9]. In [10], a powerae
study, we also quantify coordinated checkpointing effests speedup is proposed to predict the scaled execution time
application speedup in the design of reliability-aware eled and power consumption. However, neither of them studies
Furthermore, our models can be extended to study other fabie impact of failures — which is an important aspect as
tolerance technologies such as uncoordinated checkpdimt wsystems and applications scale to very large sizes. Thik isor
message logging [56] and hybrid checkpointing protocd8,[5 focused on extending Amdahl’'s model and Gustafson’s model
[60]. by considering system failures and resilience mechanisms.
To comprehensively and realistically assess our models, Wwerther, our models can be easily integrated with existing
conduct trace-based simulations using the real failureetra studies to analyze more complicated scenarios.
from production supercomputers [35], [51]. We develop an Analytical modeling of failure and checkpointing on appli-
event-driven simulator to simulate parallel execution.e Thcation performance has been presented in [22], [12], [485], [
simulator is designed to parse discrete events from theréail [17], and most studies assume failure arrivals follow a Pois
traces and also provide a flexible interface to allow variog®n’s process, i.e., the inter-arrival time of failureddals an
configurations of application parameters. Our experimargs identical Exponential distribution. In [22], Young ders/¢he
structured to assess model accuracy under different applptimal checkpointing interval via the first order estirpati
cation workloads, parallel fractions and computing scaleBaly improves the model by using higher order estimation
Together, these experiments provide a comprehensive ewld derives the expected completion time with checkpajntin
uation of model accuracy under various configurations. Our [12]. William et. al. use Daly’s model to study the impacts
results indicate that the newly derived speedup models aafifailures and checkpointing on application efficiency 43].
more accurately reveal application performance in a prakti In [11] and [45],the authors use an M/G/1 model to describe
failure-present environment than the original Amdahl'sl ansystem failures and derive performance models to estimate
Gustafson’s laws. Further, our results clearly show that thhe mean, variation and distribution function of applioati
reliability-aware models based on Weibull distributioregily completion time. While Exponential distribution is comnfyon
outperform those based on Exponential distribution. used for modeling, recent studies have shown that WeibsHI di
In this study we also present two case studies to illustrat@ution provides a better goodness of fit [2], [8], [46].€Fk
the usefulness of the aforementioned speedup models. @ne very few studies considering Weibull distribution. #1],
is to identify the optimal computing scale and the maximaliu et. al. use a stochastic renewal reward process to study
speedup for an application under a given system, and the othptimal checkpointing interval based on Weibull distribat
is to project node reliability and checkpoint overhead #mat In [40], Gottumukkala et al. study system-wide time-tdifes
needed in future exascale systems in order to maintain gatidtribution under Weibull failure arrivals. Distinguisiyg from
computing efficiency. existing analytical modeling studies, in this paper we \deri
The rest of the paper is organized as follows. Sectionrgliability-aware speedup models under both Exponentidl a
briefly discusses related studies. Background and assomsptiWWeibull failure distributions, and examine these modeldamn
are presented in Section 3. In Section 4, we present retiabil the scenarios where checkpointing may or may not be used.
aware application performance models. Based on the modExperimental studies of failure impact on parallel com-
els listed in Section 4, the enhanced Amdahl's models apdting have been discussed in [16], [21], [44]. Based on
Gustafson’s models are derived in Section 5 and 6 respéctivesimulation results, Elnozahy and Plank point out that the
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optimal speedup decreases rapidly as the number of nodes EXPECTED APPLICATION PERFORMANCE
grows beyond a certain point [16]. In [21], a reliability-are

. X ) 4 Given a system withV nodes, we assume the inter-arrival
resource allocation algorithm is presented to select aimapt y

. o i f fail f h nod ind dent and idéiyti
number of nodes for the execution of an application. In [44Imeso ailures for each node are independent and iddytica

T ‘ot al I Blue GenelL | . iod of istributed (iid) and the failure of a single node intersutite
aeral et. al analyze biue Leneil. 10gs in a period of S, q application (the fail-stop mode). L&t be the failure

mor_1ths and study the .jOb interruptions throug_h SimUIatiOﬂ'ee execution time of an application running on N nodes) the
Unlike these studies, this paper develops analytical nsotbel application reliability function at timd” is given as

explicitly express application speedup in the presenceitf f
ures, using both Exponential and Weibull failure distribos. N o AT ()t

Rapp (T) = H 2

1 1 fom fi(t)dt

o wheret; is the time of the last failure. The expected application
For the development of reliability-aware speedup modets, Wyecytion time in the presence of failuke (Tiy ), is different
make several assumptions based on existing studies. depending on whether checkpointing is adopted or not. For

First, the time interval between failures on each nodge systems without checkpointing support, it can be ddrive
i follows a certain distribution with a probability density,,sed on a model from [13] as below.

function of f;(¢). In this paper, we study two commonly used
distributions, i.e. Exponential and Weibull. Their probiyp

