
TERAGRID 2007 CONFERENCE, MADISON, WI 1

Using Adaptive Fault Tolerance to Improve
Application Robustness on the TeraGrid

Yawei Li and Zhiling Lan

Abstract— Application robustness becomes a major concern with the continued scaling of high performance computing (HPC). In a recent study
[8], we have developed an adaptive fault management scheme called FT-Pro for improving application robustness by combining the merits of
proactive process migration and reactive checkpointing. In this paper, we push forward this study by integrating FT-Pro with a production-level
MPI package and investigating its effectiveness across a number of real-world parallel applications. Extensive experiments are conducted on an
IA32 cluster at TeraGrid/ANL by comparing FT-Pro as against periodic checkpointing under a wide range of system parameters and failure beha-
viors. These preliminary experiments show the potential of using adaptive fault tolerance to improve application performance in the presence of
failures.

Index Terms— Adaptive fault tolerance, Parallel applications, Process migration, Checkpointing

—————————— ——————————

1 INTRODUCTION

Over the past decades, the insatiable demand for more
computational power in science and engineering has driven
the development of ever-growing supercomputers. Parallel
computers with hundreds to thousands of processors, rang-
ing from tightly coupled proprietary clusters to loosely
coupled commodity-based clusters, are being designed and
deployed. For systems of such scales, the susceptibility to
failures becomes a major concern as the system-wide MTBF
(mean-time-between-failure) decreases dramatically with
the increasing count of components [10]. At the mean time,
to accurately model realistic problems, large applications
are designed to run for days, weeks, or longer until comple-
tion. A common complain from HPC users is that large jobs
find it very difficult to make any forward progress because
of failures [12]. This situation will be exacerbated as sys-
tems get bigger and applications become larger. Hence,
improving application robustness is of vital importance to
the success of HPC.

The conventional fault tolerance approach is checkpoint-
ing. It periodically stores a snapshot of the current applica-
tion state, and then uses it for restarting the execution in
case of failures. While checkpointing has served us well in
the past, it can cause serious performance overhead when
applied to large-scale applications [6]. Moreover, with the
growing gap between processor speed and data access
speed, frequent checkpointing can further increase the dis-
parity between sustained performance and peak perfor-
mance of HPC. Thus, checkpointing alone is unlikely suffi-
cient to provide an efficient and robust solution for future
HPC. Unlike reactive checkpointing, a proactive technique
(e.g. timely process migration) allows an application to
avoid failures by taking preventive actions before their oc-
currences based on failure predictions. Recent research re-

sults [7,11] reveal the feasibility of predicting incoming
failures in large systems and thus hold the promise of using
proactive approaches to improve application robustness
with relatively low cost [5]; however, the fault prediction is
subjected to some degree of uncertainty in practice. More
specifically, failure predictions have false negative error
where unexpected failures occurs and false positive error
where false alarms are produced. As a result, entirely rely-
ing on failure prediction can cause significant performance
loss.

In a recent study [8], we have proposed an adaptive fault
management scheme called FT-Pro that combines the me-
rits of proactive process migration and reactive checkpoint-
ing to improve application performance in the presence of
failures. In this paper, we push forward this study by inte-
grating FT-Pro with the open source package MPICH-V [2]
and investigating its effectiveness across a number of real-
world parallel applications on an IA32 system at TeraGr-
id/ANL. FT-Pro is evaluated against periodic checkpoint-
ing under a wide range of system parameters and failure
prediction accuracies. Moreover, we use a real failure trace
in the experiments to reflect the failure situations in realistic
HPC production environments. Our preliminary results
show that the proposed FT-Pro outperforms the traditional
checkpointing by up to 43% in terms of reducing applica-
tion execution time, even under a modest predictive accu-
racy. To the best of our knowledge, this study is among the
first to exploit adaptive fault management with various
real-world applications by using real failure logs.

The rest of the paper is organized as below. Section 2
gives an overview of FT-Pro. In Section 3, we present the
design and implementation of FT-Pro with the production-
level MPI package MPICH-V. Section 4 describes our eval-
uation methodologies, followed by experimental results.
Finally, we conclude the paper in Section 5.

