IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Fault-Aware Runtime Strategies for High
Performance Computing

Yawei Li, Student Member, IEEE, Zhiling Lan*, Member, |IEEE, Prashasta Gujratiember, |IEEE, and
Xian-He Sun,Senior Member, |EEE

Abstract—As the scale of parallel systems continues to grow, performance computing is to explore proactive techniques
fault management of these systems is becoming a critical chal-|ike process migration to avoid failures by leveraging the
lenge. While existing research mainly focuses on developing or research on failure prediction. For example, object migrat

improving fault tolerance techniques, a number of key issues . L .
remain open. In this paper, we propose runtime strategies for 'S proposed for AMPI based applications to avoid hardware

spare node allocation and job rescheduling in response to failure failures [5]. The experiment with a Sweep3D application has
prediction. These strategies, together with failure prediction and shown that object migration may only take less than 2 seconds
fault tolerance techniques, construct a runtime system called |np [21], live migration is explored on Xen virtual machines,

FARS (Fault-Aware Runtime System). In particular, we propose a - g the experiments with scientific applications have shown

0-1 knapsack model and demonstrate its flexibility and effective- that miarati head i | a8 ds. |
ness for reallocating running jobs to avoid failures. Experiments, 01at Migration overnead IS as low a8 seconds. In our own

by means of synthetic data and real traces from production Previous study [17], we have demonstrated that timely mece
systems, show that FARS has the potential to significantly migrations can greatly improve application performance —
improve system productivity (i.e., performance and reliability). application execution times — by up #3%.

Index Terms—High performance computing, runtime strate- While process migration itself has been studied eXtenSively
gies, fault tolerance, performance, reliability, 0-1 knapsack. a number of issues remain open in the design of fault-aware
runtime systems. Key issues include how to allocate regsurc
to accommodate proactive actions, and how to coordinate
multiple jobs for an efficient use of the resources in case

Y 2011, it is anticipated that researchers will be ablgf resource contention. Further, there is a lack of systemat
to access a rich mix of systems with some capable 8fudy of runtime fault management by taking into account var
delivering sustained performance in excess of one petaflogbys factors including system workload, failure chardstis,
Production systems with hundreds of thousands of processgr prediction accuracy. As an example, a commonly asked
are being designed and deployed. Such a scale, combigg@stion is, “Given that prediction misses and false alares
with the ever-growing system complexity, is introducing @ommon in practice, how much gain can a fault-aware runtime
key challenge on fault management for high performanggstem provide?”
computing (HPC). Despite great efforts on designing ultra- This study aims at filling the gap between failure prediction
reliable components, the increase in system size and c&mplgnd fault tolerance techniques by designing runtime giiege
ity has outpaced the improvement of component reliabilitjor spare node allocation andjob rescheduling (i.e., reallocate
Recent studies have pOinted out that the mean'time'betweﬁjhning jobs to avoid fai|ures)_ These Strategiesy tog’eﬂm
failure (MTBF) of teraflop and soon-to-be-deployed petaflogjjure prediction and fault tolerance techniques, carmsta
machines are only on the order of 10 - 100 hours [30]. Thigintime system called FARS 4Elt-Aware Rintime S/stem)
situation is Only ||k6|y to deteriorate in the near futumﬁeby for h|gh performance Computing_
threatening the promising productivity of large-scaletesy® The first runtime strategy is for spare node allocation. To
[26]. enable running jobs to avoid anticipated failures, spameno

The conventional method for fault tolerance is CheCprin&re needed. As jobs in the gueues also compete for Computing
ing, which periodically saves a snapshot of the system fgsources, a desirable runtime system should make a bdlance
a stable storage and uses it for recovery in case of failugglocation of resources between failure prevention andleeg
Yet it does not prevent failure, and work loss is inevitablgh scheduling. While static allocation by reserving a fixed
due to the rollback process. An increasing interest in higfumber of nodes in prior is simple, it does not adapt to the

o) o runtime dynamics inherent in production environments. We

Yawei Li is with the Department of Computer Science, lllinaistitute of
Technology, Chicago, IL 60616. Email: liyawei@iit.edu propose a non-intrusive allocation strategy that dynalfgica

Zhiling Lan is with the Department of Computer Science, llintnstitute allocates spare nodes for failure prevention.
of Techn(c;_logy, tCr:]zircago, IL 60616. Email: lan@iit.ed@sterisk indicates The second runtime strategy is for job rescheduling. Given
oogr&:[s)tr)lr;;tr;g gltjjjrati is with the Department of Computer Scieli@®ois the existence of failure correlations in large-scale syste
Institute of Technology, Chicago, IL 60616. Email: gujrprit@du simultaneous failures on multiple nodes are possible cBefe