; (2
3 ASSUMPTIONS

. . ) (1= Rapp (W Wtd(Rapp(t))
density functions are as follows: B (Ty) =W + & RW(V[(/) ) _ Jo & (3)
e At Exponential In an environment with checkpointing support, we adopt a
filt) =X B; t ol (—t/m)P ) (1) segment based model presented in [45], where the execution
E(E) Poe T Wesibull time of an application is divided into a set of checkpointing

segments. Each segment is a period of time between two

In_Exponential density function, the constakt > 0 is consecutive checkpoints and its length can be represested a
the constant failure arrival rate of nodeln Weibull density s — - O,, wherer is the checkpoint interval an@. is the
function,n; > 0 is the scale parameter agi> 0 is the shape checkpoint overhead. In each segment, once a failure qccurs
parameter. We assume that all the nodes on a system havegieapplication needs to roll back to the last checkpoiet,(i.
same shape parameter, i.6), = --- = fx = f, and < L. the beginning of the current segment). Assume therekare
This assumption is based on the observations in [2], [46]. failures occurring during a segment and each failure result

Second, we assume the system adopts a space shafing rework costX and a system downtim¥, the expected
mechanism for job scheduling, where each compute nodecismpletion time of a segmet(7) can be defined as
dedicated to one application process once it is allocatehto
application. Most supercomputing centers adopt spaceénghar E(Ts) = 6 + ky + (B(X) + E(Y)), (4)
mechanism for their job scheduling. Further, we assume a

fail-stop mode [30], where the failure of any single nodghere E(X)sz:ot L) _ g4 and E(Y)=pu. As we need

. . . . i 1O fi(t)dt
'”ter.r“p?s the.ent|re apphcgﬂo_n. Many_tlghtly.coupleumllel at least| | segments to finish the whole application, the
applications like MPI applications fall into this category T

Third, failure repair time follows a general distributiorithv expected execution time of the application with checkpogt

. " .. is estimated as
a mean ofu [11]. Further,u is not sensitive to system size in

homogeneous systems, which is based on the observation in s 1774
2]. Eoyp(Tw) = [— 1+ E(T5) (5)
Lastly, the overhead of a single coordinated checkpointing
O. is a linear functiqn of appIic;_itior_1 Sizd (i.g., number of 41 Exponential distribution
nodes used for running the application), and is much less tha
application workload [47], [48], [12]. The overhead comsis In the case of Exponential distribution for failure arrsal
of two parts, i.e., /O overhead and message passing owkrhBased on Equation (1) and (2), due to the memoryless property
[18]. For augmented Amdahl’'s models, since the problem sigé this distribution, i.e..P(t > ¢, + Tt > t;) = P(t > T),
does not change, we assume I/O overhead is fixed [18], [14);5(T) is independent of; and can be calculated as
i.e. O. = a + bN. For augmented Gustafson’s models, since
the problem size or the checkpoint image size is proportiona REP(T) = ¢ There (6)
to the number of nodes, the 1/0 overhead in this case linearly
increases with the number of nodes. Hence the overheadVizereXay, = >"i, A;. If all the nodes have the same failure
O, = aN + bN [25], [30]. rate \, it can be simplified as\,,, = N\ [31], [36].
Table 1 lists a set of nomenclatures that will be frequently Based on Equation (3) and (6), we can obtain the expected
used in the rest of the paper. Unless otherwise specified,aplication performance without checkpointing
the rest of the paper, the term of checkpointing indicates
coordinated checkpointing. El,(Tw) = (u+ A, ) (o™ — 1) (7

exp
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TABLE 1: Nomenclature

Symbol [ Description

N Number of computing nodes (i.e., the computing scale)

R; Reliability function of node i

Rapp Reliability function of an application running on N-nodessym

Ai Failure arrival rate of node i (per hour) in Exponential disition

Aapp Failure arrival rate of an application running on N-nodeteys (per hour)

B, n shape and scale parameters of Weibull distribution

I Mean-Time-To-Recover(MTTR) (hour)

w Application workload (hour)

Wp The parallel workload (hour)

Tw Application execution time for a given workload &, 7w = W in the case of failure-free execution
« The fraction of the application that can be parallelized

O., 7, 6 | Checkpoint overhead, interval, segment, and 7 + O,

SA Amdahl’s speedup model

SG Gustafson’s speedup model

S7 Speedup model (SA or SG) in the presence of failures

Sexp Speedup model (SA or SG)under Exponential failure distidio, without checkpointing
Swb Speedup model (SA or SG) under Weibull failure distributiathout checkpointing
Sexp,ckp | Speedup model (SA or SG) under Exponential failure distidioi with checkpointing
Swo,ckp | Speedup model (SA or SG) under Weibull failure distributiaith checkpointing

In case of checkpointing support, based on Equation (4)wheren = min(r;) and7 = max(n;). If g; = 1 andn =
and Equation (5), we can estimate the expected application ,,; _ wb ’
execution time as follows: 7"9—%@1’@) = Fapp(T) ,

Proof: For the lower bound, we note the inequalify—
W (t;+T)% > —T" holds whent; > 0 and0 < 8 < 1, therefore

(66/\“);) - 1>_ (8) _va:1 T}? 7N(Z)3
Aapp T R%’p(T) >e o >e o,
wherer is the checkpoint interval,= 7+0, is the checkpoint  For the upper bound, we assume a situation in which all
segment, and), = a + bN is the checkpoint overhead the nodes survive until a failure occurs at = 7, then

! ¢ ' n‘v’ —(n4 s
According to [12], [30], the optimal checkpoint intervalrca N, st

i=1 @
be approximated as follows:

eﬂ)‘app

ngp,ckp (TW> =

system reliability become®! (T) = e K . To
achieve this situation, all the nodes need to be failure-fre
during the time interval from; = 0 to n;, with the probability

