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Abstract—In this paper, we present an ongoing research effort on developing an automatic fault diagnosis and prognosis service for large-scale 

computing systems, such as TeraGrid clusters. By leveraging the research on system health monitoring, the proposed service aims at automati-

cally revealing fault patterns from historical data by applying data mining and machine learning techniques. To address key challenges posted by 

fault diagnosis and prognosis, two integrated techniques are developed: a knowledge base to accumulate empirical and inferred fault patterns 

from historical data and a meta-learning mechanism to optimally combine separately learned classifiers for improved detection and prediction 

accuracy. We also present preliminary studies on failure logs from the BlueGene/L systems at SDSC and ANL.       

 

Index Terms— Fault diagnosis, Fault Prognosis, Meta-learning, Knowledge base, Clusters 
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1 INTRODUCTION

In the field of high performance computing (HPC), one of 
the challenges facing the operation of large-scale computa-
tional infrastructure – such as TeraGrid clusters - is to un-
derstand and deal with failures. This involves not only ex-
amining the operational data found in logs, but also diag-
nosing trends and predicting reliability. Over the past dec-
ades, various technologies have been developed for im-
proving fault resilience of applications and systems, such as 
failure-aware resource management and scheduling [22,35], 
checkpointing [2,7,9,12,28], and run-time resilience support 
[3,4,19].  The problem is that the fault management research 
has been hindered by the lack of automatic fault diagnosis 
and prognosis support in HPC. For example, many fault 
tolerance techniques require certain support of detecting 
and predicting potential failures to enable safer and more 
cost-effective fault handling operations. Even for reactive 
fault tolerance mechanisms such as checkpointing, an effi-
cient fault prediction mechanism would substantially re-
duce their operational cost by telling when and where to 
perform fault tolerance actions, rather than blindly invok-
ing actions periodically with an unwisely chosen frequency. 

While an automatic fault diagnosis and prognosis sup-
port is clearly desirable for advancing fault management in 
HPC, it faces several key challenges. First, faults are very 
complicated phenomena, especially in large-scale HPC sys-
tems with tens-of-thousands to hundreds-of-thousands of 
components. A required service must be capable of captur-
ing a variety of fault patterns and interactions in the sys-
tem, even when these patterns are dynamically changing 
with time. Second, fault prediction subjects to some degree 
of uncertainty in practice, where unexpected failures may 
occur (i.e. false negative) and false alarms may be produced 
(i.e. false positive). False alarms may not be an issue in the 

situations where fault tolerance actions have relatively low 
cost if performed unnecessarily [6]. However, they can 
cause significant performance degradation in HPC [19]. An 
effective prediction service for HPC must be capable of 
minimizing both false positive and false negative rates.  

This paper presents an on-going research project on de-
veloping an automatic fault diagnosis and prognosis ser-
vice for large-scale computing systems, such as TeraGrid 
clusters.  Specifically, we address the above challenges with 
two integrated approaches: 

• Design a knowledge base for accumulating empiri-
cal and inferred knowledge of fault patterns and 
characteristics from historical data;  

• Develop a meta-learning mechanism to optimally 
combine separately learned information for im-
proved detection and prediction accuracy.  

The next section discusses related work. Section 3 de-
scribes our design. Section 4 gives our preliminary studies 
on BlueGene/L RAS. Finally, we conclude the paper and 
discuss our future work in Section 5.  

 

2    RELATED WORK 

In HPC, many health monitoring tools have been devel-
oped for tracking the status of the underlying system and 
its components. From the hardware side, modern systems 
are deployed with various features (e.g. hardware sensors) 
that can monitor the degradation of an attribute over time 
for early detection of errors [1,14,15]. From the software 
side, a number of monitoring tools have been developed, 
including both publicly available packages and commercial 
tools [5,10,27,29].  Some leading supercomputers are even 
equipped with extensive error logging facilities, such as the 
CMCS service (Core Monitoring and Control System) in 
BlueGene/L [21]. In general, these tools can periodically 
collect performance- or health-related data from the under-
lying system by using different low-overhead tracking 
mechanisms. The collected data is usually stored in central 
data repositories or as system logs.   