Xian-He Sun is with the Department of Computer Science, lifinostitute ijObS for rescheduling becomes crucial when spare nodes ar
of Technology, Chicago, IL 60616. Email: sun@iit.edu t sufficient t dat . fi t iiati
Manuscript received October 30, 2007; revised May 12, 2@@8epted not sufmcient to accommodaate migration requests origngati

July 1, 2008. from jobs. Previous research generally assumed the ailiylab

I. INTRODUCTION

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

of sufficient spare nodes. But unfortunately, system resssur

are limited. Job rescheduling in case of resource contenti EARS: Fault-Aware Runtime Svetom

can significantly impact the overall system productivitizenm e !

that jobs have quite different characteristics. In thiglgtwe ! (] activejobs

present a 0-1 knapsack model to address the job reschedu g Esuspicious

problem, and then demonstrate its flexibility and effectess ... g ; L

by presenting three job rescheduling strategies. inactive jobs | & i O spare pool
We evaluate FARS under a wide range of system settin e ateue g Rl .

by using both synthetic data and real traces from producti [Pfggilgt%r CRiocaton] Reé?rg?é’é‘f}"g]-»[@'fgﬁgfte]

systems. Considering that the often used performanceaset
like system utilization rate ar? _mamly deSIQneq to mef”‘SUFig. 1. Overview of FARS. User jobs are submitted through tescheduler,
system performance without giving much attention to fa&jurwhile FARS is responsible for managing active jobs (i.e. fmgrjobs) in the
we choose a set of six metrics (including both performaniresence of failure. The dark shaded boxes indicate the majdributions of
and reliability metrics) and a six-dimensional Kiviat ghap K‘I/I)S study: spare node allocation (Section 1) and job hesluling (Section
for a comprehensive assessment of FARS. We also exam
the sensitivity of FARS to system load, node MTBF, an
prediction accuracy. f
Preliminary results show that FARS can substantially re
duce job response time, job slowdown caused by failur
job failure rate and work loss, as well as slightly improw
system utilization and job throughput. For a moderatelylézh
system, FARS is capable of improving its productivity (i.e
performance and reliability) by ove30% as against the case
without it. Our experiments demonstrate the effectiverafss
FARS as long as the failure predictor can capt@i&s of gives an overview of FARS.
failure events with a false alarm rate lower thzsvs.

- - FARS may be triggered in two ways: (1) pre-defined,
FARS complements existing research on checkpointing a . s .
job scheduling by reallocating running jobs to avoid fadsir where FARS is invoked at pre-defined points set by system

in response to failure prediction. It can be easily integpat administrators; and (2) event-triggered, where FARS istede

with job schedulers and checkpointing tools to jointly s by the failure predictor when a worrisome event occurs. This
the fault management challenge in HPC. The proposed Paper assumes pre-defined mechanism for the convenience of

. . study.
k k model d flexibl thod to add th
NAPSACK MOre. Provices a Texiale Metnog 1o acoress e | FARS periodically consults the failure predictor for the

rescheduling problem, from which new rescheduling stiate) X
gp g gstatus of each compute node during the next interval. Regard

can be easily derived. ¢ diction techni dict it bReeit
The remainder of this paper is organized as follows. Sectié)(:ﬁis ot parje 'E'On t?]c n'ql:fst’ prfe Ic |0nt resrt: trc]:an feﬁl

Il gives an overview of FARS. A dynamic strategy for sparga egorical where the predictor forecasts whether a failure
vent will occur or not, omumerical where the predictor

node allocation is described in Section |Ill. Section IV tes fail bability. N ical it bsil
formalizes the rescheduling problem as a 0-1 knapsack moagpma €s fajlure probaniiity. INUmerical resufts can beiiga

and presents three rescheduling strategies. Section Viltesc converted to categorical results via threshold basedtisgljt
our evaluation methodology, followed by experimental hessu hence in this paper, we gmformly-descntmlure prediction .
in Section VI. Section VII briefly discusses related worl@S & process that periodically estimates whether a node will

Finally, Section VIl summarizes the paper and presentséut fail during the next interval. Such'a prgtﬁcﬂon mechanism i
work. generally measured by two metricgrecision and recall as

described in Table |I.
Upon each invocation, FARS identifies the set of nodes that
Il. PROBLEM DESCRIPTION are likely to fail in the next interval based on failure preiatin.

Consider a system witth compute nodes. User jobs areSuppose thatV; out of V nodes are predicted to be failure-
submitted to the system through a batch scheduler. For &one (denoted asuspicious nodes) and {j;|1 < i < Js}
ample, FCFS (first-come, first-serve) scheduling is comgnorip the set of active jobs residing on these suspicious nodes
used by batch schedulers in high performance computing [2(§enoted asuspicious jobs).

