
TERAGRID 2007 CONFERENCE, MADISON, WI 1 

 

Using Adaptive Fault Tolerance to Improve 
Application Robustness on the TeraGrid 

Yawei Li and Zhiling Lan 

Abstract— Application robustness becomes a major concern with the continued scaling of high performance computing (HPC). In a recent study 
[8], we have developed an adaptive fault management scheme called FT-Pro for improving application robustness by combining the merits of 
proactive process migration and reactive checkpointing. In this paper, we push forward this study by integrating FT-Pro with a production-level 
MPI package and investigating its effectiveness across a number of real-world parallel applications. Extensive experiments are conducted on an 
IA32 cluster at TeraGrid/ANL by comparing FT-Pro as against periodic checkpointing under a wide range of system parameters and failure beha-
viors. These preliminary experiments show the potential of using adaptive fault tolerance to improve application performance in the presence of 
failures.  
 
Index Terms— Adaptive fault tolerance, Parallel applications, Process migration, Checkpointing  
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1 INTRODUCTION

 
Over the past decades, the insatiable demand for more 
computational power in science and engineering has driven 
the development of ever-growing supercomputers. Parallel 
computers with hundreds to thousands of processors, rang-
ing from tightly coupled proprietary clusters to loosely 
coupled commodity-based clusters, are being designed and 
deployed. For systems of such scales, the susceptibility to 
failures becomes a major concern as the system-wide MTBF 
(mean-time-between-failure) decreases dramatically with 
the increasing count of components [10]. At the mean time, 
to accurately model realistic problems, large applications 
are designed to run for days, weeks, or longer until comple-
tion. A common complain from HPC users is that large jobs 
find it very difficult to make any forward progress because 
of failures [12]. This situation will be exacerbated as sys-
tems get bigger and applications become larger. Hence, 
improving application robustness is of vital importance to 
the success of HPC. 

The conventional fault tolerance approach is checkpoint-
ing. It periodically stores a snapshot of the current applica-
tion state, and then uses it for restarting the execution in 
case of failures. While checkpointing has served us well in 
the past, it can cause serious performance overhead when 
applied to large-scale applications [6]. Moreover, with the 
growing gap between processor speed and data access 
speed, frequent checkpointing can further increase the dis-
parity between sustained performance and peak perfor-
mance of HPC. Thus, checkpointing alone is unlikely suffi-
cient to provide an efficient and robust solution for future 
HPC. Unlike reactive checkpointing, a proactive technique 
(e.g. timely process migration) allows an application to 
avoid failures by taking preventive actions before their oc-
currences based on failure predictions. Recent research re-

sults [7,11] reveal the feasibility of predicting incoming 
failures in large systems and thus hold the promise of using 
proactive approaches to improve application robustness 
with relatively low cost [5]; however, the fault prediction is 
subjected to some degree of uncertainty in practice. More 
specifically, failure predictions have false negative error 
where unexpected failures occurs and false positive error 
where false alarms are produced. As a result, entirely rely-
ing on failure prediction can cause significant performance 
loss. 

In a recent study [8], we have proposed an adaptive fault 
management scheme called FT-Pro that combines the me-
rits of proactive process migration and reactive checkpoint-
ing to improve application performance in the presence of 
failures. In this paper, we push forward this study by inte-
grating FT-Pro with the open source package MPICH-V [2] 
and investigating its effectiveness across a number of real-
world parallel applications on an IA32 system at TeraGr-
id/ANL. FT-Pro is evaluated against periodic checkpoint-
ing under a wide range of system parameters and failure 
prediction accuracies. Moreover, we use a real failure trace 
in the experiments to reflect the failure situations in realistic 
HPC production environments. Our preliminary results 
show that the proposed FT-Pro outperforms the traditional 
checkpointing by up to 43% in terms of reducing applica-
tion execution time, even under a modest predictive accu-
racy. To the best of our knowledge, this study is among the 
first to exploit adaptive fault management with various 
real-world applications by using real failure logs. 

The rest of the paper is organized as below. Section 2 
gives an overview of FT-Pro. In Section 3, we present the 
design and implementation of FT-Pro with the production-
level MPI package MPICH-V. Section 4 describes our eval-
uation methodologies, followed by experimental results. 
Finally, we conclude the paper in Section 5. 

