
Noname manuscript No.
(will be inserted by the editor)

System-Wide Tradeoff Modeling of Performance, Power,
and Resilience on Petascale Systems

Li Yu · Zhou Zhou · Yuping Fan ·
Michael E. Papka · Zhiling Lan

Received: date / Accepted: date

Abstract While performance remains a major objective in the field of high-
performance computing (HPC), future systems will have to deliver desired
performance under both reliability and energy constraints. Although a num-
ber of resilience methods and power management techniques have been p-
resented to address the reliability and energy concerns, the tradeoffs among
performance, power, and resilience are not well understood, especially in HPC
systems with unprecedented scale and complexity. In this work, we present
a co-modeling mechanism named TOPPER (system-wide TradeOff model-
ing for Performance, PowEr, and Resilience). TOPPER is build with colored
Petri nets which allow us to capture the dynamic, complicated interaction-
s and dependencies among different factors such as workload characteristics,

Li Yu
Department of Computer Science
Illinois Institute of Technology
E-mail: lyu17@hawk.iit.edu

Zhou Zhou
Department of Computer Science
Illinois Institute of Technology
E-mail: zzhou1@hawk.iit.edu

Yuping Fan
Department of Computer Science
Illinois Institute of Technology
E-mail: yfan22@hawk.iit.edu

Michael E. Papka
Department of Computer Science
Illinois Institute of Technology
E-mail: papka@anl.gov

Zhiling Lan
Department of Computer Science
Illinois Institute of Technology
E-mail: lan@iit.edu

2 Li Yu et al.

hardware reliability, runtime system operation, on a petascale machine. Using
system traces collected from a production supercomputer, we conducted a se-
ries of experiments to analyze various resilience methods, power capping tech-
niques, and job characteristics in terms of system-wide performance and energy
consumption. Our results provide interesting insights regarding performance-
power-resilience tradeoffs on HPC systems.

Keywords Performance-Power-Resilience Modeling · Tradeoff Analysis ·
Petaflop Systems · Colored Petri Nets

1 Introduction

Over the past three decades we have witnessed advances of roughly nine order-
s of magnitude in computing capability. These advances allow computational
and multi-scale simulations of unprecedented scope and accuracy [34]. Today,
the widespread availability of HPC systems enables computational scientists
to attack problems that are much larger and more complex, leading to revo-
lutionary scientific discoveries. As supercomputers continue to grow in scale
and complexity, reliability and energy become paramount concerns. Studies
have shown that the mean-time-between-failures (MTBF) of production HPC
systems, even those built using ultra-reliable components, are only on the or-
der of 10-100 hours [40]. Meanwhile, the days of “performance at all costs”
are quickly coming to an end, as the energy costs of operating system compo-
nents and cooling the machine room are becoming excessive. The tight energy
budget introduces the need for power management on extreme scale systems.

With the growing concern of system reliability, a number of resilience meth-
ods have been developed for preventing or mitigating failure impact. Well-
known resilience methods include checkpoint/restart and replication. Check-
point/restart is a long-standing fault tolerance technique [43]. A number of
techniques such as multi-level checkpointing have been proposed to improve
checkpoint efficiency [33]. Replication-based approaches improve application
resiliency by replicating data or computation [29]. While many studies have
been presented to evaluate checkpoint-based methods or replication-based
techniques, existing studies mainly focus on application-level performance anal-
ysis (i.e., focusing on performance impact on a single application’s execution
time). Furthermore, it is unclear how different resilience methods could im-
pact system performance such as overall resource utilization and system-wide
energy cost.

Meanwhile, in order to address the energy concern, a number of power
management mechanisms have been presented in the past years [24,8,38].
Power-capping (or power budgeting) is a well-known approach to limit the
maximal power of a system. Power-capping methods consist of both software-
based (e.g., through task/job scheduling) [52,9,11] and hardware-based (e.g.,
through dynamic voltage and frequency scaling (DVFS)) [22,17,30]. To control
the aggregated power within a predefined threshold, the former controls the
overall system power by dynamically scheduling the queued jobs according to

PPR Tradeoff Modeling on Petascale Systems 3

their expected power consumption, while the latter limits the overall system
power by adjusting processor or core frequency.

While resilience methods and power-capping techniques continue to evolve,
tradeoffs among execution time, energy efficiency, and resilience operations are
not well understood in the field of HPC. Existing studies mainly focus on pair-
wise tradeoff analysis, such as tradeoffs between performance and reliability
[20,41,16], or tradeoffs between performance and energy [30,52,9,11]. Under-
standing the tradeoffs among all three factors (i.e., performance, energy, and
reliability) is crucial, as future machines will be built under both reliability and
energy constraints. As an example, although both power-aware job scheduling
and DVFS address the HPC energy concern, they can make different impacts
on hardware reliability, hence affecting system performance. Studies indicate
that DVFS could impact hardware lifetime reliability, resulting in up to a 3
times higher failure rate [44]. Consequently, it is not clear how these power
management techniques impact system-wide performance if considering their
potential reliability impact. Tradeoff analysis of performance, energy, and re-
silience on extreme scale systems is challenging. In particular, the analysis is
influenced by various dynamic factors such as dynamic job submission, compo-
nent failure, dynamic frequency tuning, and runtime operations (e.g., adaptive
scheduling to enforce a power cap).

Models are ideal tools for navigating a complex design space and allow for
rapid evaluation and exploration of detailed what-if questions. Existing mod-
eling methods include analytical modeling, simulation/emulation, and queuing
theory based modeling. Nevertheless, none of these methods provide sufficien-
t support for building a high-fidelity model for the aforementioned tradeoff
analysis due to various limitations. Analytical modeling methods are fast,
but cannot capture dynamic changes of the system. Trace-based simulation
can provide highly-accurate representations of system behaviors; however, ex-
tending existing simulators that are developed for performance analysis is not
trivial, and would require a significant amount of engineering efforts. The
conventional queuing methods (e.g., Markov modeling) suffer from the state
explosion problem, thus are not scalable enough.

In this paper, we present a modeling and analysis mechanism named TOP-
PER (system-wide TradeOff modeling for Performance, PowEr, and Resilience).
It is designed for system-wide quantitative analysis of execution time, energy
efficiency, and reliability on HPC systems. Here, system-wide analysis means
that our study concentrates on the aggregated performance and energy con-
sumption of a batch of applications (or jobs), rather than the performance
of a single application (or job). Specifically, we seek to answer the following
fundamental questions:

Q1: How would different resilience methods (e.g., checkpoint/restart and repli-
cation) impact system-wide performance and energy consumption?

Q2: How would different parameter settings (e.g., checkpoint overhead, redun-
dancy degree, and application communication/computation ratio) affect
the performance of resilience methods?

4 Li Yu et al.

Q3: How would different power management techniques (e.g., power-aware job
scheduling and DVFS) impact system-wide performance by considering
their potential reliability impact?

Encouraged by our prior study of power performance tradeoffs [51], in this
work we continue to explore colored Petri nets (CPNs) for the construction of
TOPPER. CPN is a recent advancement in the field of Petri nets. It combines
the capabilities of Petri nets with a high-level programming language, where
Petri nets provide the primitives for process interaction and the programming
language provides the primitives for the definition of data types and manipu-
lations of data value. As we will present in §2, the use of CPN offers several
benefits for our model building: (1) being more powerful than traditional Petri
nets, (2) allowing fast model construction, (3) providing inherent validation
capability, and (4) allowing users to capture complex system dynamics in an
intuitive way.