A job may be a sequential application or a parallel applicati The objective of FARS is to dynamically reallocate sus-
A job request is generally described by a three-paramepée tupicious jobs so as to minimize failure impact on system
{ai, ti,n;}, wherea; is job arrival time,t; is job execution productivity. Toward this end, runtime strategies are tgved

time, andn; is job size in terms of number of compute nodegor allocating spare nodes and reallocating suspicious. job

The job scheduler is responsible for allocatinmactive based on these runtime strategies, process migration guppo
jobs (i.e., jobs in the queues) to compute nodes. Oncecan be applied to transfer application processes away from
job is allocated, it is termed as aactive job. FARS is failure-prone nodes to healthy spare nodes.
responsible for fault management of active jobs in respemse Before presenting our strategies, we present our nomencla-

ailure prediction. Here, #ailure is defined as an unexpected
event in system hardware or software that stops a running
application immediately. In case of parallel applicatidike

MPI applications [4], a single node failure usually abotts t
entire application. Failed nodes are excluded from the pool
'of compute nodes until the problem is repaired. Active jobs
are supposed to be checkpointed by application-initiated o
system-initiated checkpointing tools [3], [11], [37]. kg 1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE |
NOMENCLATURE
Symbol | Description
precision, recall | Prediction accuracy, defined a}spi‘”—Fp and% respectively
whereT,, is no. of true positivesF,, is no. of false positives, andl;, is no. of false negatives
N, N; Number of nodes (suspicious nodes) in the system
S Number of spare nodes
J, Js Number of active jobs (suspicious jobs)
t; failure-free execution time of job;
Ny 15 Number of nodes (suspicious nodes) allocated toijob
fi Failure probability of jobyj;
st The most recent time where the job can be safely started from
Ir FARS interval
Ockp Job checkpoint overhead
O, Job restart cost
OF FARS overhead
Oq Job re-queuing time
. TABLE I
ture in Table |I. STATISTICS OF IDLE NODES IN PRODUCTION SYSTEMS. THE LAST

COLUMN GIVES THE PROBABILITY THAT AT LEAST 2% OF SYSTEM NODES

ARE IDLE AT ANY TIME INSTANT.
1. SPARENODE ALLOCATION

Spare nodes for failure prevention can be allocated either System | Period [CPUs | Jobs| Util [Prob
statically or dynamically. Static allocation, which reserves a~ SDSC SP2 | 24 mo 128 | 59,725] 83.5% [73.0%
fixed set of nodes, is commonly used in existing studies due NASA iPSC 3 mo 128 | 18,239 46.7% | 79.2%
to its simplicity [29]. Static allocation is simple. Howaye ?EISLC%SSH 22 mg %2 g?’g% gi’-égﬁ ;ggg}
it is d|ff_|cult, if nqt |mp055|ble, to de_termlne an optimal SDSC Paragon 24 mo 200 86:105 71.0(72 99.3%‘3
reservation at a prior t.|n_1e. An excessive allocation cam lea CTC SP2 1Mo 230 | 77.2221 66.2% | 93.0%
to low system productivity due to less resources for regulaffACc Lonestar| 6 mo | 1024 | 25,000 94.0% | 95.8%
job scheduling, while a conservative allocation can undeem ~ LANL CM5 24 mo| 1024 122,060| 75.2% | 98.0%
the effectiveness of FARS because of insufficient sparesnode SDSC Blue | 32 mo | 1152 [243,314| 76.2% | 94.0%
for process migration. Further, system load tends to changelANL O2K Smo| 2048 | 121,989] 64.0% | 99.7%
dynamically during operation, and static allocation does n
adapt to these changes.

We propose a dynamic allocation strategy, which is bas&d Dynamic Allocation Strategy

on a key observation in high performance computing. Based on the above observation, we propsen-intrusive,
dynamic allocation strategy for FARS. Here, the “dynamic”
A. Observation means that spare nodes are determined at runtime, and the

After examining a number of job logs that are shared on thBon-intrusive” indicates that FARS does not violate any
public domain [13] or are collected from production Syster.ngeservanon made by the job scheduler. The detailed steps ar

we have observed thadlle nodes are common in production as follows:

systems, even in the systems under high load. « Upon invocation, FARS first harvests the available idle
In Table II, we list the statistics of idle nodes from ten hodes into a candidate pool.

production Systems_ This list contains avariety of Sysm o Next it excludes failure-prone nodes from the candidate

different scales, utilization rates, and architecturesdBction pool according to failure prediction. The rationale is

systems typically consist of a collection of compute nodes a 0 avoid the situation wherein an application process is

some service and 1/O nodes. The data shown in the table only transferred to a failure-prone node.

lists the results from Compute nodes. ° Fina”y, FARS excludes a number of nodes from the
While these systems may exhibit different patterns in terms ~candidate pool to ensure job reservations made by the

of idle node distributions, they share a common charadieris batch scheduler for some queued jobs [20]. The resulting

that is, idle nodes are often available. In fact, on all thetays pool is denoted aspare pool, and will be used for

we have examined, the probability that at least of the runtime failure prevention.