2 OVERVIEW OF FT-PRO 
FT-Pro adopts a cooperative approach where the applica-
tion programmer or user can insert fault management re-
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quests denoted as decision points in the application and FT-
Pro makes run-time adaptation decision on what type of 
preventive action should be taken on the application at 
each decision point.  The goal of adaptation is to optimize 
the application execution time by considering both the fail-
ure impact and different prevention costs. Three prevention 
actions are considered in FT-Pro: (1) SKIP, where the appli-
cation proceeds with its computation; (2) CHECKPOINT, 
where the application stops to conduct a coordinated 
checkpointing; and (3) MIGRATION, where the processes 
residing on failure-prone computing nodes are transferred 
to healthy spare ones. 

The primary adaptation question with regard to FT-Pro 
is, “How does FT-Pro decide which fault prevention action 
should be taken based on fault prediction?” Towards this 
end, we have developed probabilistic models to quantita-
tively evaluate the application performance by considering 
a range of factors, including the prediction accuracy, the 
cost and benefit associated with each prevention action and 
the characteristics of the application. More specifically, the 
models are developed to calculate the expected application 
execution time Enext during the next adaptation interval. It 
involves in three steps: 
1. Identifies the number of suspicious nodes Wf  and the 

number of healthy spare nodes Sh according to the fail-
ure prediction.  

2. Calculates the application failure probability Pf and the 
application downtime Cd during the next interval. 

3. For each action, estimates Enext based on the total proba-
bility law conditioning on the occurrence of failures. In 
this step FT-Pro considers the impacts of potential fail-
ures and the use of different preventive actions on the 
application running time. 

The detailed calculation of Enext  is described in Equation 
(1) - (3). Here, I is the adaptation interval, L is the index of 
the current interval, fp is the false positive error rate of pre-
diction, Ccp is the checkpointing cost, Cpm is the cost of mi-
gration and Cf(i) is the predicted failure downtime on node 
i. FT-Pro selects the prevention action with the minimum 
Enext. For more detail of the FT-Pro decision algorithm, 
please refer to [8]. 
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3  DESIGN AND IMPLEMENTATION 
We have implemented FT-Pro with MPICH-V, an open-
source checkpointing library for MPI applications [2]. The 
package consists of three major components: MPICH-V 
daemons that are collocated with application processes on 
computing nodes, a dispatcher that is responsible for man-
aging computing resources, and a CKP server that imple-
ments the Chandy-Lamport algorithm [4] based coordi-
nated checkpointing protocol and provides storages for the 
checkpointing images. Figure 1 presents the integration of 
FT-Pro with MPICH-V. To allow preemptive process mi-
gration, when submitting a job, the user needs to request 
spare nodes to help the application avoid foreseeable fail-
ures during execution. Our study based on real error logs 
indicates that in practice the probability of multiple simul-
taneous failures is low, hence the allocation of only one or a 
couple of spare nodes is sufficient. 

 
 
As shown in the figure 1, we have modified and devel-

oped several FT-Pro components within MPICH-V to ena-
ble adaptive fault tolerance. A new component called adap-
tation manager is developed, which is responsible for run-
time decision-making. The failure predictor runs on each 
application node to monitor the RAS state of the host node 
and report failure prediction results. The FT-Pro daemon 
running on each computing node cooperates with the adap-
tation manager to fulfill the FT-Pro adaptation actions.  
At each decision point, the adaptation manager polls the 
failure predictor on each node, makes a runtime prevention 
decision, and then communicates with FT-Pro daemons to 
invoke the decided action: 
• Upon a SKIP action, the adaptation manager broad-
casts a SKIP message to daemons and no action will be tak-
en to avoid unnecessary prevention cost.  
• Upon a CHECKPOINT action, the adaptation manager 
broadcasts a CKP message to daemons and invokes the 
CKP server to conduct a checkpointing operation, and thus 

Fig. 1. Design of FT-Pro with MPICH-V 
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the checkpoint image files are generated and stored at the 
remote server.  
• Upon a MIGRATION action, the adaptation manager 
broadcasts a PM message along with the addresses of the 
suspicious and destination nodes to daemons and invokes 
the CKP server to conduct a checkpoint followed by a 
proactive restart on the new nodes.  We develop process 
migration support on top of MPICH-V packages. To be less 
intrusive, currently process migration is implemented as a 
coordinated checkpointing immediately followed by a 
proactive restart. That is, all the application processes are 
terminated and then restarted on the new set of computing 
nodes which consist of the original healthy nodes belonging 
to the application and the healthy spare nodes which have 
been swapped in by the process migrations. 