2 OVERVIEW OF FT-PRO
FT-Pro adopts a cooperative approach where the applica-
tion programmer or user can insert fault management re-

————————————————
• Y. Li is with the Scalable Software Laboratory, Illinois Institute of Technol-

ogy, 10 West 31st Street, Stuart Building 006,Chicago,IL 60616.
Email:liyawei@iit.edu

• Z. Lan with the Scalable Software Laboratory, Illinois Institute of Technol-
ogy, 10 West 31st Street, Stuart Building 226D, Chicago, IL 60616.
Email:lan@iit.edu

2 TERAGRID 2007 CONFERENCE, MADISON, WI

quests denoted as decision points in the application and FT-
Pro makes run-time adaptation decision on what type of
preventive action should be taken on the application at
each decision point. The goal of adaptation is to optimize
the application execution time by considering both the fail-
ure impact and different prevention costs. Three prevention
actions are considered in FT-Pro: (1) SKIP, where the appli-
cation proceeds with its computation; (2) CHECKPOINT,
where the application stops to conduct a coordinated
checkpointing; and (3) MIGRATION, where the processes
residing on failure-prone computing nodes are transferred
to healthy spare ones.

The primary adaptation question with regard to FT-Pro
is, “How does FT-Pro decide which fault prevention action
should be taken based on fault prediction?” Towards this
end, we have developed probabilistic models to quantita-
tively evaluate the application performance by considering
a range of factors, including the prediction accuracy, the
cost and benefit associated with each prevention action and
the characteristics of the application. More specifically, the
models are developed to calculate the expected application
execution time Enext during the next adaptation interval. It
involves in three steps:
1. Identifies the number of suspicious nodes Wf and the

number of healthy spare nodes Sh according to the fail-
ure prediction.

2. Calculates the application failure probability Pf and the
application downtime Cd during the next interval.

3. For each action, estimates Enext based on the total proba-
bility law conditioning on the occurrence of failures. In
this step FT-Pro considers the impacts of potential fail-
ures and the use of different preventive actions on the
application running time.

The detailed calculation of Enext is described in Equation
(1) - (3). Here, I is the adaptation interval, L is the index of
the current interval, fp is the false positive error rate of pre-
diction, Ccp is the checkpointing cost, Cpm is the cost of mi-
gration and Cf(i) is the predicted failure downtime on node
i. FT-Pro selects the prevention action with the minimum
Enext. For more detail of the FT-Pro decision algorithm,
please refer to [8].
• if taking SKIP action:

(2)* * *(1) (1)⎡ ⎤= − + + + −⎣ ⎦next ckp d f fE L L I C P I P

1

1- 0

0, 0
=

⎧
>⎪= ⎨

⎪ ≤⎩

∏
fW

p f
if

f

f if W
P

if W

 & ()
1

1
=

= ∗∑
fW

d f i
if

C C
W

• if taking CHECKPOINT action:
(2)* ()*(1) (2)= + + + + −next d cp f cp fE I C C P I C P

1

1- 0

0, 0
=

⎧
>⎪= ⎨

⎪ ≤⎩

∏
fW

p f
if

f

f if W
P

if W

& ()
1

1
=

= ∗∑
fW

d f i
if

C C
W

• if taking MIGRATION action:

(2)* ()*(1) (3)= + + + + + + −next d cp pm f cp pm fE I C C C P I C C P

1

1

0

−

=

⎧
− >⎪= ⎨

⎪ ≤⎩

∏
f hW S

p f h
if

f h

f if W S
P

if W S

&

()
1

1

0
=

⎧
∗ >⎪

−= ⎨
⎪ ≤⎩

∑
fW

f i f h
if hd

f h

C if W S
W SC

if W S

3 DESIGN AND IMPLEMENTATION
We have implemented FT-Pro with MPICH-V, an open-
source checkpointing library for MPI applications [2]. The
package consists of three major components: MPICH-V
daemons that are collocated with application processes on
computing nodes, a dispatcher that is responsible for man-
aging computing resources, and a CKP server that imple-
ments the Chandy-Lamport algorithm [4] based coordi-
nated checkpointing protocol and provides storages for the
checkpointing images. Figure 1 presents the integration of
FT-Pro with MPICH-V. To allow preemptive process mi-
gration, when submitting a job, the user needs to request
spare nodes to help the application avoid foreseeable fail-
ures during execution. Our study based on real error logs
indicates that in practice the probability of multiple simul-
taneous failures is low, hence the allocation of only one or a
couple of spare nodes is sufficient.