system resources are idle at any instant of time is high (moreFigure 2 illustrates how our dynamic allocation strategy

than70%), and in some systems the probability is even as highorks with FCFS/EASY backfilling scheduling [20]. Under

as90%. We believe that the table clearly delivers the messa§€FS/EASY, jobs are served in first-come first-served order,

that idle nodes are common in production systems. Indeehd subsequent jobs continuously jump over the first queued

this observation is confirmed by system administrators andjob as long as they do not violate the reservation of the

also mentioned in [43]. first queued job. FCFS/EASY backfilling is widely used by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

For a parallel job (e.g., a MPI job), failure of even a single

active jobs process usually aborts the entire job. Thus, for a suspsqiziy
n, v migrating some of its suspicious processes does not elimina
n 2[5 the possibility of failure. An effective rescheduling $&gy
N | should be morejob-oriented, meaning that all suspicious
M 3/'2(\[)4] processes belonging to the same job should be migrated
e b together if possible. As a result, problem 1 can be transfdrm

Sparepool __* ° ° ' ° into the following problem:
L+ | EI ----- Problem 2: To select a subset of;j’|1 < i < Js} such
Job Queve | that their rescheduling requires no more th#arspare nodes,
with the objective of minimizing failure impact on system

productivity.
Fig. 2. Dynamic Node Allocation. An example by using FARS with FoOr each suspicious jolj, we associate it with a gain;
';CFS/EAStY is shown, in,Wl?iCh Sza,fe n‘;‘éeth gf?dlgoa sggi‘j(engme té, and a weightw,. Here, v; represents productivity gain by
%’oergu:::\n:(\elg fﬁgprlg?:r?/a{goﬁl(o?nthéziirit queued jobat tf réquiregsb.y rescheduling the job, which will be elaborated in the next
FCFS/EASY, FARS only putss into the spare pool. subsection. Andv; denotes its rescheduling cost, which is the
number of spare nodes needed for rescheduling the job. We
can further transform Problem 2 into a standard 0-1 knapsack
many batch schedulers, and it has been estimated that 9Qnisdel:
95 percent of batch schedulers use this default configuratio Problem 3: To determine a binary vectok = {z;|1 <
[39]. As shown in the figure, to guarantee the reservation pk j,} such that
the first queued job (job 4 at timg), FARS only puts one
idle node into the spare pool. After this, FARS will apply the
rescheduling method presented in Section IV to select a job
(which is j, in this case) for rescheduling, and will fail if . 15is 1)
the failure prediction is correct. subject to Y | z;-nj < S
This dynamic allocation strategy is not limited to IsisJs
FCFS/EASY, and can be applied to other scheduling policies.The solutionX determines the jobs for rescheduling.zif
For example, in case of a greedy scheduling that does @i, meaning thajj; is selected for reallocation by transferring
guarantee any job reservation, FARS aggressively acqalfessome of its application processes so as to avoid job failure.
idle nodes and puts them into the spare pool; in case of a more
conservative scheduling such as conservative backfilag, . .
FARS excludes the no?jes to guarantee the reservat?(?g Lfl?a"Three Rescheduling Strategies

the queued jobs and only puts the remaining idle nodes intoDepending on the primary objective of fault management,
the spare pool. a variety of rescheduling strategies can be derived from the

aforementioned 0-1 knapsack model by properly setting
IV. JOB RESCHEDULING In practice, failure impact can be observed from different
spects. When a failure occurs, the affected job fails and
lIs back to its initial state or the most recent checkpoint
ereby causing a loss of computing cycles. In the field ol hig
; . . &rformance computing, such a loss is generally measured by
will pe. reaII_ocated. Otherwise, contention Occurs amors g ice nits which is defined as the aggregated processing
suspicious jobs for t.he spare nodgs. A deswablg resc!mgﬂulﬁme_ Users are typically concerned about failure proligbil
strategy should weigh the benefit of reallocating dlffererg)tf their jobs. This can be quantified pgb failure rate, which
jobs, Wi.th the goal of minimizing failure impact on systerqs defined as the ratio between the number of’failed jobs
product_lwty. .) . . and the total number of jobs submitted. Furthermore, given
In th|s_sect|on, we first describe how to formalize th‘f’nat different jobs have different characteristics, it #en
problem mto a 01 _knapsapk model apd then present thri?r‘f“portant to determine the average slowdown caused byéailu
rescheduling strategies derived from this model. on user jobsFailure slowdown, defined as the ratio of the time
delay caused by failure to failure-free job execution tircen
A. 0-1 Knapsack Model be used to serve the purpose.
Suppose there ar§ nodes in the spare poal, suspicious [N this paper, we propose three rescheduling strategieh, ea
jobs {j[1 < i < J,}, with each jobj; residing onn? focusing on reducing one specific failure impact as disalisse

suspicious nodes. Hence, the rescheduling problem canaf®ve.