4  PERFORMANCE EVALUATION  

4.1 Evaluation Methodology 

4.1.1 Environment 
To gain the practical insight on the effectiveness of FT-Pro, 
we conduct trace-based simulations to compare FT-Pro 
with periodic checkpointing (CKP) . The testbed is the IA32 
Linux cluster at Argonne National Laboratory, which is 
part of the TeraGrid infrastructure.  The system consists of 
96 computing nodes, each equipped with two 2.4GHz Intel 
Xeon processors and 4G MB memories. All the nodes are 
connected via Gigabyte Ethernet and sharing 4TB disk via 
NFS, which also provide stable remote storage for check-
pointing image files in FT-Pro. The operation system is 
SuSE Linux v8.1, and the job scheduler is Torque Resource 
Manager with Moab Scheduler. The MPICH-V is of version 
0.76 and the compiler is GCC 2.95.3. 

4.1.2 Failure Trace 
To reflect the realistic failure impact on parallel applica-
tions, in the experiments we simulate the failure events 
based on a real failure trace collected from a 480-node HPC 
production system [9]. According to the failure trace, the 
mean-time-before-failure (MTBF) of the entire system is 
0.79 hour and it is 14.2 days per node. We use the failure 
trace from 96 randomly selected nodes to match the system 
size of the testbed. For every failure entry in this trace, there 
are four associated properties: node location, failure time, 
failure type and downtime. Based on these entries we gen-
erate corresponding failure events to interrupt the parallel 
applications. And the failure prediction is simulated in such 
a way that its accuracy is controlled with two parameters: 
• To simulate false-negative value of fn:  If there exists a 
failure on a node between the current and the next decision 
points, the event-based predictor on the node reports a fail-
ure of its type with the probability of 1- fn;  
• To simulate false-positive value of fp:  Suppose the pre-
dictor has totally reported x failures for those intervals with 
actual failure events. According to the definition of fp, the 
ratio of number of false positives to the number of true po-
sitives is /(1 )p pf f− . Hence, out of all the intervals without 

actual failure occurrences, the predictor randomly selects 

( ) /(1 )p px f f⋅ −  intervals and raises a false failure alarm for 

each of them. 

4.1.3 Parallel Applications 
A number of parallel applications, including both parallel 
benchmarks and two real world parallel simulation codes, 
are used in the experiments. This test suite is from a mix-
ture of scientific domains, which can provide us a fair eval-
uation of FT-Pro across a variety of representative parallel 
applications: 
• NAS Parallel Benchmarks: We use the benchmark CG 
and three pseudo applications (BT, LU, SP), with dataset 
size of class C representing typical large dataset for modern 
HPC systems. BT represents applications that are dominat-
ed with point-to-point communications; CG represents ap-
plications that are dominated by unstructured long-
distance communications; LU represents the computation 
of implicit CFD algorithms with a large amount of messag-
es; and in SP, multiple non-diagonally dominant and scalar 
pentadiagonal equations are solved.  
• Cosmology Application ENZO: It is a parallel cosmol-
ogy simulation code designed for high-resolution, multi-
physics, cosmological structure formation simulations by 
using the SAMR (Structured Adaptive Mesh Refinement) 
algorithm [3]. ENZO entails the detailed computations that 
simulate the formation and evolution of cosmic structures 
such as galaxies and clusters of galaxies from shortly after 
the big bang to the present day.  
• Molecular Dynamics Application GROMACS: GRO-
MACS is a molecular dynamics (MD) simulation code [1]. 
MD is a numerical simulation technique where the time 
evolution of a set of interacting atoms is followed by inte-
grating their equations of motion. MD is widely used in the 
area of computational chemistry for discovering complex 
chemical systems in terms of realistic atomic models. 