There are a number of research projects, from both aca-
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demia and industry, on the design of efficient fault diag-
nostic and prognostic techniques [17,25,26,31,32].  Existing 
predictive techniques can be broadly classified as either 
model-based methods or data mining based methods. The 
majority of research has focused on Internet services or 
business applications [6,25]. HPC applications significantly 
differ from business applications by using different pro-
gramming and parallel paradigms, thereby resulting in 
distinct fault patterns and characteristics. To the best of our 
knowledge, there is no such a service in HPC that can com-
prehensively learn a variety of fault patterns from historical 
data and then use the learned knowledge to enhance fault 
management of applications and environments. 

3 SERVICE DESIGN 

Figure 1 presents the structure of our proposed knowledge-
based fault diagnosis and prognosis service. The goal is to 
automate the process of analyzing massive quantities of 
historical data (e.g. those collected by health monitoring 
tools and stored in central data repositories or as system 
logs) for understanding fault characteristics in HPC. Such a 
service can be used by existing fault tolerance tools to en-
hance fault resilience of HPC applications or by system 
administrators to reduce management cost of HPC systems. 
For instance, it can be integrated with fault-aware schedul-
ing [22,35] to improve system resilience. It can also be util-
ized by checkpointing libraries [2,9,28] or adaptive fault 
management [19] to  improve fault resilience of HPC appli-
cations. The service consists of four major components, 
which are detailed in the following. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Overview of Knowledge-based Fault Diagnosis and Progno-
sis Service 

The first component is data preprocessing. The data col-
lected by various health monitoring tools are generally in 
arbitrary formats, while different data mining methods re-
quire different input formats. Hence, before applying any 
learning algorithm, data preprocessing is required.  Neces-
sary data preprocessing includes removing duplicated or 
unnecessary attributes, adding or removing data entries, 

creating consistency across similar entries based on a stan-
dard model, integrating separate logs or data sets from dif-
ferent components, and preparing desired input formats for 
different learning algorithms.  It provides interfaces to 
various health-related data repositories and enables data 
translation for online learning.  

The second component is online learning. In a large-scale 
system comprising hundreds-of-thousands components, 
causes of abnormal behaviors may be directly observable or 
be inferred from other normal behaviors that are observed 
during system operation. This component is responsible of 
dynamically learning fault characteristics across the system 
by applying an extensive set of data mining and machine 
learning techniques, such as those in Weka and R [24,33]. 
There are a great number of well-proven learning tech-
niques, such as decision tree, Bayesian networks, neural 
networks, association rules, hidden Markov Model, etc. 
These learning techniques are separately explored to cap-
ture cause-and-effect relations from the preprocessed data. 
The learned patterns and relations are collected and stored 
in a knowledge base described below. 

The third component is a knowledge base. Research stud-
ies have shown that health data is highly valuable for un-
derstanding failure modes and possible predicting potential 
failures in HPC. Traditionally, human operators are re-
sponsible to check the collected data for possible problems. 
Manual processing is time consuming, error-prone, and 
requires much expertise. More importantly, it does not 
scale. The knowledge base is intended to accumulate em-
pirical and inferred knowledge from historical data for fault 
detection and prediction. It includes a collection of statistic 
properties, correlation rules, propagation modes, and fault 
patterns that are learned from historical data. The knowl-
edge base is provided as a relational database with user 
interfaces for easy accessing, such as GUIs for system man-
agers and APIs for fault tolerance middlewares.  The in-
formation in the knowledge base may be used at two dif-
ferent aspects: one is to generate long-term failure distribu-
tions (e.g. the statistical properties of the time between fail-
ures MTBFs and the time to repair MTTRs) and the other is 
to assist online failure prediction for runtime fault man-
agement.  