We validate TOPPER by means of real system traces collected from the
10-petaflop machine named Mira at Argonne [36]. We conduct a series of ex-
periments to examine the impact of various resilience methods, power-capping
techniques and job characteristics on system-wide performance, such as of
system utilization, job performance and energy consumption. We analyze the
interactions and dependencies of different methods by answering the questions
Q1-Q3 based on the Mira traces. To our best knowledge, TOPPER is the first
of its kind for co-modelling all three factors (i.e., performance, power, and
resilience) on petascale systems.

The rest of the paper is organized as follows. Section II presents background
information. Section III describes model design. Section IV gives model valida-
tion. Section V presents experiments to answer the proposed questions. Section
VI discusses the advantages as well as limitations of our method. Section VII
shows related work. Finally, we present our conclusions in Section VIII.

2 Background

This section gives an overview of colored Petri Nets, including its basic formal-
ization, its evolution, as well as its comparison with commonly-used modeling
methods for large-scale systems.

2.1 Colored Petri Net

A Petri net is one of several mathematical modeling languages for the descrip-
tion of distributed systems. It is particularly well suited to systems that are
characterized as being concurrent, asynchronous, distributed, parallel, nonde-
terministic, or stochastic. A Petri net consists of a set of places and transitions
linked by edges, with tokens in some places. Places are used to represent sys-
tem states, transitions are used to indicate system events, and edges are used
to specify the relationships between system states and events. To indicate the

PPR Tradeoff Modeling on Petascale Systems 5

change of system state, tokens that reside in one place will move to another
place according to the firing rules imposed by the transition [6].

Transition Place Module

Inhibitor
Edge Edge

Fig. 1 Basic elements used in colored Petri nets.

Colored Petri Nets (CPNs) make several extensions from the traditional
Petri Nets. First, CPN provides a better expressibility than Petri Nets by
adding colors to tokens, thus enabling an accurate simulation of the real sys-
tem. For instance, job-related attributes such as job arrival time, job size and
job runtime can be described naturally by token colors. Second, CPN allows a
hierarchical design, in which a module at a lower level can be represented by a
transition at a higher level. Such an extension make it scalable to model large
and complex systems. In addition, the availability of various well-developed
Petri Nets simulation tools allow us to build models at a high level, making the
model construction fairly convenient. Figure 1 summarizes the basic elements
used in CPN. CPN has been widely used for modeling large-scale systems like
biological networks [32]. To our knowledge, this is the first attempt to apply
CPN to model power, performance and resilience in HPC.

2.2 Comparison with Other Methods

Commonly-used modeling methods include analytical modeling and trace-
based simulation. In order to make predictive design decisions, application
scientists and architects rely on a set of modeling and simulation tools, aim-
ing to balance speed, accuracy and flexibility. Speed evaluates how fast the
method can generate predictive results once the model is built. Accuracy mea-
sures the extent to which the prediction provided by the model agrees with
the actual measurement from a real system. Flexibility indicates the ease of
model generation, model modification, and model extension. Every technique
has its strengths and weaknesses. Analytical models are often fast and flexible,
but they can offer only limited accuracy. Trace-based simulators can have a
highly-accurate representation of system behaviors, but extending a simulator
for other functionalities is not trivial, which often requires a significant amount
of engineering work.

CPN provides a viable approach to bridge the gap between analytical mod-
eling and trace-based simulators. Compared with analytical modeling meth-
ods, CPN can provide better accuracy by capturing system dynamics natural-
ly among different components. Compared with the conventional trace-based
simulators, CPN makes model building much easier and faster by providing
graphical representation and modeling language. Users can easily add, modify,

6 Li Yu et al.

or remove system components or functionalities in an intuitive way. Moreover,
CPN models are formal in the sense that the CPN modelling language has a
mathematical definition of both its syntax and its semantics. Hence, a CPN
model can be formally verified, e.g., to prove that certain desired properties
are fulfilled or certain undesired properties are guaranteed to be avoided. This
feature is critical for model validation.

3 Model Design

TOPPER consists of three interacting modules, namely, batch scheduling, fault
tolerance, and power management. Figure 2 shows the top level design, in
which three modules (double border boxes in blue) are connected through
seven places (ellipses in green). Batch Scheduling module arranges jobs in the
Queuing state according to a scheduling policy, and allows small jobs to skip
ahead as long as they do not delay the job at the head of the queue. Fault Tol-
erance module depicts system failures and fault management operations such
as checkpoint/restart and redundancy. It interacts with jobs in the Running
state. Power Management module models two power-capping mechanisms:
power-aware job scheduling and DVFS. The former provides a coarse-grained
power cap by allocating queued jobs onto computer nodes based on the over-
all system power and the job power requirement, and the latter dynamically
adjusts processors frequency to meet the power cap.

System
Info

Place

Power

Place

Free

Place

Queuing

Place

Running

Place

Nodes

Place

Trigger

Place

Finish
Batch

Scheduling

ModuleModule

Power
Management

ModuleModule

Fault
Tolerance

ModuleModule

Fig. 2 The top level design of TOPPER. There are three hierarchical modules (denoted by
double border boxes in blue) and seven states (denoted by ellipses in green).

Dynamic system states are modeled by seven places, each of which possess-
es different information. The Queuing state keeps a list of queued jobs, whose
order can be changed dynamically by the Batch Scheduling module. The Run-
ning state holds jobs that are under execution, which interacts with the Fault
Tolerance and the Power Management modules. The Power state indicates
the current power level of the system, based on which the Power Management
module is able to conduct power-capping. The System Info state provides the
Batch Scheduling module with the runtime resource information and the Trig-
ger state launches job reordering in the Batch Scheduling module. The Nodes

PPR Tradeoff Modeling on Petascale Systems 7

state represents the number of available compute units. The Free state receives
jobs that have just finished execution for the release of system resources. We
will give the details of the three modules in following subsections, using the
inscriptions summarized in Table 1.

Table 1 Major inscriptions used in the TOPPER modules.

Inscriptions Type Description
job variable A job has eight attributes: js, rt, jp, ft, et, pf, [] and st.
jobs,ws variable A job list.
pow,old pow variable System power level at the current and the previous time steps.
P1,...,Pm variable Processor power rates.
f,pf,new f,f1,...,fm variable Processor frequency rates.
[expr] symbol A guard on a transition that is able to fire if expr evaluates to true.
@+ expr symbol A time delay specified by expr.

3.1 Batch Scheduling

On production HPC systems, batch scheduling is typically used for resource
management and job scheduling. It includes a job waiting queue, a resource
manager and a job scheduler. The waiting queue receives and stores jobs sub-
mitted by users. The resource manager is responsible for obtaining information
about resource availability, waiting queue, and the running status of compute
nodes. The job scheduler periodically examines the jobs in the waiting queue
and the available resources via the resource manager, and determines the or-
der in which jobs will be executed. The order is decided based on a set of
attributes associated with jobs such as job arrival time, job size, the estimated
runtime, etc.