20 (] 4 L(Qefeme sy Ri(n;)N = e~Nmi/m)” — ¢=N decreasing to 0 as the growth
X of N. In other words, the probability thaR®? is as high
T= %(Oc;aw )] - Oc Oc < AQ (9) 37( . T)lf p y “p g
1 Y N e
Xapp Oc 2 57 ase K is very low and decreases as the scale

grows. As a result, an approximation for the upper bound

N P —(mi+T)P

4.2 Weibull Distribution is eNfN(HJ,LIT)S > e =t ny . The reason of Choosing
In the case of Weibull distribution for failure arrivals, deal ¢; = 7; is to simplify the mathematical expression.
on Equation (1) and (Z)R}l“;p(T) can be derived as i 4 sy Alio@enfi N T maT)
= 1, e ;" = e~i=1 i =
N tP—i+mP N T i TZL . — wb —wb
RUb (T) =™ (o) ¢ e Therefore ity = 7, Koy, = Ry,

Unlike the case of Exponential distributioRgg’p depends  To estimate the expected execution time without checkpoint
on the time of the last failure;, suggesting a change oncdnd, we replace (3) with (11) and (12) as follows:
failures occur in one or more nodes [40]. To tackle the

g&?lem, we derive a lower bound and an upper bound for EZ;I;(TW) =Wt (E/Ni);(ﬁl-ﬁ-&f) (13)
app’ . . L . -=/f 3
Theorem 1. For Weibull failure distribution withg; < 1 Eo(Tw) =W — p+ A=+ N (14)
(i = 1 to N), the lower bound and the upper bound ®f}, WNE(V(1+57@*V(61f§1\’>>+ﬁ67“’*ﬁe* ,
are

where & = 1/6, ¢ = N(W/p)’, 5 = N(1 + W/p)",
andy(z,y) = [ t* ‘e 'dt is the lower incomplete gamma

R™ (T) = N’ (lower bound) (11) function with parameter andy [49].
—wb N N(ZEL)5 To estimate the expected execution time with checkpointing
Ropp(T) = ¢ v (upper bound) (12) we integrate (11) and (12) into (5). We ukg = o= 10
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represent the number of failures occurring in one checkpoin .
ing segment, wher@/T' BF'is the mean time between failures. REEE
Under Weibull failure distribution)/ T BF = nT'(1 + ¢) and Tho T
I'(-) is the gamma function. The results are shown below. S N e .l el
1+€, 5 ~_ ..
By erp(Tw) = 001 + tmvebirrey + (1_1%)5“%)%) )T (5 R o
B i (Tw) = 51+ ——2—— N -
wb,ckp n]\p]g’ T(1+6,N)-7 N lower bound SA, R .
7N _ CN-T (16) ----- upper bound SA! -~
Le (V(A4E9) =y (14+€,N))+7e T\ W b ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(1—6N7E)(T§3—1§F(1+5,N)—ﬁ) T o 200 400 600 soevorkltt;go(m:soo 1400 1600 1800 2000

W?oereﬁ = N_(‘S/Q)ﬂ' ¥ :_N(l +4/7)”, and F(‘T’?{) = _Fig. 1: Comparison ofSA, SA{,, and SA/, under different
J, t*~te 'dt is the upper incomplete gamma function witiworkloads where computing scale N is 16. The parameters are
parameter: andy [49]. The optimal checkpoint intervaland o = 0.9, A =1 = = hours, = 0.2 hours,3 = 0.8.

7 can be identified via numeric method like Newton’s method.

5 RELIABILITY -AWARE AMDAHL'S MODELS SAf - W
, o wb,ckp — EF L (Tw,)
According to Amdahl’s law, application workload per proses ook fv (22)
isW, = (1—a)IW+aW/N, wherelV is the entire application S+ meraTe (171(7;;'?1)%) J(A—atg)
workload and« is the fraction of the application that can be d
parallelized. Hence the fixed-size speedup is defined as:
sAal - w
" v S wb,ckp E{Ub,ck-p(TWp) B
SA = - 17 N arem ey
l—a)W+aW/N Nl—-a)+a« (17) S(l—at &) (1 —g—= i alilaniil) Bialtihs o )
ﬂ;—ir(ug,w)ﬂ—, (17eN7¢)(BJ$TF(1+5,N)77—,)
(23)

5.1 Exponential distribution where¢ = N(6/n)? andg = N (1 +6/7)°.

In the case of Exponential failure distribution, we can deri
the following reliability-aware model based on Equation (7Theorem 2. SA is a special case oﬁA{W and SA{W is a
and Equation (8) special case o A/ ,.

W Proof: For SA/

exp’

when the recovery time can be ignored

sAf = (18) (u = 0), each node has the same failure ratg £ P)), and
P (A Aapp) (Tt R Aap W) :
M app )€ the \, is much larger than the parallel workloagx( >> Wp),
f AappT based on the first-order Taylor series, we obtain
SAea;p,ckp = ohXapp (eﬁxappfl)(lfogr%) (19) f
SAezp = (PA)V;/l(e(lfa)PAWeaAW_l)
5.2 Weibull distribution N P ((I—a) PAW TaaW)
= SA.

In the case of Weibull failure distribution without checlpo
ing, we estimate the lower bound and upper bound based 0Olg55ed on Theorem 1. it is obvious t@fb _ SAfb _

(13) and (14) as follows: SAQD,, when g = 1. 0
sAl = W _ .
Wb By (Twy) (20) 53 Model Analysis
We =
e~ 2(Wy—u)Fut(-Z )y (1+E,9) The above models provide two interesting properties about

and reliability-aware fixed-size speedup.