Last but not least, a meta-learning mechanism is provided 
to improve diagnostic and prognostic accuracy in large-
scale computational infrastructures [11]. In a large HPC 
system, the sources of failures are many and complex; 
therefore it is unrealistic to expect a single method to detect 
and capture all of them alone. For example, some tech-
niques are only effective for a specific device/component or 
for particular types of failures, and different methods have 
different strength and drawbacks. The proposed meta-
learning approach seeks to compute a “meta-classifier” that 
integrates the separately learned classifiers (denoted as 
“base classifiers”) to boost overall predictive accuracy. In 
particular, it learns to identify preferable combinations of 
base classifiers as well as their quantitative performance 
effects from previous results [23]. Possible meta-learning 
strategies include voting, arbitration, and combining. Vot-
ing means that each predictor gets one vote, and the major-
ity (or plurality) wins. Arbitration entails the use of an “ob-
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jective” judge who may choose a final outcome based upon 
its own prediction but cognizant of the other models. Com-
bining refers to the use of knowledge about how predictors 
behave with respect to each other. The meta-learner obtains 
base classifications from the knowledge base, applies a 
preferable combination of these classifications and then 
produces a final result. Effective meta-learning strategies 
are also part of the knowledge base, and will be dynami-
cally adjusted according to the actual observation during 
system operation.  

4 PRELIMINARY RESULTS 

As pointed out in numerous failure analysis studies, an 
appropriate error checking or monitoring system is of criti-
cal importance for effective failure prediction. BlueGene/L 
is such a system which is deployed with an extensive error 
checking service CMCS [21]. We have acquired two RAS 
(Reliability, Availability, and Serviceability) logs from the 
BlueGene/L systems at ANL (Argonne National Labora-
tory) and SDSC (San Diego Supercomputing Center) for 
initial evaluation of the proposed service. Both systems 
consist of 1024 compute nodes (2048 processors) with 32-
128 I/O nodes. Table 1 summarizes these logs.  

TABLE 1: SUMMARY OF FAILURE LOGS 

 

 

 

 

First, a three-step data prepreprocessing is conducted to ob-
tain a unique list of events from the logs.  The preprocess-
ing includes event categorization, temporal compression at 
a single location, and spatial compression across multiple 
locations [11]. We are currently working on the design of a 
stream processing engine for online more data preprocess-
ing [20].  

Next, considering the nature of RAS logs, we have ex-
amined the use of two base prediction methods (i.e. statisti-
cal based method and association rule based method) for 
base prediction.  The statistical based method emphasizes on 
discovering probabilistic characteristics (e.g. how often and 
with what probability will the occurrence of one failure 
influence subsequent failures) and then using the obtained 
characteristics for failure prediction. Statistical properties 
are in the form of {fi, fj, t, k}, meaning that if fi occurs, then fj 
may occur in a time window of t with the possibility of k.  
The rule-based method builds association rules to capture 
causal correlations between non-fatal events occurring be-
fore each fatal event and then use them for failure predic-
tion. Rules are in the form of {x1,x2,…,xk}=>y, meaning that 
if an occurrence of {x1, x2,…,xk} is found then there is a good 
chance of finding a failure  y in the near future (i.e. in the 
order of minutes).   

In the rest of the paper, to evaluate the effectiveness of 
prediction methods, we use the 70-30 data split of the logs 
for learning and testing. The learned patterns or correla-

tions, along with their accuracy, by using base predictive 
methods are collected and stored in a database. 

Finally, a simply meta-learning strategy is explored for 
fault prediction. Specifically, it adaptively combines the 
statistical based method and the rule based method as fol-
lows:   

“Observe the events within a fixed time window be-
fore the occurrence of a failure: (1) if there exist non-
fatal events, apply the rule-based method for the 
discovery of fault patterns and produce a warning 
in case of matching rules; (2) if no nonfatal event is 
observed, examine the occurrence of fatal events 
and apply the statistical based method for failure 
prediction; (3) if both fatal and non-fatal events are 
presented, use the base method that produces a 
prediction with higher confidence.” 
 
Figure 2-3 present the preliminary results obtained by 

using the proposed meta-learner on both logs, where the x-
axis represents the size of prediction window.  Here, Preci-
sion is defined as Tp/(Tp+Fp), and Recall is defined as 
Tp/(Tp+Fn), where Tp is number of correct predictions (i.e. 
true positive), and Fp is number of false alarms (i.e. false 
positives), and Fn is number of false negatives.  A good 
prediction engine should provide a high value (closer to 
1.0) for both metrics.   
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Fault Prediction Results with ANL BGL  

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3. Fault Prediction Results with SDSC BGL  

Compared to the results obtained by using a base classi-
fier, where the statistical based method produces a 60% 
false positive rate and the rule-based method gives a 25%-
69% false negative rate, the meta-learning approach can 

 SDSC ANL 

Start Date 12/6/04 1/21/05 

End Date 2/21/06 4/28/06 

No. of Records 428,953 4,172,359 

Log Size 540 MB 5 GB 
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boost prediction accuracy with both Precision and Recall 
higher than 65%. This represents up to three times im-
provement over using either of the base methods.  