A variety of scheduling policies have been developed for today’s HPC sys-
tems [18]. Mira uses WFP-EASY, which employs a utility function to deter-
mine the order of jobs, and allows subsequent jobs to jump over the head job
as long as they do not violate the reservation of the head job (so called EASY
backfilling) [45]. It favors large and old jobs, adjusting their priorities based
on the ratio of wait time to the requested wall-clock time. The utility function
is defined as:

utility score = job size× (
job queued time

job wall time
)3. (1)

Figure 3 presents the module design for WFP with EASY backfilling. As
shown in the figure, the jobs leave from the Users state according to their
arrival times. Every job is described in the form of (js, rt, jp, ft, et, pf, [])@+st,
where js is job size, rt is job runtime, jp is job power profile, st is job arrival
time, ft stores the next failure time of the job, et records the time when the
job enters a new place, pf indicates the frequency rate of the processor the
job runs on, and [] is a list to keep the compute units that will be assigned

8 Li Yu et al.

to the job. Here, js and rt are supplied by users, jp is an estimate that can
be obtained from historical data [50], and all the others are maintained by
TOPPER.

System
Info

Trigger

Queuing

Users

1`(1,28,12,0,0,1.0,[])@+10

Jobs

Submit WFP

EASY

Finish

job

enter (jobs,job)

jobs

backfill (info,job)

jobs

sort (jobs)

jobs
info

info

Fig. 3 Batch scheduling module for Mira [51].

In the module, the Queuing state accepts jobs submitted by the users.
When a job enters or leaves the system, the Trigger state receives a signal
and launches a job reordering process. The transition WFP fires and uses
function sort to reorder the queued jobs according to the utility score given by
equation 1. After that, transition EASY fires and uses the function backfill to
“backfill” jobs according to the runtime resource information from the System
Info state. In addition to WFP-EASY, we have also built a module for FCFS
(First-come, first-served) with EASY backfilling, which is presented in our
prior work [51].

3.2 Fault Tolerance

In the field of HPC, both checkpoint/restart and replication are well-known
fault tolerant methods.

Checkpoint/Restart: Coordinated checkpointing is the widely-used method
to mitigate the impact of failures [41]. It periodically coordinates the check-
point across multiple application processes and stores a consistent snapshot
of the application. In case of failure from any process, all the processes roll
back to the last checkpoint for recovery. Coordinated checkpointing effective-
ly reduces work loss at the cost of checkpointing and recovery overhead. A
short checkpoint interval results in unnecessary checkpoints and thus higher
overheads, but a long checkpoint interval leads to greater loss of computation
due to failures. In this study, we use Daly’s optimal checkpoint interval for job
checkpointing [14]:

δopt =

√
2Oc

λapp
[1 +

1

3
(
Ocλapp

2
)

1
2 +

1

9
(
Ocλapp

2
)]−Oc, (2)

PPR Tradeoff Modeling on Petascale Systems 9

where Oc is the overhead for one checkpoint operation, λapp is the application
failure rate which is the sum of failure rate of every node. Then given the ap-
plication execution time rt, the checkpoint overhead for the whole application
is calculated as:

Ockp =
rt

δopt
∗Oc. (3)

Replication: The state-of-the-art replication technique in HPC is com-
monly employed at the process level [20]. Unlike checkpoint/restart, replication
mitigates the impact of failures by running multiple copies of every application
simultaneously. If an application stops running due to some failures, a replica
of the application can take over the computation, in which case an application
fails only when all its replicas become non-functional. Thus, replication can
increase the mean-time-to-failure (MTTF) of an application and allows less
frequent checkpoints while maintaining the same resiliency level.

For a replication method, its overhead includes checkpoint overhead and
overhead brought by the communications among replicas. Let rt be the ap-
plication execution time, γ be the communication/computation ratio of the
application and r be the redundancy degree (e.g., r = 2 for double replication
and r = 3 for triple replication), the total overhead for the replication method
is estimated as:

Orep = Ockp + rt ∗ γ ∗ (r − 1). (4)

In real applications, the ratio γ vary from 10% to 70% and the average
value is about 30% [12]. It is worth noting that to get Ockp in equation 4,
we must calculate λapp in equation 2 in a different way because replication
may decrease application failure rate. Here, we adopt the method used in [16],
where the application failure rate with replication is expressed as a function
of application execution time and redundancy degree.

Running

1`(2,28,12,102,10,1.0,[(137,123),(102,113)])@+10

Failed
Jobs

Compute
Units

1`(137,123)++
1`(102,113)

Jobs 1`(2,28,12,0,0,1.0,[])@+10

Fail

[isFailed (job)]

RecoverAssign

job

job

job

rollback (job)

notReady (job,server)jobs

server

getReady (job,server)

Fig. 4 Fault tolerance module.

Figure 4 presents the module design. Every compute unit is described in the
form of (ft,mt), where ft indicates the next failure time of the compute unit

10 Li Yu et al.

and mt specifies its MTTF. The failure time ft follows Poisson distribution
and is updated according to mt once a failure occurs. Here, compute units can
represent computing resources at different system levels such as rack, node
and process, depending on the granularity of the modeling.

In the module, the transition Assign keeps allocating compute units to
the job until its request is satisfied. When a job enters the Running state, its
execution time rt is updated according to equation 3 or 4. It is assigned to a
list of compute units and its failure time ft is set to the earliest failure time of
all compute units. If the failure time of the job is earlier than its completion
time, it will enter the Failed Jobs state, then the function rollback is used to
recover the failed compute units and sets the job to the last checkpoint. The
recovery overhead is also added by this function.

3.3 Power Management

Power-capping is used to control the peak power of a system within a cap.
Current studies on power-capping in HPC can be classified as either software-
based (e.g., power-aware job scheduling) or hardware-based (e.g., DVFS). In
this work, we build both modules in TOPPER.

Power-aware job scheduling: For each job at the head of the queue, if
its estimated power requirement makes the overall system power exceed the
power cap, it is held in the queue and yields to jobs in the queue that are less
power-hungry. Figure 5 presents the net design. We use Pcap to represent the
power cap imposed on the system, w to indicate the maximum wait time of
a job in the wait queue, and l to restrict the length of the wait queue. The
module is centered around three transitions: Allocate, Wait and Allocate W.
The head job in the Queuing state is either being allocated onto nodes or
being held in the wait queue. The transition Allocate fires if the job’s power
requirement does not make the overall system power exceed the power cap;
otherwise, the transition Wait fires as long as the wait queue is not full. Jobs
in the wait queue can be allocated onto computer nodes by the firing of the
transition Allocate W, which is set to a higher firing priority than the transition
Allocate.

The parameter l is set to a positive integer. If the head job breaks the
power cap, it will be moved to the Wait Queue state. Once the system power
changes, the transition Power Change fires and starts a selection process for
jobs in the wait queue. The function pow-allocate selects some jobs that can
be allocated under the current system power and puts them at the head of the
wait queue. However, if any job in the wait queue exceeds the maximum wait
time (denoted by w), the job will be kept at the head and a signal will be sent
to the Block state. The successors are blocked until the job at the head of the
wait queue has been allocated.