maximize Z z; v, x;=0o0r1

After acquiring the spare pool, the next step is to provi
a strategy for rescheduling suspicious jobs. In case theat
number of spare nodes is sufficient, all the suspicious jo

formalized as: 1) Service Unit Loss Driven (SUL-D). It aims at minimizing
Problem 1: To select a set of application processes from the loss of service units (defined as the product of
the suspicious jobs, with the objective of minimizing fagu the number of compute nodes and the amount of time

impact on system productivity. wasted due to failure). Not knowing the exact failure

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

time, we assume that failures are uniformly distributetl < k¥ < J; and1 < w < N;. G[k,w] has the following
in the next interval. Hence, for a suspicious j@gh its recursive feature:
rescheduling gain can be estimated as:

0 kw =0
Ir =< Glk—-1,uw] ng>w (B)

Ui:fi'ni'(tJF?*tfast*OF) 2) maz(Glk — 1,w],vxs + Gk —1L,w—ni]) ni<w

The solutionG[Js, S] and the corresponding binary vector
where f; = 1 — (1 — precision)™: X determine the selection of suspicious jobs for reschegulin

) i i i o The computation complexity of Equation (5) @ Js - S).
Here,t is the current timer is FARS intervalpn; is job

size,n? is number of suspicious nodeg, is job failure _
probability, andt;, ., is the most recent time where theD. Residual Issue

job can be safely started from, e.g., the last checkpointafter the aforementioned job-oriented selection, it is-pos
or the job start time. As we can se@,+ “&* —t},.,) iS sible that there are some spare nodes and suspicious jobs
the amount of time saved by reschedulingOr is the |eft. We call thisa residual issue. To address the issue, we
overhead of reallocating the job, which can be obtaine@iopt a best-effort method to select one more suspicious job
by tracking operational costs at runtime. Dependingr rescheduling [16]. Suppose there akespare nodes left

on the specific implementation of process migrationyfter the job-oriented selection, FARS calculates resaiivegi

Or may differ. For example, in case of a stop-andgain for each of the remaining suspicious jobs and selects
restart design that checkpoints the application and theqe job with the maximal gain value. The calculation of
restarts it on a new set of resources [18]; can be ,, is the same as shown in Equation (2)-(4), except that
approximated bY O, + O,); in case of live migration ¢, — 1 — (1 — precision) ™ =B,

support, it can be estimated 8y,.. Both O.x, and O,
can be tracked in practice [17].

2) Job Failure Rate Driven (JFR-D). It aims at reschedul-
ing as many suspicious jobs as possible. This strategyOur experiments were based on event-driven simulations
intends to minimize job interrupts caused by failure sby means of synthetic data and real traces collected from
as to improve user satisfaction of system service. Heng#pduction systems. An event driven simulator was develope
for a suspicious joly;, its rescheduling gaim; is: to emulate a HPC system using FCFS/EASY scheduling [16].

We compared FARS-enhanced FCFS/EASY as against the

plain FCFS/EASY. In the rest of the paper, we simply use
v =fi-1 () the term SUL-D, JFR-D, FSD-D, and FCFS to denote three

rescheduling strategies and the plain FCFS/EASY. Thismect

3) Failure SowDown Driven (FSD-D). The objective of describes our evaluation methodology, and the resultsbaill

this strategy is to minimize the slowdown caused b&}resented in the next section.
failure. For a suspicious joby;, failure impact includes
job re-queuing cost),, its restart costO, and the A. Smulator

r_ecomputatlon t|me on t_he lost work. The recpmputatlon The simulator was driven by three classes of events: (1)
time can be estimated in the same way as in the SUL-

. L ts including j rrivals and terminations; (£ilur
D strategy; O, can be determined based on hIStOl‘ICAPb EVens Inc ud 9 job 2 . dte . _0 S; (Bilure
events including failure arrivals and repairs; and (8ult

?naet?r;oju[czg] a?‘l_h?}; l:r?:an%ali_r?i;rrgsrcm iﬁ':]gpjrgg::vetolerant events including job checkpointing and rescheduling
be estimated as: ' events. Upon a job arrival, the simulator was informed of job
' submission time, job size, and its estimated runtime. htexa
the job or placed it in the queue based on FCFS/EASY. Upon a

V. EVALUATION METHODOLOGY

Ir i job termination, it removed the job and scheduled other gdeu
=i (t+ = —ti, +0,+0,—0p)/t; (4)] ;] é
vi=fi g last T r)/ @ jobs based on FCFS/EASY. Upon a node failure, the simulator
wheret; is failure-free job execution time. suspended the node and the job running on it for failure repai

After failure repair, the simulator resumed the job that was
suspended by the failure and the time delay was added into
job completion time. Each job was checkpointed periodjgall
After setting the gain value in Equation (1), the 0-1 knamnd the checkpoint frequency for each job was set based on
sack model can be solved in pseudo-polynomial time ke widely used formula [42]. Upon checkpointing events,
using dynamic programming method [6]. To avoid redundanheckpoint overhead was added into job completion time. In
computation, we use the tabular approach by defining a twease of FARS rescheduling, FARS overhead was added into
dimensional tableGG, where G[k,w] denotes the maximum the corresponding job completion time.
gain that can be achieved by rescheduling suspicious jobsThe behavior of a failure predictor was emulated and its
{j?]1 < i < k} with no more thamw spare nodes, where prediction accuracy was controlled by two metrics:

C. Dynamic Programming

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

1) Recall: If there exists a failure on a node in the next
interval, the predictor reports a failure on the node with
the probability ofrecall.