Property 1. Reliability-aware fixed-size speedups, in case of

S_Aj;b —__w Exponential or Weibull failure distributiowithout checkpoint-

B (Twy ) WN—T (21) ing, decrease with the growth of application workload.

N =T (W —u+7) +utT+ e (Y16 N (F2)8) =7 (146,N)

Property 2. Reliability-aware fixed-size speedups, in case of

whered = N(W,/n)? andd = N(1 + W, /n)". Exponential or Weibull failure distributiowith checkpointing
For the models based on checkpointing support, we can ale independent of application workload.

tain the following lower and upper bounds based on EquationsTo illustrate Property 1, Figure 1 presents reliabilityaae

(15) and (16): fixed-size speedups under different workloads. By comparin
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Property 1 and 2, we can clearly observe that the use Afgorithm 1 Numeric algorithm to obtain augmented
checkpointing can promote application scalability. Gustafson’s model in the case of Weibull failure distribati

without checkpointing

6 RELIABILITY -AWARE GUSTAFSON’S MoD- Definition:g(T%) = EL, () = W, G(Tiy) = Euy(Tiy) — W,
ELS is a positive real number sufficiently close to zero.

Objective: SGfb and@fub

Different from Amdahl's law, Gustafson’s law emphasizes th 7y, « X 1n( +1)
u+N/7I

amount of workload that can be finished in a fixed time [4]. T7;,

It assumes that only a fraction (denoted-dsof the workload while Ig(th )l >edo

can be parallelized and scaled with the number of computing 7y, « Ty, — %ﬁ—:
nodes, and the rest of the workload does not grow with thegng while S Water
number of nodes [4]. Hence it defines fixed-time speedup agw’ < Tw,.,
follows: SGf <;*Q>W+<T7WVZ;:<1—&)W>N
1— )W +aWN rer
sG-1-W+a =l-a+aN (24 whils” |9(TWLM )| > ¢ do
W T* T a( WHer)
. . Witer ~ (T )
In an ideal failure-free case, Gustafson’s law shows that ndv\jv;me ' T Mwie,)

the fixed-time speedup is independenti®f (i.e., application 7~ A
workload) and linearly grows withiV (i.e., computing scale). sl . 0 W+ (T 5y~ (1=0) W) N

In practice, however, a increases, the application becomes ~“* w
more vulnerable to failures. Considering the impact olifia,
we define theachievable workloadV* as the workload for .

user application durindl” execution.

145

6.1 Exponential distribution I

0 O AN ‘~,

In the case of Exponential failure dIStI‘IbUtIOﬁGexp can be AN -~ T
derived from Equation (7) as r

Speedup
©
’

N lIn(—2=+1) sG . .o
— — MFapp (] 25 a4 |- e sql SR
SGloy =1—a+ ——pres (1-a)N  (29) e -
imi f . 20 e upper bound SG:Nb
Similarly, we can derivesGy,, ..., based on Equation (8) .

o 200 400 600 800 1000 1200 1400 1600 1800 2000
as follows: Workload (hour)

; LN Fig. 2: Comparison of SG, SGI,,, and SGY, with different
SGlyp ey =1—a+ Wﬁiifw—n —(I—a)N (26) application workloads where the computlng scale is set toHEge,

the parameters ate = 0.9, A =n = ﬁ hours,5 = 0.8, © =0.2

hours.
Theorem 3. SG is a special case o§GY,
Proof: When the recovery time can be ignoragd=£ 0),
each node has the same failure ratg,f = P\), and ), is In the case of Weibull failure distribution with checkpeint
much larger than the execution timgl—A( >> W), based on ing, based on Equations (15) and (16), the lower bound and
the first-order Taylor series we obtain upper bound speedups are estimated as follows:
SGF =1—a+ RWPAD _ p(1 _ @) SGY, gy =1—a—(1—a)N
~l-a+ R —P(l-a) (27) + (15 (28)
= S@. 9(1 +(71/N£)F(1+5) (17e*£)r(_1+5)
]
SwaCkp l—a—(1-—a)N+
. o — ———  (29)
6.2 Weibull distribution e N JN—,E@<1+5,¢>77(;’+5,N>H,,,6N m,,)
In the case of Weibull failure distribution without checlipie Neraten-m =N =g Ta+e.N)-m)

ing, the achievable workloads are derived from the transcen

dental equationgz’ , (Tyy) = W and ., (Ty) = W, which 6.3 Model Analysis

have no analytical solutions. We adopt a numeric method Thhe above models provide two interesting properties about
solve the equations, as shown in Algorithm 1. Here the valueliability-aware fixed-time speedup.

of SG/_ is used as the initial point and the Newton’s method

exrp

is used to search the numeric solutions. Property 3. Reliability-aware fixed-time speedups, in case of
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Exponential or Weibull failure distributiowithout checkpoint- = Event driven simulator
ing, decrease with the growth of application workload. | Failure events I’a"”’e s
: <t\mestamp,\ocanon, recover time> — Va|ue

Property 4. Reliability-aware fixed-time speedups, in case of Parallelapp rolback
Exponential or Weibull failure distributiowith checkpointing O entgen 0> D
are independent of application workload. startfime, xecutionnodes >

To illustrate Property 3, Figure 2 presents reliabilitysaes Model | | Reliablty-aware Predicted
fixed-time speedups under different workloads. By compggarin parameters models value

Property 3 and 4, we can clearly observe that the use of
checkpointing can promote application scalability witlghni
workload.