DVFS: In the case that a job arrival makes the total system power exceed
the power cap, DVFS adjusts the system to run at a lower power state, thus
limiting the overall power within the cap. For a computing node in a system,

PPR Tradeoff Modeling on Petascale Systems 11

Nodes

Power

Wait
Queue

Running

Ready

Queuing

Trigger
Power
Record

Block

Allocate

[jp+pow<Pcap]

Wait

[jp+pow>= Pcap
and length ws<l]

Allocate
W

[jp+pow<Pcap]

Run

Job
Schdule

Power
Change

[pow!=old_pow]

pow

pow pow

js`node jobjob

js`node

ws

ws^^[job]
et=curTime()

job::ws ws

job

wspow-allocate ws (Pcap-pow)

job::jobs

jobs

job::jobsjobs

job

pow jp+pow

Pcap-pow

Pcap-pow

old_pow

pow

pow

if curTime()-et>w

Fig. 5 Power-aware job scheduling module [51].

the power is mainly consumed by its CMOS circuits, which is captured by
P = V 2 ∗ f ∗ CE , where V is the supply voltage, f is the clock frequency
and CE is the effective switched capacitance of the circuits. According to dif-
ferent environments, the power consumption can be further approximated by
P ∝ fα. This indicates lowering the CPU speed can save power consumption.
Meanwhile, lowering the CPU speed also decreases the maximum achievable
clock speed, which leads to a longer time to complete an operation. Typically
the time to finish an operation is inversely proportional to the clock frequency
and can be represented as t ∝ 1

fβ .
Figure 6 presents the net design. When system power changes due to job

arrival or leaving, the power indicated by the New Power state will be updated.
According to this new system power and the power cap, one of the transitions
in {T1, T2, ..., Tm} fires, meaning that the processors are going to run at
power rate Pi. Once Ti fires, the processor frequency rate is changed, and the
remaining job execution time is modified by the function adjust. We assume
there is no latency involved in DVFS. It is worth noting that while this work
focuses on examining the ideal no-latency case, DVFS typically introduce a
range of 1 us to 100 us latency [28]. It could impact system performance and
scheduling, which will be part of our future work.

3.4 Tool Implementation

We implemented TOPPER using CPN Tools. CPN Tools is a popular tool for
editing, simulating, and analyzing colored Petri nets, which has been in active

12 Li Yu et al.

......

P1PiPm

Running

Power

Frequence

New
Power

Power
Record

Tm

[bm>pow>=am]

Ti

[bi>pow>=ai]

T1

[b1>pow>=a1]

Job State
Update

@+1

[rt>0]

Power
Change

[pow!=old_pow]

f

pow pow

fi

if pf = new_f
 then rt = rt - 1
else adjust (rt,pf,new_f)

f

job

pow
old_pow

pow

pow

f

new_f new_f

pow

f1fm

Fig. 6 DVFS module [51].

development since 1999 [2]. TOPPER is freely available [5], and is directly
executable by a number of tools like CPN Tools, ExSpecT, and ReNeW [3,
4]. Currently, TOPPER accepts job traces in the standard workload format
adopted by the community [1].

4 Model Validation

We validated TOPPER by means of real system logs collected from the pro-
duction supercomputer Mira at Argonne Leadership Computing Facility. Mira
contains 49, 152 nodes and 789, 432 cores, offering a peak performance of 10
petaflops. We collected three system logs, namely job trace, RAS log, and en-
vironmental log, from Mira between January and April of 2013. The details
of these logs are presented in the next subsection. Job attributes such as job
arrival time, job size, job execution time, and job power profile were extracted
from the job log and the environmental log and fed to TOPPER. Real failure
arrivals were also extracted from the RAS log and fed to TOPPER. Our mod-
el validation was performed by comparing TOPPER output with real output
extracted from the system logs. Essentially, our validation intended to verify
whether TOPPER is capable of truly simulating job arrival, job execution,
and job completion (i.e., batch scheduling) under various resilience and power
management mechanisms. Three evaluation metrics were used for model val-
idation, including system utilization, average job wait time, and system-wide
energy consumption. They are three critical factors to measure a supercom-

PPR Tradeoff Modeling on Petascale Systems 13

puter’s performance and efficiency [51]. We expect TOPPER to provide a good
approximation of all of them. Figure 7 presents the validation process.

Fig. 7 Model validation workflow.

4.1 System Traces from Mira

Job Trace. Mira uses Cobalt [35] to accept job submissions from users and
dispatch jobs to available compute nodes. Cobalt records these submissions, as
well as start and end events in chronological order in an IBM DB2 database.
Each record is basically composed of timestamp, event type, executable file-
name, job size, location, wall-time, etc. We collected a four-month job trace
from Mira (January - April of 2013), which consisted of 16, 044 jobs.
RAS Log. On Mira, the Core Monitoring and Control System (CMCS) is
responsible for collecting the Reliability, Availability and Serviceability (RAS)
events and storing them in a backend DB2 database. This information comes
from hardware components, including compute nodes, I/O nodes and various
networks, and are the primary source used by administrators to locate a failure
when the system begins to malfunction. In this work, we used the RAS log to
obtain failure information.
Environmental Log. On Mira, various sensors are deployed at different lo-
cations to gather environmental data (e.g., temperature, voltage and current,
coolant flow, pressure, etc.) of system components. These data are stored in
the DB2 database. In this work, we used the environmental log to retrieve
system and job power information.

4.2 Model Accuracy

In this work, we measured job size in number of racks, job time in minutes,
and job power profile in watts. We also rounded these measured numbers to
the nearest integers for the purpose of modeling. The default model simulation

14 Li Yu et al.

Time (day)
0 20 40 60 80 100 120S

y
s
te

m
 U

ti
li
z
a
ti
o
n

0
0.2
0.4
0.6
0.8

1

Real Trace
Topper Simulation

Fig. 8 Validation of system utilization rate.

Time (day)
0 20 40 60 80 100 120

J
o

b
 W

a
it
 T

im
e

 (
m

in
)

0

5

10

15

Real Trace
Topper Simulation

Fig. 9 Validation of average job wait time.

Time (day)
0 20 40 60 80 100 120

E
n
e
rg

y
 (

k
w

h
) ×105

0

5

10

Real Trace
Topper Simulation

Fig. 10 Validation of total energy consumption.

time step is set to 1.0 minute. The energy consumption within the time step
[t, t+1] is approximated as the number of tokens in the place Power at time t.
For example, if at the 5th minute the number of tokens in Power is 600, then
the energy usage during the following time step is estimated as 600/1000 ∗
1/60 = 0.01kWh.

With dynamic job arrival, execution, and completion, each with different
power consumption, a good model should be able to simulate these dynamics,

PPR Tradeoff Modeling on Petascale Systems 15

thus providing utilization rate, job wait time and total energy consumption
close to the real system behaviors. We compared the model output with the
values extracted from the system logs. Figure 8-10 present the comparison
results. The average error is less than 4% in terms of all three metrics. These
results clearly show that TOPPER is able to truly reflect the dynamic job
scheduling and allocation with high fidelity.

Moreover, in this study, we varied the simulation time step from 1 minute
to 60 minutes, and assessed the maximum energy error obtained by TOPPER,
along with the simulation overhead. All the experiments were conducted on
a local PC that is equipped with an Intel Quad 2.83GHz processor and 8GB
memory, running Windows 7 Professional 64-bit operating system. The results
are shown in Table 2. TOPPER takes about 5 minutes to simulate the 4-month
trace from Mira.