6 CONCLUSIONS 

This paper presents our knowledge-based fault diagnosis 
and prognosis service for high performance computing 
systems, such as TeraGrid clusters. By leveraging existing 
research on system health monitoring, the proposed service 
can dynamically capture fault patterns and characteristics 
from the collected data by applying data mining and ma-
chine learning techniques. In particular, a knowledge base 
is used to accumulate learned patterns and modes during 
system operation, and the meta-learning approach is ex-
plored to improve prediction accuracy.  Preliminary studies 
have been conducted on failure logs collected from 
BlueGene/L systems at SDSC and ANL.  

While the knowledge based design in combination with 
the meta-learning approach provides an important founda-
tion for automatic fault diagnosis and prognosis, more 
work are needed. Currently, we are implementing a stream 
processing system for continuous data flows between 
health data repositories and online learning by using the 
open-source package TelegraphCQ [20]. We continue to 
explore the possibilities for more comprehensive fault di-
agnosis and prognosis service. These include the investiga-
tion of a variety of data mining techniques and meta-
learning strategies. Finally, we plan to fully implement the 
designed service for the use on TeraGrid.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TERAGRID 2007 CONFERENCE, MADISON, WI 5 

 

ACKNOWLEDGMENT 

The authors would like to thank TeraGrid, Argonne Na-
tional Laboratory, and San Diego Supercomputer Center 
for the use of computing resources.  

REFERENCES 

[1] B. Allen, “Monitoring Hard Disk with SMART”, 
Linux Journal, January, 2004. 
[2] A. Bouteiller, T. Herault, G. Krawezik, P. Le-
marinier, F. Cappello, “MPICH-V: A Multiprotocol Auto-
matic Fault Tolerant MPI”, International Journal of High 
Performance Computing and Applications, 2005 
[3] R. Castain, T. Woodall, “The Open Run-Time Envi-
ronment (OpenRTE): A Transparent Multi-Cluster Envi-
ronment for High-Performance Computing”, Euro 
PVM/MPI 2005, Italy, 2005. 
[4] S. Chakravorty, C. Mendes and L. Kale, “Proactive 
Fault Tolerance    in Large Systems”, Proc. of HPCRI Work-
shop in conjunction with HPCA 2005, 2005. 
[5] Clumon Performance Monitor. 
http://clumon.ncsa.uiuc.edu/  
[6] I. Cohen and J. Chase, “Correlating Instrumenta-
tion Data to System States: A building Block for Automated 
Diagnosis and control”, Proc. of OSDI’04, 2004.  
[7] J. Duell, P. Hargrove, and E. Roman, “Require-
ments for Linux Checkpoint/Restart”, Berkeley Lab Tech-
nical Report (publication LBNL-49659) 
[8] E. Elnozahy et al., “A Survey of Rollback-Recovery 
Protocols in Message-Passing Systems”, ACM Computing 
Surveys, 34(3), 2002.  
[9]     E. Gabriel, G. Fagg, et al., “Open MPI: Goals, Con-
cept, and Design of a Next Generation MPI Implementa-
tion”, Proc. of The 11th European PVM/MPI Users' Group 
Meeting, Budapest, Hungary, September 2004. 
[10] Ganglia Monitoring System. 
http://ganglia.sourceforge.net/ 
[11] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, 
“A Meta-Learning Failure Predictor for BlueGene/L sys-
tems”, Technical Report, Dept. of Computer Science, Illinois 
Inst. of Tech, submitted to ICPP07, 2007.  
[12] R. Gioiosa, J. Sancho, S. Jiang, F. Petrini, K. Davis, 
“Transparent Incremental Checkpointing at Kernel Level: A 
Foundation for Fault Tolerance for Parallel Computers”, 
Proc. of SC2005, 2005. 
[13] J. Han and M. Kamber, “Data Mining: Concepts 
and Techniques”, 2nd ed. March 2006. ISBN 1-55860-901-6 
[14]  Hardware monitoring by lm sensors http: 
//secure.netroedge.com/-lm78/info.html.  
[15]     Intelligent Platform Management Interface. 
http://www.intel.com/design/servers/ipmi/  
[16] I. Lee, R. Iyer, and D. Tang, “Error/Failure Analy-
sis Using Event Logs from Fault Tolerance Systems”,  Proc. 
of FTCS-21, 1991.  
[17] Y. Liang, Y. Zhang, et al.,  “BlueGene /L Failure 
Analysis and Models ”, Proc. of  DSN’06, 2006.  
[18] M. Lizkow, T. Tannenbaum, et al., “Checkpoint 
and Migration of UNIX Processes in the Condor Distrib-
uted Processing System”, University of Wisconsin-Madison 
Computer Science Technical Report #1346, 1997. 