Precision: Suppose the predictor has totally reported
x failures for the intervals with actual failures. Ac-
cording to the definition ofprecision, for intervals
without an actual failure, the predictor randomly selects
zx(I-precision) jtarvals and gives a false alarm on each

recision (a) (b)
of them. Fig. 3. Exemplar 6-D Kiviat Graph. The range of each metric @rfrzero
to the largest value observed in the experiments. The relggn of method

) B over A is defined aslw, where K () denotes the K-value of a
B. Synthetic Data and System Traces method. The K-Value of a method is the shaded area. The smallevaduié
Both synthetic data and real machine traces were used fof® Petter performance a method has.
the purpose of comprehensive evaluation. Synthetic data wa
used to extensively study the sensitivity of FARS to a vgriet
of system parameters, whereas machine traces were cfitical
assessing the practical effectiveness of FARS in real ctingpu
environments.
1) Synthetic Data: Our synthetic data was generated to , i
emulate a 512-node cluster: C. Evaluation Metrics
. Job events. The job arrivals, lengths and sizes were Three performance metrics and threereliability metrics
based on Exponential distributions, where the means wéygre used for evaluation:
set t0 1000.0 seconds,1500.0 seconds andl0 CPUs 1) Average responsetime (Resp). Let J be the total number

2)

access nodes (1.5 GB memory). The MTBF was 0.79
hours for the system, and was 14.16 days per node. The
MTTR was aboutl.73 hours.

respectively. The system utilization rate was seta&o,
to reflect a moderate system load.

« Failure events. Exponential and Weibull distributions are
two commonly used models for failure arrivals [12],
[32]. Hence, we generated two sets of failure events
with Exponential distribution and Weibull distribution 2
respectively. For the Weibull distribution, to reflect the
commonly observed “bathtub” behavior [35], we used a
composite Weibull distribution with three subpopulations
where the shape parameters were set t6 0.5, 5 = 1.0
andg = 1.5 respectively. They were used to simulate the
burn-in, normal and worn-out phases of the system [23].
To study the sensitivity of FARS to MTBF, we tuned 3)
the mean of Exponential distributioh~! and the scale
parameter of Weibull distributiom. The failure repair 4)
process was based on an exponential distribution at a
mean of MTTR (mean-time-to-repair).

2) System Traces. System traces were collected from 512-

node production systems:

« Job events. A six-month job log was collected from the
Lonestar system at Texas Advanced Computing Centerd)
(TACC). The cluster contained 512 Dell PowerEdge 1750
compute nodes, 13 Dell PowerEdge 2650 I/O server
nodes and 2 Dell PowerEdge 2650 login/management
nodes. The job log only contained workload information
from the compute nodes. As shown in Table I, the 6)
system utilization rate wat%. The average job running
time was3171.0 seconds, the job arrival rate was 0.0044
and the average job size was 14 CPUs.

« Failure events. Due to the unavailability of a correspond-
ing failure log from the TACC Lonestar, we used a failure
log from a comparable Linux cluster at NCSA [19]. The
machine had 520 two-way SMP 1 GHz Pentium-Ill nodes

of jobs, ¢; be the completion time of joly, anda, be job
arrival time. The average response time of the system is

defined by:
[> (e—a))/d

1<i<J

) Utilization rate (Util). Let 7" be the total elapsed time

for J jobs, N be the number of nodes in the system,
be the start time of jol, andn; be the size of job.
System utilization rate is defined as:

[D (ei—s) - mil /(N -T)

1<i<J
Throughput (Thru). It is defined as the average number
of completed jobs in a unit of time.
Service unit loss (UL). Defined as the total amount of
wasted service units (i.e., product of wall clock hours
and number of nodes) caused by failure. This metric
directly indicates the amount of computing cycles lost
due to failures - an important metric to both system
managers and users.
Job failure rate (JFR). Defined as the ratio between the
number of failed jobs and the total number of jobs sub-
mitted. It reflects percentage of jobs that are interrupted
by failures, an important indicator of system’s quality of
service.
Failure slowdown (FSD). Defined as the ratio of time
delay caused by failure to failure-free job execution time,
average over the total number of jobs. To mitigate the
impact of small jobs, A threshold af0.0 seconds was
applied in the calculation of FSD. Different from the
widely used scheduling metrioounded slowdown, this
metric provides a direct indication of failure impact on
job completion time.