Table 2 Impact of simulation time step on model accuracy and simulation overhead.

Simulation Time Step (min) Maximum Energy Error Simulation Overhead
1 3.84% 5.40 min
5 5.03% 5.25 min
15 8.85% 4.95 min
30 15.32% 4.60 min
60 18.09% 4.40 min

5 Case Studies

In this section, we demonstrate the use of TOPPER for quantitative tradeoff
analysis. The goal is to answer questions Q1-Q3 listed in §1. We used System
Efficiency to evaluate the efficiency of the system, which is defined as the ratio
of node hours doing useful work [49] to the total elapsed system node hours;
Average Job Wait Time andMakespan to measure job scheduling effectiveness;
and Energy Consumption to measure energy efficiency of the system.

Checkpoint/restart is typically influenced by its overhead and recover over-
head. Checkpoint overhead Oc in large scale systems consists of two parts,
namely I/O overhead and message passing overhead. Based on our experience
and the current literature[33,15], we set Oc to 600 seconds if the job used
less than 16 racks; otherwise, we set Oc to 1200 seconds. In addition, we set
recovery overhead to 780 seconds. These default settings will be adjusted in
the experiments to study how different fault tolerant values will impact sys-
tem performance and energy consumption under a given set of assumptions.
Note that all the experiments were conducted and presented in a month by
month manner. This allows us to analyze the impact of different workload
characteristics.

Q1: How would different resilience methods (e.g., checkpoint/restart and
replication) impact system-wide performance and energy consumption?

16 Li Yu et al.

For this set of experiments, we compared checkpoint/restart and replication
with the default configurations. For the replication method, the redundancy
degree r was set to 2 and the application communication/computation ratio
γ was set to 30%. The results are presented in Figure 11.

We made four observations from Figure 11. First, checkpoint/restart great-
ly outperformed replication by doubling system efficiency under different work-
load months. Second, with respect to average job wait time, checkpoint again
outperformed replication, especially for the workloads with higher system uti-
lization (i.e., in March and April). Third, both resilience methods led to similar
scheduling makespan, and checkpoint slightly outperformed replication for the
workloads with higher system utilization. Finally, with respect to system-wide
energy consumption, checkpoint consumed less energy than replication.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

SYSTEM	 EFFICIENCY	

Checkpoint/Restart	 Replica>on	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	

Jan	 Feb	 Mar	 Apr	

JOB	 WAIT	 TIME	

Checkpoint/Restart	 Replica>on	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

MAKESPAN	

Checkpoint/Restart	 Replica>on	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	

Jan	 Feb	 Mar	 Apr	

ENERGY	 CONSUMPTION	

Checkpoint/Restart	 Replica>on	

Fig. 11 Comparison of checkpoint/restart and replication on system performance and en-
ergy consumption with the default configurations. For replication, the redundancy degree r
was set to 2, and the application communication/computation ratio γ was set to 30%. The
results were normalized to checkpoint/restart.

The bad performance of replication was due to the fact that a replication
method improves application resilience at the cost of maintaining extra copies
of every application/job. The extra node hours consumed by replication not
only cost extra energy, but also degrade system performance. Note that the
extra node hours were not counted toward useful work. An interesting obser-
vation is the benefits (i.e., scheduling performance and energy consumption)
of using checkpoint over replication are especially striking when the system
is under high workload demand. In the case of a workload with a low sys-
tem utilization rate, there is usually a long interval between job arrivals, thus
extending a job execution hardly affects its successors. The contrary of this
happens in a workload with a high system utilization rate. That is why the

PPR Tradeoff Modeling on Petascale Systems 17

performance difference between the two methods is more obvious for workloads
with higher system utilization (i.e., in March and April).

Q2: How would different resilience parameter settings affect system perfor-
mance and energy?

We conducted three sets of experiments to answer this question. In the
first set, we varied checkpoint overhead Oc from 100% to 25% of the default
value. A number of recent studies have presented various techniques to improve
checkpoint by applying multi-level checkpoint or in-memory checkpoint [7]. In
this study, we intended to investigate the performance gain that could be
achieved by reducing checkpoint overhead.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

SYSTEM	 EFFICIENCY	

100%	 50%	 25%	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

JOB	 WAIT	 TIME	

100%	 50%	 25%	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

MAKESPAN	

100%	 50%	 25%	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

ENERGY	 CONSUMPTION	

100%	 50%	 25%	

Fig. 12 Impact of different checkpoint overheads. The checkpoint overhead Oc was set to
100%, 50%, 25% of the default checkpoint overhead. The results were normalized to the
default overhead.

The results are plotted in Figure 12. As we can see, the reduction of check-
point overhead greatly impact average job wait time, whereas it has trivial
influence on the other scheduling metrics. In general, the lower the checkpoint
overhead is, the better the system-wide performance and energy efficiency are.
In our studies, checkpoint overhead comprised a small fraction of the overall
job execution time. As such, its impact on system efficiency, makespan and
energy were not significant. We believe that if the checkpoint overhead has
comprised a larger fraction of the overall job execution time (e.g., due to high-
er failure rate or inefficient checkpoint operation), the influence of checkpoint
overhead would have been different. Interestingly, Figure 12 indicates that av-
erage job wait time, in contrast to other scheduling metrics, is very sensitive
to checkpoint overhead.

In the second set of experiments we analyzed the performance impacts by
varying redundancy degrees from 1.5 to 3. Here, the settings of 1.5 and 2.5
denote partial replication [20,16]. The results are presented in Figure 13.

18 Li Yu et al.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

SYSTEM	 EFFICIENCY	

1.5x	 2x	 2.5x	 3x	

0.0	
1.0	
2.0	
3.0	
4.0	

Jan	 Feb	 Mar	 Apr	

JOB	 WAIT	 TIME	

1.5x	 2x	 2.5x	 3x	

0.0	

0.5	

1.0	

1.5	

Jan	 Feb	 Mar	 Apr	

MAKESPAN	

1.5x	 2x	 2.5x	 3x	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	

Jan	 Feb	 Mar	 Apr	

ENERGY	 CONSUMPTION	

1.5x	 2x	 2.5x	 3x	

Fig. 13 Impact of different redundancy degrees. The redundancy degree r was set to 1.5,
2, 2.5 and 3. The results were normalized to a redundancy degree of 1.5.

The impact of redundancy degrees on job execution time is two-fold. A
lower redundancy degree introduces less overhead but leads to a higher appli-
cation failure rate, which in turn results in more overhead for failure recovery.
Hence, a lower redundancy degree could introduce more overhead to job execu-
tion than a higher redundancy degree. While a lower redundancy degree may
be beneficial in terms of system efficiency, makespan, and energy consumption,
Figure 13 clearly points out that double replication provides the shortest job
wait time. In other words, a lower redundancy degree doesn’t necessarily mean
a better scheduling performance.

For any replication-based method, application communication/computation
ratio can greatly impact its performance [12]. Thus, in the third set of experi-
ments, we varied the application communication/computation ratio from 10%
to 70%, and examined how these changes would influence system performance
and energy consumption. The results are presented in Figure 14.