Fig. 3: Model validation.

7 MODEL VALIDATION time, the work loss, and the recovery time. With check-

We evaluate our models by means of real failure traces frd?ﬂin_ting_’ the simulation _process is si_mi_lar except tha_t the
production supercomputers. Specifically, we select twiorfai apphcatlc_)n performs periodic checkpointing. Up(_)n a failu

traces from the public failure archive [35], denoted as LANIt_he appl_lce_mon rolls bagk fo the last checkpaint, anq th_e
#8 and LANL #9 in the rest of the paper. We also USgheckpomtmg overhead is added to the measured applicatio

a failure log from the 40-rack Blue Gene/P system nam e

Intrepid at Argonne [51]. The use of multiple traces from With respect to Gustafson’s models, the simulator measures
different machines is to ensure that our models are not thiadge achievable workload of the application during thg-

to any specific systems. For the LANL systems, we select 1ige. Similar to the cases of calculating Amdahl's speetiup,
nodes that have sufficient failure records for testing; foe t Simulator scans through the failure trace in the order dtifei
BlueGene/P system, we test our models at the rack-level. THge stamp. Upon a failure on any of the assigned nodes,

summary of failure traces is shown in Table 2. without checkpointing, the achievable workload is calteda
as the application workload between the last failure and the
TABLE 2: Summary of failure traces. completion time; with checkpointing, it is calculated a th

sum of workload except for the checkpoint overhead, the

LANL #8 | LANL #9 | Blue Gene/P ; ;
NITBF (hou) 3096 3741 30.47 recovery tlme and work Ioss.du.e. to rolling back.
MTTR (hour) 2.26 3.33 0.21 Meanwhile, we extract reliability related parameters from
Number of failures| 3,292 3,007 549 the failure log, including failure rate and repair time. She

parameters, along with application information, are fetb in

Figure 3 depicts our evaluation design. For the purpo8& reliability-aware mpdels to calculate vario_us speedup
of model verification, we have developed an event-drivef@lués (denoted apredicted values By comparing mea-
simulator. It takes two inputs: failure events and parall§tred values and predicted values, we assess model accu-
applications. The failure event is extracted from the faifi‘i&ictt’g/d Szlfeuj?ntlggurtegelzlifllat'Ve difference (i.exror =
ure trace log. Each failure event is associated with a time [measured value] )-
stamp, location, and recovery time. The parameters oflehral In our experiments, checkpoint overhe&y on LANL
application is specified by users, or randomly created Bystems is a linear function of computing scal€i.e., number
the job generator. Each application is described in terms @f nodes used for running the application), and is much less
failure-free execution timé&l’, computing scaléV, the parallel than application workload [47], [48], [12]. It consists afd
fraction o, checkpointing configuration (i.e., with or withoutparts, namely I/O overhead and message passing overhead
checkpointing) and checkpointing overhe@gd [18]. For augmented Amdahl's models, as the problem size

Upon initiating the execution of an application, the simdoes not change, the 1/0O overhead is assumed fixed [18], [14],
ulator randomly assigns a set of machine nodes to the ap- O. = a + bN. For augmented Gustafson’s models, as the
plication and selects a time stamp within the failure trageroblem size or the checkpoint image size is proportional to
to represent application start time. For each applicatiba, the number of nodes, the overhead is define@as- a N +bN
results presented in the following subsections are theageer [25], [30]. Based on our experience as well as existing
of 10,000 simulation tests with randomly selected staretimliteratures [18], [50], [47], [48], we set to 0.335 andb to
and execution nodes. When the execution is completed, th@364. For the Blue Gene/P system, I/O bandwidth scales
simulator returns a value (denotedmsasured valye linearly with the number of nodes at the beginning and then

With respect to Amdahl's models, the simulator scarsecomes level off at about 25 GB/s when the application scale
through the failure trace in the order of event occurrenoeti to 16 racks (16,384 nodes) [50], hence we set 120 seconds
and emulates a failure when any of the assigned nodes to ¢fieD. for augmented Amdahl's models and 600 seconds of
application encounters a fatal event according to the riailuO, for augmented Gustafson’s models if the application uses
trace. Without checkpointing, the application is stoppesdlits less than 16 racks; otherwise we set 240 secondS_ofor
for the recovery, and then rolls back to the beginning. Treugmented Amdahl’'s models and 1200 second®Dpffor
measured application time includes the failure-free etienu augmented Gustafson’s models.
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Fig. 4: Error comparison of various Amdahl’s models undéfiedént computing scales. Here application workload is h60rs
and its parallel fraction is set to 0.9.