(1040 CPUs), 512 of which were compute nodes (2 GB In addition, a six-dimensional Kiviat graph was employed to
memory), and the rest were storage nodes and interactrevide a composite view of these metrics (see Figure 3). [46]

TABLE Il

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

BASELINE CONFIGURATION

by job arrivals and the scheduling policy. This observatitso
indicates the necessity of using other metrics, in additmn

System load (i.e., utilization) | 0.7 performance metrics, to measure system productivity in the
s e presence of falure

Job restart cosD,. 3 minutes It is hard to tell which rescheduling strategy is better by
Job checkpoint overhea@,, | 3 minutes simply comparing the results in Figure 4 and 5. To provide
FARS overhead i 6 minutes a holistic comparison of different rescheduling strategiee
E’:;‘T‘a'gssr’i{gon 8?7"“”“‘85 calculated their relative gains over FCFS by using Kiviatmjr
Predictionrecall 0.7 as shown in Figure 3. All the strategies are able to provide
Number of jobs 21048 more thar30% gain over FCFS. We also observe that the gain
Duration of jobs 249.79 days achieved by FSD-D is relatively lower than the other two. We

believe this stems from the fact that the estimatiorwpin
Equation (4) is not precise. Getting an accurate estimaifon
The graph consists of six dimensions, each representing ang is difficult as it is influenced by many dynamic factors
of the aforementioned metrics emanating from a centraltpoisuch as failure repair time, job queue status and resource
Note thatnon-utilization rate (defined ag1—Util)) andmean- availability. This observation implies that more sopluated
time-between-completion (MTBC) (defined as(1/Thru)) are methods such as the one presented in [22] may be applied to
used in the graph. The range of each metric is from zero itaprove prediction of job queuing time.
the largest value observed in the experiments. As showrein th In summary, the results indicate that the use of FARS can
figure, the composite view of six metrics is the shaded aregreatly improve system productivity in the presence offai)
The smaller the area is, the better performance is. with the relative improvement of ov@0% as compared to the
To compare two methods A and B, we calculate the relatigase without using it. The selection of rescheduling sgsate
gain of B over A as%, where K (-) denotes the depends on the primary objective of fault management. In
K-value of a method. A K-Value of a method is defined ageneral, if the objective is to improve the overall prodvityi
the shaded area of its associated Kiviat graph. Obviousty, then both SUL-D and JFR-D are good candidates.
smaller a K-Value is, the better performance a method has. 2) Sensitivity to System Load: In this set of simulations,
we varied failure-free system utilization rate frdni to 0.95
VI. EXPERIMENTAL RESULTS by adjusting job service timess. The purpose is to assess the
. impact of system load on FARS.
A. Results on Synthetic Data The raw data achieved by using FCFS is listed in Table
A series of simulations were conducted to analyze the iffi/. Figure 6 presents relative improvements by using FARS.
pact of system load, node MTBF, and prediction accuracy @irst, let's look at Figure 6(a)-(b). There are six curvegath
FARS. The baseline configuration is summarized in Table Iiblot, representing the relative gains of six metrics oveFE@s
These parameters and their corresponding ranges werernchgsatem load changes. It shows that the performance of FARS
according to the results reported in [23], [41], [43] and oulrops as system load increases. This is reasonable because a
experiments [17]. higher system load means a smaller sized spare pool, thereby
1) Baseline Results: Baseline results are presented in Figdegrading the effectiveness of FARS. The plots also shotwv tha
ure 4 (Exponential Failure Distribution) and 5 (Weibull Fai for each metric, its trends under both failure distribusiare
ure Distribution). FARS-enhanced methods outperforms$CRBimilar, although the absolute value under Weibull disttiiin
in terms of both performance and reliability metrics, witlis lower than that under Exponential distribution. Hence,
the improvement on reliability metrics being more subsént failure distribution does not have a significant impact oa th
Let’s first take a look at reliability metrics. As we can seeperformance of FARS. A major reason is that FARS is mainly
the use of FARS can reduce service unit loss by more thaafluenced by failure prediction, instead of by long-terrfuiae
2000 CPU hours and the number of failed jobs is reduced frarharacteristics.
600+ to 400 under both failure distributions. We also observe Different metrics exhibit different trends, according tet
that each rescheduling strategy achieves the best impeenfigure. The curves of utilization and throughput stay clase t
with regard to its target metric. As an example, SUL-D ithe x-axis, meaning the relative gain on these metric iseclos
able to minimize service unit loss (SUL). This result imfilic 0. As stated earlier, this is due to the fact that both metnies a
validates the calculation af; in Equation (2)-(4). mainly determined by job arrivals and the scheduling policy
With regard to performance metrics, a noticeable improvéhe curve of response time is heading up when the load
ment is observed on response time. For example, under Expereases td.9. After that, it starts to drop. When the load
nential distribution, the average response time is redfroed is beyond a certain point, meaning that the system is about
19400+ seconds by using FCFS to arouh®00 seconds by saturating, spare nodes become scarce, thereby limitiag th
using either of the rescheduling strategies. It indicated t capability of FARS.
the improvement on reliability by using FARS can lead to an More apparent changes are observed on SUL (service unit
increase in scheduling performance. In terms of utilizatimte loss) and JFR (job failure rate), when system load increases
and throughput, the improvement is relatively trivial. §hé from 0.1 to 0.95. Recall that FARS adopts a dynamic strategy
because utilization rate and throughput are mainly detegchi for spare pool allocation. A higher load leads to fewer spare