Clearly, application communication/computation ratio had a great effect
on all four system metrics, and the impact was higher for the workloads with
higher system utilization rates (i.e., in March and April). By comparing Fig-
ures 13 and 14, we found that application communication/computation ratio
has significant impact on average job wait time and makespan, but less obvious
impact on system efficiency and energy consumption. This is because for job
wait time and makespan, the dominant factor is the overhead added to jobs,
while for system efficiency and energy consumption, the dominant factor is the
number of replicas.

Another observation is that replication may lead to better job performance
than checkpoint/restart for applications with small communication/computation
ratios (i.e., less than 20%). By comparing Figures 11 and 14, we found that
replication resulted in shorter job wait time than checkpoint, in cases that

PPR Tradeoff Modeling on Petascale Systems 19

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

SYSTEM	 EFFICIENCY	

10%	 30%	 50%	 70%	

0	
5	

10	
15	
20	
25	

Jan	 Feb	 Mar	 Apr	

JOB	 WAIT	 TIME	

10%	 30%	 50%	 70%	

0.0	
0.5	
1.0	
1.5	
2.0	

Jan	 Feb	 Mar	 Apr	

MAKESPAN	

10%	 30%	 50%	 70%	

0.0	
0.5	
1.0	
1.5	
2.0	

Jan	 Feb	 Mar	 Apr	

ENERGY	 CONSUMPTION	

10%	 30%	 50%	 70%	

Fig. 14 Impact of communication/computation ratio on replication. The communica-
tion/computation ratio γ was set to 10%, 30%, 50% and 70%. The results were normalized
to ratio of 10%.

the communication/computation ratio was less than 20%. Compared to the
30% communication/computation ratio used in Figure 11, when this ratio be-
came 10%, the job wait time was greatly decreased because of the reduction
of communication overhead.

Employing DVFS for power-capping may cause a 3 times higher system
failure rate [44], whereas the power-aware job scheduling method is a software-
based approach and does not affect component reliability. In this set of exper-
iments, we sought to understand both power management mechanisms by
considering their potential reliability effects. More specifically, we varied the
failure rate from 1 to 3 times of the original failure rate for the use of D-
VFS. Since power-aware job scheduling does not impact system reliability, no
change was made to this method. In our experiments, the power cap was set to
45, 720 kw (70% of the maximum power in January). The frequency-to-power
relationship α was set to 2, and the frequency-to-time relationship β was set
to 1 (described in §3.3) [31]. The idle processor power was set to be 30% of
the power at the full speed. The results are presented in Figure 15.

In general, power-aware job scheduling and DVFS-double (i.e., DVFS caused
two times the failure rate) are comparable in terms of system efficiency, job
wait time, and scheduling makespan. Second, if DVFS causes triple failure rate,
the use of DVFS can significantly impact scheduling performance such as job
wait time and makespan.

Power-aware job scheduling and DVFS use different mechanisms to keep
the peak power consumption within a limit. By adjusting CPU frequency,
DVFS potentially increases system utilization and decreases the energy con-
sumption. On the contrary, power-aware job scheduling might have to delay
job execution to limit the power consumption, thus resulting in lower system

20 Li Yu et al.

0.0	
0.5	
1.0	
1.5	

Jan	 Feb	 Mar	 Apr	

SYSTEM	 EFFICIENCY	

Power-‐Aware	 DVFS	

DVFS-‐Double	 DVFS-‐Triple	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	

Jan	 Feb	 Mar	 Apr	

JOB	 WAIT	 TIME	

Power-‐Aware	 DVFS	

DVFS-‐Double	 DVFS-‐Triple	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

MAKESPAN	

Power-‐Aware	 DVFS	

DVFS-‐Double	 DVFS-‐Triple	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Jan	 Feb	 Mar	 Apr	

ENERGY	 CONSUMPTION	

Power-‐Aware	 DVFS	

DVFS-‐Double	 DVFS-‐Triple	

Fig. 15 Comparison of power-aware job scheduling and DVFS on system performance and
energy consumption by taking into account the impact of DVFS on system reliability. For
DVFS, the failure rate was set to 1, 2, 3 times that of the original failure rate, denoted by
“DVFS”, “DVFS-double” an “DVFS-triple” respectively. The power cap was set to 70% of
the maximum power in January. The results were normalized to power-aware job scheduling
method with the original failure rate.

utilization. Note that the use of power-aware job scheduling did not change
the overall energy requirement for a workload. Since DVFS may increase the
hardware failure rate, the use of DVFS can cause more frequent failures, thus
more overhead for failure recovery.

As shown above, job characteristics could have a significant impact on
system performance and energy consumption. Here, we further investigated the
potential impacts of different job runtimes and job sizes. Specifically, under
the same system configuration with 49, 152 nodes, we varied job wall time,
ranging between 50% to 400%, base on the original workload where the job
wall time is denoted by “Wall Time * 1.0”. Similarly, we varied job size (i.e.,
number of requested compute nodes), ranging between 50% to 400%, base on
the original workload where the job size is denoted by “Job Size * 1.0”. The
main goal is to study what would be the possible performance impact and
energy consumption if future workloads have different job sizes and runtimes.
The results are presented in Figure 16 and 17.

Figure 16 presents several interesting results. First, a workload with short-
ened jobs greatly reduces system efficiency whereas a workload with prolonged
jobs increases system efficiency slightly. This is because a workload with short-
ened jobs leads to more idle node-hours. Second, varying job wall time affects
average wait time slightly when job arrival rate is low (Jan and Feb), but
greatly impacts when job arrival rate is high (Mar and Apr). When job ar-
rival rate is low, the change of job runtimes rarely affects the execution of the
subsequent jobs. Third, the change of job runtime does not induce significant
change on system makespan. A possible reason is that system makespan is

PPR Tradeoff Modeling on Petascale Systems 21

Fig. 16 The impact of job runtime on system performance and energy consumption. The
results were normalized to Wall Time * 1.0.

influenced by both job arrival rate and job characteristics. Under the same job
arrival rate, when a job wall time is varied, it only affects the execution of a set
of subsequent jobs and has little impact on the aggregated performance of the
entire workload with tens of thousands of jobs. Finally, we observed that job
runtime has a significant influence on energy consumption because it affects
both system efficiency and makespan.

Fig. 17 The impact of job size on system performance and energy consumption. The results
were normalized to Job Size * 1.0.

22 Li Yu et al.

Figure 17 illustrates the impact caused by job size (i.e., number of nodes
used by each user job). A smaller job size leads to a significant decrease of
system efficiency under low job arrival rate (Jan and Feb); while it slightly in-
creases system efficiency under high job rate (Mar and Apr). This makes sense
because smaller jobs could result in a larger number of unoccupied compute
nodes during job execution when job arrival rate is high, and this effect be-
comes less significant under low job arrival rate because the idle nodes can be
occupied by subsequent jobs quickly. For a similar reason, we have opposite
observations for larger job size, i.e., it greatly increases of system efficiency
under low job arrival rate and slightly decreases system efficiency under high
job arrival rate. In addition, the smaller job size always indicates lower av-
erage job wait time, shorter makespan, lower energy consumption; and vice
versa. For the same reason mentioned above, the impact of job size become
less significant when job arrival rate is low but become more obvious when job
arrival rate is high.