As shown in the figure 1, we have modified and devel-

oped several FT-Pro components within MPICH-V to ena-
ble adaptive fault tolerance. A new component called adap-
tation manager is developed, which is responsible for run-
time decision-making. The failure predictor runs on each
application node to monitor the RAS state of the host node
and report failure prediction results. The FT-Pro daemon
running on each computing node cooperates with the adap-
tation manager to fulfill the FT-Pro adaptation actions.
At each decision point, the adaptation manager polls the
failure predictor on each node, makes a runtime prevention
decision, and then communicates with FT-Pro daemons to
invoke the decided action:
• Upon a SKIP action, the adaptation manager broad-
casts a SKIP message to daemons and no action will be tak-
en to avoid unnecessary prevention cost.
• Upon a CHECKPOINT action, the adaptation manager
broadcasts a CKP message to daemons and invokes the
CKP server to conduct a checkpointing operation, and thus

Fig. 1. Design of FT-Pro with MPICH-V

JOHNSON ET AL.: VISUALIZATION SPECIALIST 3

the checkpoint image files are generated and stored at the
remote server.
• Upon a MIGRATION action, the adaptation manager
broadcasts a PM message along with the addresses of the
suspicious and destination nodes to daemons and invokes
the CKP server to conduct a checkpoint followed by a
proactive restart on the new nodes. We develop process
migration support on top of MPICH-V packages. To be less
intrusive, currently process migration is implemented as a
coordinated checkpointing immediately followed by a
proactive restart. That is, all the application processes are
terminated and then restarted on the new set of computing
nodes which consist of the original healthy nodes belonging
to the application and the healthy spare nodes which have
been swapped in by the process migrations.

4 PERFORMANCE EVALUATION

4.1 Evaluation Methodology

4.1.1 Environment
To gain the practical insight on the effectiveness of FT-Pro,
we conduct trace-based simulations to compare FT-Pro
with periodic checkpointing (CKP) . The testbed is the IA32
Linux cluster at Argonne National Laboratory, which is
part of the TeraGrid infrastructure. The system consists of
96 computing nodes, each equipped with two 2.4GHz Intel
Xeon processors and 4G MB memories. All the nodes are
connected via Gigabyte Ethernet and sharing 4TB disk via
NFS, which also provide stable remote storage for check-
pointing image files in FT-Pro. The operation system is
SuSE Linux v8.1, and the job scheduler is Torque Resource
Manager with Moab Scheduler. The MPICH-V is of version
0.76 and the compiler is GCC 2.95.3.

4.1.2 Failure Trace
To reflect the realistic failure impact on parallel applica-
tions, in the experiments we simulate the failure events
based on a real failure trace collected from a 480-node HPC
production system [9]. According to the failure trace, the
mean-time-before-failure (MTBF) of the entire system is
0.79 hour and it is 14.2 days per node. We use the failure
trace from 96 randomly selected nodes to match the system
size of the testbed. For every failure entry in this trace, there
are four associated properties: node location, failure time,
failure type and downtime. Based on these entries we gen-
erate corresponding failure events to interrupt the parallel
applications. And the failure prediction is simulated in such
a way that its accuracy is controlled with two parameters:
• To simulate false-negative value of fn: If there exists a
failure on a node between the current and the next decision
points, the event-based predictor on the node reports a fail-
ure of its type with the probability of 1- fn;
• To simulate false-positive value of fp: Suppose the pre-
dictor has totally reported x failures for those intervals with
actual failure events. According to the definition of fp, the
ratio of number of false positives to the number of true po-
sitives is /(1)p pf f− . Hence, out of all the intervals without

actual failure occurrences, the predictor randomly selects

() /(1)p px f f⋅ − intervals and raises a false failure alarm for

each of them.