[19] Y. Li and Z. Lan, “Exploit Failure Prediction for 
Adaptive Fault-Tolerance in Cluster Computing”, Proc. of 
IEEE CCGrid’06,  2006.  
[20] S. Madden, M. Shah, et al, “Continuously Adaptive 
Continuous Queries Over Streams”, Proc. of SIGMOD’02, 
2002.  
[21] J. E. Moreira,G. Almási, etal, “Blue Gene/L pro-
gramming and operating environment”, IBM journal of 
Research and Development, Vol 49, Nov. 2005 
[22] A. Oliner, R. Sahoo, J. Moreira,  M. Gupta, A. 
Sivasubramaniam, “Fault-Aware Job Scheduling for 
BlueGene/L Systems”,  Proc. Of IPDPS’04, 2004.  
[23] J. Keller, I. Paterson, H. Berrer, “An Integrated 
Concept for Multi-Criteria-Ranking of Data-Mining Algo-
rithms,” Eleventh European Conference on Machine Learn-
ing, Workshop on Meta-Learning: Building Automatic Ad-
vice Strategies for Model Selection and Method Combina-
tion, Barcelona, Spain, 2000. 
[24]  The R Project for Statistical Computing. 
http://www.r-project.org/ 
[25] RAD Lab: Reliable Adaptive Distributed Systems 
Laboratory. http://radlab.cs berkeley.edu/ 
[26] R. Sahoo, A. Oliner, et al., “Critical Event Predic-
tion for Proactive Management in Large-scale Computer 
Clusters”, Proc. of  KDD 2003: 426-435 
[27] M. Scottile and R. Minnich, “Supermon: A High-
Speed Cluster Monitoring System”, Proc. IEEE Cluster, 
2002.  
[28] M. Schulz, G. Bronevetsky, R. Fernandes, D. 
Marques, K. Pingali, and P. Stodghill. “Implementation and 
Evaluation of a Scalable Application-level Checkpoint-
Recovery Scheme for MPI Programs”, Proc. of Supercom-
puting, November 2004. 
[29] S. Smallen, C. Olschanowski, K. Ericson, P. 
Bechman, and J. Schopf, “The Inca test harness and report-
ing Framework”, Proc. of SC04, 2004.  
[30] J. Squyres and A. Lumsdaine,“A Component Ar-
chitecture for LAM/MPI”, Proc. of  10th European 
PVM/MPI Users' Group Meeting, 2003 
[31] K. Vaidyanathan and K. Gross, “MSET Perform-
ance Optimization for Detection of Softtware Aging”, Proc. 
of ISSRE, 2003.  
[32] R. Vilalta and S. Ma, “Predicting Rare Events in 
Temporal Domains”, Proc. of IEEE Intl. Conf. On Data Min-
ing, 2002.  
[33] Weka Sftware. 
http://www.cs.waikato.ac.nz/ml/weka/ 
[34] R. Wolski, N. Spring, and C. Peterson, “Imple-
menting a Performance Forecasting System for Metacom-
puting: The Network Weather Service”, Proc. of SC97, 1997. 
[35]  Y. Zhang et al., “Performance Implications of Fail-
ures in Large-Scale Cluster Scheduling”, Proc. of 10th Work-
shop on Job Scheduling Strategies for Parallel Processing, 
held in conjunction with SIGMETRICS 2004.  