7.1 Under Different Computing Scales different computing scales. Furthermore, its error tylbjca

In the first set of experiments, we study the accuracy of ofP€S not increase with the growth of computing scale.
reliability-aware speedup models under different conmuti
scales. We set the worklodd” to 100 hours and the parallel7.2 Under Different Workloads

fraction a to 0.9. The results are shown in Figure 4 andy the second set of experiments, we study the accuracy of our
Figure 5. _ ) _ reliability-aware speedup models under different worllkma
_From the figures, we make two important observationgye yse the maximal computing scales, i.e., 128 nodes for
First, the original Amdahl's model and Gustafson’s modghe | ANL systems and 40,960 nodes for the BlueGene/P
tend to deviate far from the actual application performane@siem and set to 0.9. In terms of Amdahl’'s models, we
as the computing scale increases, no matter whether cheglé; application workloads from 200 hours to 1000 hours. In
pointing is adopted or not. Our reliability-aware models caerms of Gustafson’s models, we test application execution
better represent application speedup, especially undge laijme from 40 hours to 200 hours. Due to space limitation, we

scales. For example, as shown in Figure 4(a), the error g, hresent the results from the LANL #8 system in Figure 6.
Weibull based models is always less tri, which is only The results from other systems are very similar.

about one-sixth of the original Amdahl's model. Second, our \without checkpointing, the accuracy of the original Am-

Weibull based models generally outperform the E)ﬂ’?e”ti@éhl’s modelSA dramatically decreases with the growth of

based models. Without checkpointing, eittéd?,, or S4,,, application workload. For example, as shown in Figure 6, the
shows the best accuracy. With checkpointi@fb always error of SA is more than100% when application workload

w

outperforms other models with an error of less thé@hunder is increased beyond 800 hours. Our reliability-aware model
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Fig. 5: Error comparison of various Gustafson’s models umtiéerent computing scales. Here application workload @
hours and its parallel fraction is set to 0.9.

significantly outperformSA and SAgxp with—thg error less 7.3 Under Different Parallel Fractions
than 9%. Similarly, the original Gustafson’'s modélG can

. In the third set of experiments, we examine our reliability-
lead to substantial errors as the growth of workload. Irkte P vy

sal tifies the i ¢ of fail thereb f %ware models under different parallel fractions. We set the
wp guantiies the impact ot failures, thereby greatly OUté\pplication workloadV to 1000 hours for Amdahl’'s models
perfqrmlng SG.‘ Th‘?se results chza_rIy indicate that W'thoulomd 200 hours for Gustafson’s models, witlvarying fromo0.7
considering failure impact, the original Amdahl’s modetjan.to 0.999. Again, we only present the results from the LANL

Gustafson’s mo<_je| cannot accurgtely reF’TeS?‘”t applmat'gystem #8 in Figure 7, and omit the results from other systems
speedup, especially for long-running applications. Ferth

. Lo ¥ as they are similar.
?Z;e’ theSrrg;c;dels based on Weibull distribution (€4, Without checkpointing, the originadl A andSG provide ex-

wb,ckpr S Cp ANAS G'{;bmkp) outperform the models basedy o o1y 10w accuracy, especially when parallel fractiotois.

on Exponential distribution (e.9§A4f,,, SAL, ... SGL.,. Whena is 0.7 (i.e., meaning tha0% of the application can be
and SG(]eca:p,ckp)’ especially under high application workloadparallelized), the original Amdahl’s model produces ameof

For example, for the application with a workload of 1000 tour, 851% and the original Gustafson’s model gives an error of
with checkpointing, the Exponential based mOSeﬁlpr7ckp 188%, whereas our models achieve much better accuracy with
introduces an error of3%, whereas the upper bound Weibullerror being less than0%. With checkpointing, our models
based modeSAf;byckp only has an error of 0.1%. This is duestill significantly outperform the original models. For exple,

to the fact the Exponential based models do not consider tihe best accuracy achieved by the original Amdahl’s model is
dynamic feature of failure arrivals, which can greatly ieflge 3 59 whena is set t00.999, Whereaﬁs—Awb.ckp can provide an
model accuracy under high application workload. almost perfect prediction with an error of ory2%; the best


Lan
Cross-Out

Lan
Replacement Text
an


SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 10

1000% T T T T T T T 2.5%
>/_/e—/—‘a\e—’—e
296F q
100%
J------- K ZCIIIIIATIIosozok-======%
- 1.5%F ]
o
= 10%¢ g
w w —oe— error of SA
J— 1% f
ho---mmTIINETT - —o—error of SA ~ - errorof of SA__,
196 -~ e+ - %= error of of SAL - a- error of lower bound of SA'
-7 ¢ 0.5% b, ckp
boo-- - - error of lower bound of SA' - 4~ error of upper bound of SA', o
- +- error of upper bound of SA -
0.1% . . . . o oot ======- el to————— —+—-—- == - F
"~ 200 300 400 500 600 700 800 900 1000 200 400 600 00 1000
Workload (Hours) Workload (Hours)
@ (b)
250% 12%

—oe— error of SG /
- = - error of of SG_ 10945 4

200% | P D o - Fmmmm——— Hom—mmm e——m————— s
— == - error of lower bound of SG!, —e— error of SG
8% — - error of of SG', 7
150% |} | — —+ — error of upper bound of s(;f,vh i exp,ckp
— 4— error of lower bound of SG'

<] S 6ol wh.ckp |
w w — —+— error of upper bound of SG'
100% 4 . wooke] |
a0 - ———— - - A - - — - — — A-—-—-—- - - THB- - - — ===
%

50%g i * 296 b
________ —kc Il __-- e e —m==A e e
ouk===g==z=K===z=== 24 = 4= 0% + + —rmm
a0 50 60 70 80 90 100 110 120 a0 50 60 70 80 920 100 110 120
Workload (Hours) Workload (Hours)

© (d)