4.2 Performance Results  
For the convenience of comparison, a relative metric name-
ly performance gain is used, which is defined as the relative 
reduction of execution time achieved by FT-Pro over peri-
odic checkpointing.  
   Figure 2(a) and 2(b) shows the performance gain achieved 
by FT-Pro with these applications under different compu-
ting scales, where the default values of fp and fn are set to 
0.3 to reflect the quality of the prevailing predictors. We 
vary the number of computing nodes from 2 to 64. The re-
sults show that for all the six applications, FT-Pro demon-
strates good scalability. That is, the performance gains in-
troduced by FT-Pro increase with the application scales. For 
instance, FT-Pro achieves significant performance gain 
ranging from 10% to 42% as the MPI applications run on 
the 64-node scale. This indicates that FT-Pro is more supe-
rior to checkpointing when the computing scale is larger 
because checkpointing imposes more serious overhead on 
applications due to the increasing synchronization cost in 
the checkpointing protocol. 
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Figure 3 shows the performance gain achieved by FT-Pro 

with varying prediction accuracies: figure 3(a) presents the 
result where the false-positive value fp is changed from 0.1 
to 0.9 and the false-negative value fn is fixed at 0.3, and the 
figure 3(b) gives the result where the false-negative value fn 
is changed from 0.1 to 0.9 and the false-positive value fp is 
fixed at 0.3. For all of these applications, the performance 
gain is always between 24% and 30%. The results also show 
that performance variance incurred by the changes of false 
positive fp is trivial, whereas performance degradation 
caused by false negative fn is more pronounced because the 
prevention effect of FT-Pro is essentially based on the capa-
bility of predicting failures.   

Figure 4 presents the performance gain achieved by FT-
Pro with different number of spare nodes S varying from 1 
to 4. The values of fp and fn are set to 0.3 and the number of 
computing nodes is set to 64. As figure 4 shows, with the 
increasing number of spare nodes, the performance gain 
brought by FT-Pro grows steadily. We also observe that 
even with only one spare node, the performance gain is still 
significant (e.g. between 13% - 43%) for all these applica-
tions. This is due to the fact that the probability of multiple 
simultaneous failures is rare. In other words, a modest allo-
cation of spare nodes (less than 5%) can result in a substan-
tial performance gain. 
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5 CONCLUSIONS AND FUTURE WORK 
In this paper, we present the design and implementation of 
adaptive fault tolerance by integrating our recently devel-
oped adaptive scheme FT-Pro with the open-source check-
pointing library MPICH-V. The resulting runtime library 
intelligently chooses prevention actions among proactive 
process migration, reactive checkpointing, and no-action 
on-the-fly based on failure prediction. The primary goal is 
to optimize application execution time in the presence of 
failures. We have evaluated the developed adaptive fault 
tolerance mechanism as against periodic checkpointing 
across a number of real-world parallel applications. Our 
experimental studies show that FT-Pro can significantly 
reduce the application completion times by up to 43% as 

Fig. 2. Relative Improvement achieved by FT-Pro with 
Varying Computing Scales (fp = fn=0.3, under the condi-
tion that only one spare node is allocated.) 

Fig. 3. Relative Improvement achieved by FT-Pro with 
Varying Prediction Accuracy Values (No. of computing 
nodes is 64, and the no. of spare nodes is 1) 

Fig. 4. Relative Improvement Achieved by FT-Pro with 
Varying Numbers of Spare Nodes (No. of computing 
nodes is set to 64) 
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compared to checkpointing. The performance benefit 
brought by FT-Pro is caused by its intelligence to avoid 
imminent failures and to remove unnecessary checkpoint-
ing operations. 

Our future work includes integrating with online failure 
prediction [7] to provide an end-to-end fault tolerance support 
for parallel applications and developing lightweight migration 
protocols to support live migration. Our ultimate goal is to 
develop an adaptive fault tolerance support for the production 
usage on TeraGrid. 
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