4.1.3 Parallel Applications
A number of parallel applications, including both parallel
benchmarks and two real world parallel simulation codes,
are used in the experiments. This test suite is from a mix-
ture of scientific domains, which can provide us a fair eval-
uation of FT-Pro across a variety of representative parallel
applications:
• NAS Parallel Benchmarks: We use the benchmark CG
and three pseudo applications (BT, LU, SP), with dataset
size of class C representing typical large dataset for modern
HPC systems. BT represents applications that are dominat-
ed with point-to-point communications; CG represents ap-
plications that are dominated by unstructured long-
distance communications; LU represents the computation
of implicit CFD algorithms with a large amount of messag-
es; and in SP, multiple non-diagonally dominant and scalar
pentadiagonal equations are solved.
• Cosmology Application ENZO: It is a parallel cosmol-
ogy simulation code designed for high-resolution, multi-
physics, cosmological structure formation simulations by
using the SAMR (Structured Adaptive Mesh Refinement)
algorithm [3]. ENZO entails the detailed computations that
simulate the formation and evolution of cosmic structures
such as galaxies and clusters of galaxies from shortly after
the big bang to the present day.
• Molecular Dynamics Application GROMACS: GRO-
MACS is a molecular dynamics (MD) simulation code [1].
MD is a numerical simulation technique where the time
evolution of a set of interacting atoms is followed by inte-
grating their equations of motion. MD is widely used in the
area of computational chemistry for discovering complex
chemical systems in terms of realistic atomic models.

4.2 Performance Results
For the convenience of comparison, a relative metric name-
ly performance gain is used, which is defined as the relative
reduction of execution time achieved by FT-Pro over peri-
odic checkpointing.
 Figure 2(a) and 2(b) shows the performance gain achieved
by FT-Pro with these applications under different compu-
ting scales, where the default values of fp and fn are set to
0.3 to reflect the quality of the prevailing predictors. We
vary the number of computing nodes from 2 to 64. The re-
sults show that for all the six applications, FT-Pro demon-
strates good scalability. That is, the performance gains in-
troduced by FT-Pro increase with the application scales. For
instance, FT-Pro achieves significant performance gain
ranging from 10% to 42% as the MPI applications run on
the 64-node scale. This indicates that FT-Pro is more supe-
rior to checkpointing when the computing scale is larger
because checkpointing imposes more serious overhead on
applications due to the increasing synchronization cost in
the checkpointing protocol.

4 TERAGRID 2007 CONFERENCE, MADISON, WI

Performance Gain of FT-Pro vs. CKP

0%

10%

20%

30%

40%

50%

2 4 8 16 32 64
Number of computing nodes

ENZO

GROMACS

CG

LU

(a)

Performance Gain of FT-Pro vs. CKP

0%

10%

20%

30%

40%

4 9 16 25 36 64

Number of computing nodes

BT

SP

 (b)

Figure 3 shows the performance gain achieved by FT-Pro

with varying prediction accuracies: figure 3(a) presents the
result where the false-positive value fp is changed from 0.1
to 0.9 and the false-negative value fn is fixed at 0.3, and the
figure 3(b) gives the result where the false-negative value fn
is changed from 0.1 to 0.9 and the false-positive value fp is
fixed at 0.3. For all of these applications, the performance
gain is always between 24% and 30%. The results also show
that performance variance incurred by the changes of false
positive fp is trivial, whereas performance degradation
caused by false negative fn is more pronounced because the
prevention effect of FT-Pro is essentially based on the capa-
bility of predicting failures.

Figure 4 presents the performance gain achieved by FT-
Pro with different number of spare nodes S varying from 1
to 4. The values of fp and fn are set to 0.3 and the number of
computing nodes is set to 64. As figure 4 shows, with the
increasing number of spare nodes, the performance gain
brought by FT-Pro grows steadily. We also observe that
even with only one spare node, the performance gain is still
significant (e.g. between 13% - 43%) for all these applica-
tions. This is due to the fact that the probability of multiple
simultaneous failures is rare. In other words, a modest allo-
cation of spare nodes (less than 5%) can result in a substan-
tial performance gain.

Performance Gain of FT-Pro vs. CKP

0%

5%

10%

15%

20%

25%

30%

35%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False positive error

ENZO

GROMACS

BT

CG

LU

SP

(a)

Performance Gain of FT-Pro vs. CKP

0%

5%

10%

15%

20%

25%

30%

35%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False negative error

ENZO

GROMACS

BT

CG

LU

SP

(b)

Performance Gain of FT-Pro vs. CKP

22%

23%

24%

25%

26%

27%

28%

29%

30%

ENZO GROMACS BT LU SP CG

S=1

S=2

S=3

5 CONCLUSIONS AND FUTURE WORK
In this paper, we present the design and implementation of
adaptive fault tolerance by integrating our recently devel-
oped adaptive scheme FT-Pro with the open-source check-
pointing library MPICH-V. The resulting runtime library
intelligently chooses prevention actions among proactive
process migration, reactive checkpointing, and no-action
on-the-fly based on failure prediction. The primary goal is
to optimize application execution time in the presence of
failures. We have evaluated the developed adaptive fault
tolerance mechanism as against periodic checkpointing
across a number of real-world parallel applications. Our
experimental studies show that FT-Pro can significantly
reduce the application completion times by up to 43% as

Fig. 2. Relative Improvement achieved by FT-Pro with
Varying Computing Scales (fp = fn=0.3, under the condi-
tion that only one spare node is allocated.)