6 Discussion

As mentioned earlier, TOPPER was designed for system-wide tradeoff analysis
among power, performance and resilience. Specifically, it models the perfor-
mance and energy consumption of a batch of user jobs, i.e., at the scheduler
level. It can be used to analyze a petascale system under various job schedul-
ing, power management and resilience configurations. In the current version
of TOPPER, the batch scheduling module supports both FCFS-EASY and
WFP-EASY job scheduling policies [45]; the power management module sup-
ports both power-aware job reallocation and DVFS power-capping methods;
and the fault tolerance module supports both checkpoint/restart and replica-
tion resilience mechanisms. All these scheduling, power management and fault
tolerance strategies have been widely used in today’s petascale systems. The
benefits of TOPPER include easy model building, naturally capturing complex
systems dynamics, good extensibility and high scalability.

TOPPER was built on CPNs, which comes with solid mathematical foun-
dation and has proven its efficiency and effectiveness of modeling complex
large-scale systems [27]. As TOPPER provides a set of inscriptions (Table 1)
that can generally describe a HPC system with the standard format adopted
by the community, it is easy for users to tune its parameters for other systems
with different scales of workload and resource. Also, with the nature of CP-
Ns, TOPPER is able to model both the determinism and indeterminism in a
system. In this study, the batch scheduling module models the job execution
in a deterministic way as it follows the job trace dumped from the produc-
tion system; while the fault tolerance module models the failure presence in
a nondeterministic way by assuming failure arrival follows the poisson distri-
bution. This provides a great flexibility for us to model the randomness from
the perspective of real-world systems. For example, for systems without real

PPR Tradeoff Modeling on Petascale Systems 23

job trace, the job arrival can be modeled similarly as in the fault tolerance
module in this study.

7 Related Work

Modern systems are designed with various hardware sensors that collect power-
related data and store these data for system analysis. System level tools like
LLView [37] and PowerPack [23] are developed to integrate the power mon-
itoring capabilities to facilitate systematic measurement, modeling, and pre-
diction of performance. Goiri et al. used external meters to measure the power
consumption of a node during its running time [25]. Feng et al. presented a
general framework for direct, automatic profiling of power consumption on
high-performance distributed systems [19]. In our recent work, we developed
a power profiling library called MonEQ for accessing internal power sensor
readings on IBM Blue Gene/Q systems [48].

Co-modeling power and performance has been done on several systems.
Analytical modeling is a commonly used method, which mainly focuses on
building mathematical correlations between power and performance metrics
of the system. Chen et al. proposed a system-level power model for online
estimation of power consumption using linear regression [10]. Curtis-Maury
et al. presented a online performance prediction framework to address the
problem of simultaneous runtime optimization of DVFS and DCT on multi-
core systems [13]. Tiwari et al. developed CPU and DIMM power and energy
models of three widely-used HPC kernels by training artificial neural networks
[47].

There also exist studies of applying stochastic models for performance or
power analysis. B.Guenter et al. adopted a Markov model for idleness predic-
tion and also proposed power state transitions to remove idle servers [26]. Qiu
et al. introduced a continuous-time and controllable Markov process model of
a power-managed system [39]. Rong et al. presented a stochastic model for
a power-managed, battery-powered electronic system, and formulated a poli-
cy optimization problem to maximize the capacity utilization of the battery
powered systems [42]. The studies closely related to ours are [21,46]. Gandhi
et al. used queueing theory to obtain the optimal energy-performance tradeoff
in server farms [21], and Tian et al. proposed a model using stochastic re-
ward nets (SRN) to analyze the performance and power consumption under
different power states [46].

Our work differs from the existing studies in two ways. First, to our knowl-
edge, our work is the first study of co-modeling performance, power, and re-
silience on an extreme-scale HPC system. Second, unlike the existing modeling
studies using analytical or queue models, our work is built on colored Petri net,
which overcomes a number of limitations of analytical modeling and queuing
theory.

24 Li Yu et al.

8 Conclusion

In this paper, we have presented TOPPER, a novel co-modeling mechanis-
m for tradeoff analysis of performance, power, and resilience on HPC. Using
the advanced features of colored Petri nets, TOPPER is capable of capturing
the complicated interactions among execution time, energy efficiency, and re-
silience. Using real system traces collected from the 48-rack IBM Blue Gene/Q
machine at Argonne, we have explored the use of TOPPER to study system
performance and energy efficiency under different resilience and power man-
agement methods.

Our experiments provide a number of interesting observations. First, while
some studies have shown that replication-based methods can tradeoff addi-
tional resource requirements against wall clock time [16], our study indicates
that replication is incomparable to checkpoint in terms of system-wide perfor-
mance and energy usage on HPC systems. In particular, checkpoint greatly
outperforms replication in the system under high workload. Second, a lower
redundancy degree doesn’t necessarily mean a better scheduling performance.
For instance, on Mira, double replication actually provides the shortest job
wait time. Finally, without considering DVFS latency, power-aware schedul-
ing is comparable to DVFS with two times higher failure rate in terms of
scheduling performance. If DVFS causes triple failure rate, the use of DVFS
can significantly impact scheduling performance such as job wait time and
makespan, hence is not recommended to use. While this work focuses on ex-
amining the ideal case of DVFS, that is, DVFS without latency, DVFS with
latency could impact system performance and scheduling, which will be part
of our future work.

CPNs is a powerful technology to model large-scale systems that involve
complex interactions among components. There are many CPNs tools under
active development, which allow users from different areas to edit, simulate,
and analyze CPNs in a convenient way. We make TOPPER freely available
to the community [5] and we believe it has many other potential usages in
addition to the case studies presented in this work. There are many directions
for our future study. One of them is to use TOPPER for a variety of scalability
study such as energy efficiency analysis by scaling up system size.

Acknowledgments

This work is supported in part by US National Science Foundation grant CCF-
1618776 and CCF-1422009. It used data of the Argonne Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

PPR Tradeoff Modeling on Petascale Systems 25

References

1. The Standard Workload Format. Available at: http://www.cs.huji.ac.il/labs/

parallel/workload/swf.html, 2007.
2. CPN Tools. Available at: http://cpntools.org/, 2015.
3. ExSpecT. Available at: http://www.exspect.com/, 2015.
4. ReNeW. Available at: http://www.renew.de/, 2015.
5. TOPPER. Available at: http://bluesky.cs.iit.edu/topper/, 2015.
6. G. Balbo. Introduction to Generalized Stochastic Petri Nets. In Proc. of SFM, 2007.
7. L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi, F. Cappello, and S. Mat-

suoka. FTI: High Performance Fault Tolerance Interface for Hybrid Systems. In Proc.
of SC, 2011.

8. W. Bircher and L. John. Analysis of Dynamic Power Management on Multi-Core Pro-
cessors. In Proc. of ICS, 2008.

9. D. Bodas, J. Song, M. Rajappa, and A. Hoffman. Simple Power-aware Scheduler to
Limit Power Consumption by HPC System Within a Budget. In Proc. of E2SC, 2014.

10. X. Chen, C. Xu, R. Dick, and Z. Mao. Performance and Power Modeling in a Multi-
Programmed Multi-Core Environment. In Proc. of DAC, 2010.

11. M. Chiesi, L. Vanzolini, C. Mucci, E. Scarselli, and R. Guerrieri. Power-Aware Job
Scheduling on Heterogeneous Multicore Architectures. IEEE Trans. Parallel Distrib.
Syst., 26:868–877, 2015.