Fig. 6: Error comparison under different workloads (a) Ammid&amodel without checkpointing (b)Amdahl’s model with
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Fig. 7: Error comparison under different parallel fracgga) Amdahl’s models without checkpointing (b) Amdahl’'saets with
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accuracy achieved by the original Gustafson’s model%s computing scale at which the application can achieve the

Whereasmf:b7ckp has an error of only.1%. Moreover, by maximal speedup.

comparing the errors produced by Exponential based model$Suppose a homogenous system where all the nodes have the
and Weibull based models, we can observe that Weibull bassaine Weibull failure distribution, the optimal computiraate
models are more accurate than Exponential based models. &t be determined by solving the equatigh$’/ON = 0
example, without checkpointing, the error 8447, is 50% and 8kap/6N = 0. Figure 8 presents the fixed-size speedup
when thea is 0.7, whereas the Weibull based models alwayssults on a homogeneous system where the computing scale
present less thar0% error. With CheCKPOintinggib,Ckp and ranges froml to 10°. There are five curves in the plot,

mf produce extremely lower errors under different patr_epresentlng the original Amdahl’'s model and our relidypili

wb,ckp . . .. .
allel fractions. This demonstrates that Weibull based rtsod&V3€ models with and without checkpointing respectivigy.

can better describe application speedup in the failuregmte ]Eho;vn_m the f|gureaunllke the ontg?]mﬂA, re'{?b""y""l‘w‘?‘re
environment as compared to Exponential based models. IXed-size speedup decreases as the computing scale egreas

beyond a certain point. Furthermore, by comparing the curve
o with and without checkpointing, we observe that the use of
7.4 Validation Summary checkpointing can considerably boost application spednjup

Our trace-based simulations demonstrate the significgradém increasing the maximal achievable speedup. For the specific
of failures on application speedup and the high accuracyinf c@pplication listed in the figure, without checkpointingeth
new|y deve|0ped Speedup models. Below we summarize mtlmal scale is about 4500-5000 which achieves a Speedup of
key observations. about 550-680; with checkpointing, the optimal scale istbo

« The original SA and SG' cannot accurately represemlﬁooo — 21000 which achieves a speedup of about 820-920.

application speedup in a failure-present environment,
especially under large computing scale, high workload,
and small parallel fraction.

o The Exponential based speedup models quantify the im-
pact of failures and the effect of checkpointing and their

—_—SA

- © - upper bound of SA! o

~ =« - lower bound of SA!
\ubckp

3
~ 4~ upper bound of SA{,

— +— lower bound of SA
‘wb

accuracy decrease under high workload and small parallel % e
fraction. Without checkpointing support, the Exponential & e
based speedup models may lead to an error of up to 50%. o
o The Weibull based speedup models are highly accurate a,
with the error typically ranging betweetd% — 5.1% S e,
for Amdahl’'s models and.3% — 17.5% for Gustafson’s 5 P ;meer - No;:“ s o
models, which significantly outperform the Exponential e
based models. Fig. 8: Identification of the optimal computing scale and the max-

imum fixed-size speedup in a homogenous system. Here MTBF of
10° nodes is 109,718 seconds (i.e., 30.5 houns);: 0.999, 5=0.8,
8 MODEL USAGE = 0.2 hours, and the application workload is 1000 hours.

As shown in Section 7, our Weibull based models can represent
application speedup with high accuracy. In this section, we

present two case studies to demonstrate the use of Weibull 5120 :
based models. Given an application, the first case studysshow 4.57,e,f;erboundofsdm o]
the use of our models to identify the optimal computing scale af| - » - fower bound o G, Beooe("’e(’o
The second one is to estimate node MTBFs and checkpoint 35|”;::"§§ e 7
overhead that are needed in future exascale systems in order g 3 = egoﬂjﬁw***
to maintain the computing efficiency achieved on current ?gzs 5;;:‘;51**”*
systems. @ o Qggﬁ*ﬁ
15F £ pnasdAbassAnAALLLLAL
1 AW o spusese ]
8.1 Identification of Optimal Computing Scale osl égﬁﬁmﬂmwmﬂmmmHmmmﬂt
According to the original Amdahl’s law and Gustafson’s law, ¢ s . . : 5
the fixed-size speedus'A monotonically increases as the Number of Nodes x10°

; : 1
computing scaleN grows with _th‘_a _boundm’ and th.e Fig. 9: Identification of the optimal computing scale and the max-
fixed-time speeduyGG can grow infinitely as the computingimum fixed-time speedup in a homogenous system. Here MTBF of
scale increases in a failure-free system. Nevertheless, ino® nodes is 109,718 seconds (i.e., 30.5 houss): 0.999, 5=0.8,

realistic failure-present environment, our derived med#low # = 0.2 hours, and the application workload is 10 hours.

that both fixed-size speedup and fixed-time speedup drop

down when the computing scale increases beyond a certaitsimilarly, Figure 9 presents the fixed-time speedup as the
point due to the increasing failure rate. As a result, for @mputing scale grows frormto 10°. Obviously, these curves
parallel application, it is necessary to identify the omtim indicate that the achievable fixed-time speedup$6f and
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Fig. 10: The efficiency with different computing scales. Here thé&ig. 11: The node MTBF is required on future exascale systems to
parameters are. = 0.9, 8 = 0.6, W = 168 hours. The MTBFs of maintain the same efficiency on Intrepid. HQ@ x represents 200
Intrepid system is 109,718 seconds, and checkpointingheaer on times over node MTBF in Intrepid. The parameters are= 0.99,
existing systenO. = 30 minutes. © = 0.2 hours,IW = 168 hours.