Fig. 3. Relative Improvement achieved by FT-Pro with
Varying Prediction Accuracy Values (No. of computing
nodes is 64, and the no. of spare nodes is 1)

Fig. 4. Relative Improvement Achieved by FT-Pro with
Varying Numbers of Spare Nodes (No. of computing
nodes is set to 64)

JOHNSON ET AL.: VISUALIZATION SPECIALIST 5

compared to checkpointing. The performance benefit
brought by FT-Pro is caused by its intelligence to avoid
imminent failures and to remove unnecessary checkpoint-
ing operations.

Our future work includes integrating with online failure
prediction [7] to provide an end-to-end fault tolerance support
for parallel applications and developing lightweight migration
protocols to support live migration. Our ultimate goal is to
develop an adaptive fault tolerance support for the production
usage on TeraGrid.

ACKNOWLEDGEMENT

The authors would like to thank TeraGrid and Argonne Na-
tional Laboratory for the use of computing resources.

REFERENCES
[1] Berendsen, H.J.C., van der Spoel, D. and van Drunen, R,
“GROMACS: A Message-Passing Parallel Molecular Dy-
namics Implementation”, Comp. Phys. Comm. 91 (1995),
43-56.
[2] Aurelien Bouteiller, Thomas Herault, Geraud Krawezik,
Pierre Lemarinier, Franck Cappello, “MPICH-V Project: A
Multiprotocol Automatic Fault Tolerant MPI”, International
Journal of High Performance Computing and Applications,
2005.
[3] G.Bryan, T.Abel, and M.Norman, “Achieving Extreme
Resolution in Numerical Cosmology Using Adaptive Mesh
Refinement: Resolving Primordial Star Formation”, Proc. of
SC2001, Denver, CO, 2001.
[4] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63--75, 1985.
[5] Sayantan Chakravorty, Celso L. Mendes and Laxmikant
V. Kale, “Proactive Fault Tolerance in Large Systems”,
Proc. of HPCRI Workshop in conjunction with HPCA 2005,
2005.
[6] E. Elnozahy and James S. Plank, “Checkpointing for
Peta-Scale Systems: A Look into the Future of Practical
Rollback-Recovery”, IEEE Transactions on Dependable and
Secure Computing, Volume 1, Number 2, April-June, 2004,
pp. 97-108.
[7] Z. Lan, P.Gujrati, Y.Li, Z.Zheng, R.Thakur and J.White,
“A Fault Diagnosis and Prognosis Service for TeraGrid
Clusters”, The 2nd TeraGrid Conference, IN, 2006 (remove
this one and list AUTODP TG07 paper)
[8] Yawei Li, Zhiling Lan, “Exploit Failure Prediction for
Adaptive Fault-Tolerance in Cluster Computing”, CCGrid
2006
[9] Charng-Da Lu, “Scalable Diskless Checkpointing for
Large Parallel Systems” Ph.D. thesis, University of Illinois
at Urbana-Champaign, 2005
[10] Daniel A. Reed, Charng-da Lu, Celso L. Mendes, “Big
Systems and Big Reliability Challenges”, Proc. of Parallel
Computing 2003, Dresden, Germany, September 2003.
[11] Ramendra K. Sahoo, A. Oliner, et al., “Critical Event
Prediction for Proactive Management in Large-scale Com-
puter Clusters”, Proc. of KDD 2003: 426-435

[12] Y. Tanaka, H. Takemiya, S. Sekiguchi, S. Ogata, A. Na-
kano, R. Kalia, P. Vashishta, “Adaptive Grid-enabled SI-
MOX Simulation on Japan-US Grid Testbed”, The 1st An-
nual TeraGrid Conference, Indianapolis, IN, 2006.