12. M. Crovella, R. Bianchini, T. Leblanc, E. Markatos, and R. Wisniewski. Using
Communication-to-Computation Ratio in Parallel Program Design and Performance
Prediction. In Proc. of IPDPS, 1992.

13. M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos. Online Power-
performance Adaptation of Multithreaded Programs Using Hardware Event-based Pre-
diction. In Proc. of ICS, 2006.

14. J. Daly. A Higher Order Estimate of the Optimum Checkpoint Interval for Restart
Dumps. Future Generation Computer Systems, 22:303–312, 2006.

15. S. Di, M.-S. Bouguerra, L.A. Bautista-Gomez, and F. Cappello. Optimization of Multi-
level Checkpoint Model for Large Scale HPC Applications. In Proc. of IPDPS, 2014.

16. J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining
Partial Redundancy and Checkpointing for HPC. In Proc. of ICDCS, 2012.

17. X. Fan, W.-D. Weber, and L. Barroso. Power Provisioning for a Warehouse-sized Com-
puter. In Proc. of ISCA, 2007.

18. D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong. Theory and
Practice in Parallel Job Scheduling. In Proc. of JSSPP, 1997.

19. X. Feng, R. Ge, and K. Cameron. Power and Energy Profiling of Scientific Applications
on Distributed Systems. In Proc. of IPDPS, 2005.

20. K. Ferreira, J. Stearley, J. Laros III, R. Oldfield, and et al. Evaluating the Viability of
Process Replication Reliability for Exascale Systems. In Proc. of SC, 2011.

21. A. Gandhi, M. Harchol-Balter, and I. Adan. Server Farms with Setup Costs. Perform.
Eval., 67:1123–1138, 2010.

22. R. Ge, X. Feng, and K. Cameron. Performance-constrained Distributed DVS Scheduling
for Scientific Applications on Power-aware Clusters. In Proc. of SC, 2005.

23. R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron. PowerPack: Energy
Profiling and Analysis of High-Performance Systems and Applications. IEEE Trans.
Parallel Distrib. Syst., 21:658–671, 2010.

24. C. Gniady, A. Butt, Y. Hu, and Y.-H. Lu. Program Counter-based Prediction Tech-
niques for Dynamic Power Management. IEEE Trans. Comput., 55:641–658, 2006.

25. I. Goiri, L. Kien, M. Haque, R. Beauchea, T. Nguyen, J. Guitart, J. Torres, and R. Bian-
chini. GreenSlot: Scheduling Energy Consumption in Green Datacenters. In Proc. of
SC, 2011.

26. B. Guenter, N. Jain, and C. Williams. Managing Cost, Performance, and Reliability
Tradeoffs for Energy-Aware Server Provisioning. In Proc. of INFOCOM, 2011.

27. K. Jensen. Colored Petri Nets and the Invariant-method. Theoretical Computer Science,
14:317–336, 1981.

26 Li Yu et al.

28. S. Kanev, K.M. Hazelwood, G.-Y. Wei, and D.M. Brooks. Tradeoffs between Power
Management and Tail Latency in Warehouse-Scale Applications. In Proc. of IISWC,
2014.

29. T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok. Volpexmpi: an MPI Library for
Execution of Parallel Applications on Volatile Nodes. In European PVM/MPI Users’
Group Meeting, 2009.

30. C. Lefurgy, X. Wang, and M. Ware. Server-Level Power Control. In Proc. of ICAC,
2007.

31. T. Martin and D. Siewiorek. Non-Ideal Battery and Main Memory Effects on CPU
Speed-Setting for Low Power. IEEE Trans. VLSI System, 9:29–34, 2001.

32. W. Marwan, C. Rohr, and M. Heiner. Petri Nets in Snoopy: A Unifying Framework
for the Graphical Display, Computational Modelling, and Simulation of Bacterial Reg-
ulatory Networks. Humana Press, 2012.

33. A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski. Design, Modeling, and Eval-
uation of a Scalable Multi-level Checkpointing System. In Proc. of SC, 2010.

34. NSF Cyberinfrastructure Framework for 21st Century Science and Engineering Vision.
Available at: http://www.nsf.gov/pubs/2010/nsf10015/nsf10015.jsp.

35. Cobalt Resoure Manager. Available at: http://trac.mcs.anl.gov/projects/cobalt.
36. Mira: Next-generation Supercomputer. Available at: https://www.alcf.anl.gov/mira,

2012.
37. LLview: Graphical Monitoring of LoadLeveler Controlled Cluster. Available at: http:

//www.fz-juelich.de/jsc/llview/, 2013.
38. T. Patki, D. Lowenthal, B. Rountree, M. Schulz, and B. de Supinski. Exploring Hard-

ware Overprovisioning in Power-constrained, High Performance Computing. In Proc.
of ICS, 2013.

39. Q. Qiu and M. Pedram. Dynamic Power Management based on Continuous-Time
Markov Decision Processes. In Proc. of DAC, 1999.

40. D. Reed, C. Lu, and C. Mendes. Big Systems and Big Reliability Challenges. In Proc.
of ParCo, 2003.

41. R. Riesen, K. Ferreira, D. Silva, P. Lemarinier, D. Arnold, and P. Bridges. Alleviating
Scalability Issues of Checkpointing Protocols. In Proc. of SC, 2012.

42. P. Rong and M. Pedram. Battery-Aware Power Management Based on Markovian
Decision Processes. In Proc. of ICCAD, 2006.

43. J. Sancho, F. Petrini, K. Davis, R. Gioiosa, and S. Jiang. Current Practice and a
Direction Forward in Checkpoint/Restart Implementations for Fault Tolerance. In Proc.
of IPDPS, 2005.

44. J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The Impact of Technology Scaling on
Lifetime Reliability. In Proc. of DSN, 2004.

45. W. Tang, N. Desai, D. Buettner, and Z. Lan. Analyzing and Adjusting User Runtime
Estimates to Improve Job Scheduling on Blue Gene/P. In Proc. of IPDPS, 2010.

46. Y. Tian, C. Lin, and M. Yao. Modeling and Analyzing Power Management Policies in
Server Farms using Stochastic Petri Nets. In Proc. of e-Energy, 2012.

47. A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely. Modeling Power and Energy
Usage of HPC Kernels. In Proc. of IPDPSW, 2012.

48. S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and M. Papka. Application Profilling
Benchmarks on IBM Blue Gene/Q. In Proc. of Cluster, 2013.

49. J. Wingstrom. Overcoming The Difficulties Created By The Volatile Nature Of Desktop
Grids Through Understanding. Technical report, Ph.D. thesis, University of Hawai’i at
Manoa, 2009.

50. X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. Papka. Integrating
Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems. In
Proc. of SC, 2013.

51. L. Yu, Z. Zhou, S. Wallace, M. Papka, and Z. Lan. Quantitative Modeling of Power-
Performance Tradeoffs on Extreme Scale Systems. Journal of Parallel and Distributed
Computinged Computing, 84:1–14, 2015.

52. Z. Zhou, Z. Lan, W. Tang, and N. Desai. Reducing Energy Costs for IBM Blue Gene/P
via Power-Aware Job Scheduling. In Proc. of JSSPP, 2013.