SGY,, are much smaller than the speedup given by the originallue 3 plays a critical role with regard to node MTBF. There
Gustafson’s law. The curves ¢fG/ show that the maximal are three curves representing different shape values ipltie
speedup can only achieve abduf x 10* althougha is as It is shown that a smalleB (e.g., when3 = 0.6) generally
high as 0.999. With checkpointing, the growth 867, s requires much faster growing node MTBF in order to maintain

Ckl) . . . .
still much slower than the original Gustafon’s law, hﬁ’ﬁ;zkp the efficiency. The main reason is that a lower shape value
leads to a higher failure rate right after the occurrence of

can achieve4.5 x 10* when computing scale i20°. The _ : _
difference betweersG/ and SG7, indicates that the use of failure [49], thus a higher MTBF is expected to reduce the

checkpointing can increase the optimal computing scale ad¢erage number of failures during the application exeautio
boost application speedup. time. In other words, it is essential to increase both thepsha

value and the node MTBF to gain a good efficiency on future
8.2 Projection on Exascale Systems systems. o _ _
Improving checkpointing performance is an active research

;Poep::tf;gfgxs;e%ugi?ltlﬁle ?gﬂ;&tif;S'Csalgelf:nrigazjéze%rea, and a wide range of hardware and software technologies
ST . ' - are presented to reduce the checkpointing overhead [16], [2
extent to which time is well used for the intended computatio P P g [ [

A fut ‘ . f nod it th 33], [52]. Our models indicate that reducing checkpoigtin
SISlgT? alu Ltjr:e sys emﬂ::omposm? El no gs W;P € T]a.l erhead alone is insufficient to maintain computing efficie

‘r‘e 'a '!3{, as those on the current blue Sener™ machifg, . ¢, inevitable work loss. Reducing checkpointing ovathe
Intrep|d at Argonne. We furt.her.assume checkpoint overhe can reduce the growth requirement on node MTBF, as shown
on th|§ future _system is maintained at the same level as fmzigure 12. As an example, for a future system composing of
Intrepid. Our field data show that on Intrepid, system—mdiaoﬁ nodes, if the system keeps the same checkpointing over-
MTBF is 30.5 hours, and checkpointing overhead typicallp{ o . . :

. . . .e. MTBF shoul
takes 30 minutes [51]. Figure 10 preseatfciencytrend on ead (i.e., 30 minutes), its node should be increased

2 large scale tem (composing 6P — 10° nodes). Here 69.2 times longer than that observed on Intrepid, in order to
ge s Sys ( posing N S). ' maintain the same level of computing efficiency; nevertbgle

we use the reliability-aware Gusta_fspns mod.ellunder che% the checkpointing overhead can be reduced to 10 minutes,
pointing. The curves show that efficiency exhibits decregsi its node MTBF should be increased 32.9 times longer than
trend. Especially, the lower bound of efficiency becomes Ier°hat on Intrepid

than 0.1 when computing scale reaché$. In other words,
the results here indicate that in order to effectively hasrtbe
potential of extreme scale systems, we need to improve faglt MODEL DISCUSSION
tolerance. In this paper, we focus on global coordinated checkpointing

A number of approaches have been studied to reduce tieen that it is the most popular fault tolerant mechanisedus
impact of failures. These approaches can be broadly cledsifin practice [26], [56], [58]. Nevertheless, as demonsttate
into two main directions: improving the node reliabilitydll Section 8.2, global coordinated checkpointing may be not a
[52] or reducing the overhead of fault tolerance methodé sugiable resiliency solution as we move toward exascale com-
as checkpointing [16], [26], [33], [34]. Our derived modelputing. Recently several new techniques are developed-to ad
can be applied to measure the benefits of these approadiress the potential problem associated with global coatdih
with regards to maintaining good computing efficiency. checkpointing, and these include uncoordinated checkipgin

In terms of node reliability, existing studies mainly foaus with message logging [56] and hybrid checkpointing proto-
increasing node MTBF. In Figure 11, we present the requiredl [58], [60]. With uncoordinated checkpointing, eachgess
node MTBF on future systems in order to maintain the sansan take its checkpoints independently and locally. Upon a
efficiency on Intrepid (Figure 10). Here, we assume cheaktpofailure, only the failed process rolls back to the previotades
overhead is the same as on Intrepid. As we can see, the sh@pee uncoordinated checkpointing may lead to a domino
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demonstrated that these analytical models can bettersemire
application performance and speedup in the presence of fall
ures. Moreover, our results clearly show that Weibull based
models outperform Exponential based models in terms of
characterizing application speedup in the presence afrésl
The newly derived speedup models can quantitatively guide
the community in terms of evaluating, optimizing, and pre-
dicting application performance in realistic failure-peat
environments. One of our future work is to combine these
analytical models with our empirical log analysis studig$]|
[19], [55] to promote performance and resilience of extreme

Fig. 12: The combined effect of node MTBF and checkpointinggcale computing. Furthermore, we will extend our models to
overhead for future exascale systems to maintain the safioieefy study the impact of other fault tolerance techniques such as
as on Intrepid. Herg0x represents 70 times over node MTBF iNuncoordinated checkpointing with message logging [56] and

Ihn;lrjtigld. The parameters are = 0.99, . = 0.2 hours,W = 168 hybrid checkpointing protocol [58], [60].
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