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Response Time (Seconds) Utilization Rate Throughput
20000 70.2% 0.01 _ —
19000 70.0%] [] 0.0098

M 0 4
18000 1 M _ 69.8% 0.0096 -
69.6% 0.0094
17000 - H . 1
69.4% -
16000 - H 69.2% | 0.0092 1
15000 69.0% 0.009

FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D

Service Unit Loss
{(CPU*Hour)

Failure Slowdown Job Failure Rate

5%

4.0%
3.5%
3.0%
2.5%
2.0%
1.5%
1.0%

9000
8500 |
8000 -
7500 -
7000 -
6500 -
6000 -
5500
5000 -
4500

700

4% 1

3% 1

482

29 | 433 428

1% - |

FCFS FSD-D SUL-D JFR-D

0%

FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D

Fig. 4. Synthetic data under Exponential failure distiitmut The data label in the plot of job failure rate indicatee faictual number of failed jobs. The
composite gain over FCFS 8t.02% (FSD-D), 36.35% (SUL-D), and37.34% (JFR-D).

Response Time (Seconds) Utilization Rate Throughput
20000 70.2% 0.01 — —
19000 70.0% - = — 0.0098

- o | 1
18000 1 _ 69.8% 0.0096 -
69.6% 0.0094
17000 | 60.4% | 1 .
16000 | 69.2% | 1 0.0092 H[——
15000 69.0% 0.009

FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D

Service Unit Loss
{CPU*Hour)

Failure Slowdown Job Failure Rate

5%

4.0%

4%

3%

2%

T ‘D‘ \Dv D

1%

FCFS FSD-D SUL-D JFR-D

0%

ool

FCFS FSD-D SUL-D JFR-D

3.5%

636
3.0%

2.5% 1

2.0%

446

398

391

1.5%

1.0%

.l

FCFS FSD-D SUL-D JFR-D

Fig. 5.

The composite gain over FCFS, based on the Kiviat grapB3i83%(FSD-D), 36.62% (SUL-D), and33.84% (JFR-D).

TABLE IV
RAW RESULTS BY USING PLAIN FCFS/EASY WNDER DIFFERENTSYSTEM LOADS. THERE ARE TWO VALUES IN EACH CELL THE UPPER ONE IS FROM
EXPONENTIAL DISTRIBUTION (E) AND THE BOTTOM ONE IS FROMWEIBULL DISTRIBUTION (W).

Synthetic data under Weilbull bathtub failure dizition. Thed data label in the plot of job failure rate iraties the actual number of failed jobs.

Load [0.1 [0.2 [03 [04 [05 [06 [0.7 [038 [0.9 [0.95
= I302(E) | 2599(E) | 4169(E) | 6187(E) | 8867(E) | 12470(E) | 19429 (E) | 41142(E) | 178782(E) | 751660(F)
€SP | 1403(W) | 2619(W) | 4212(W) | 6252(W) | 9157(W) | 12819(W) | 19070(W) | 39816(W) | 143803(W)| 708973(W)
Ul | 11.270(E) | 20.045() | 29.999(E) | 40.453(E) | 50.880(E) | 60.547(F) | 70.043(E) | 79.903(E) | 87.005(E) | 89.470(E)
11.270(W) | 20.037(W) | 29.987(W) | 40.436(W) | 50.861(W) | 60.494(W) | 69.887(W) | 79.923(W) | 87.688(W) | 90.075(W)
Thru | 01003(E) | -01002(E) | -01001(E) | -01000(E) | .00999(E) | .00998(E) | .00997(E) | .00991(E) | .00952(E) | -00807(E)
.01003(W) | .01002(W) | .01001(W) | .01000(W) | .00998(W) | .00997(W) | .00995(W) | .00992(W) | .00959(W) | .00812(W)
suL | 133(6) 302(E) 565(E) 811(E) T041(E) | 1292(E) | 1467(E) | 1651(E) | 1808(E) | 2224(F)
168(W) 342(W) | 498(W) | 724(W) 920(W) 1101(W) | 1274(W) | 1440(W) | 1548(W) | 1971(W)
Fsp | -00881(E) | .0I571(E) | .03641(E) | .04543(E) | .04650(E) | 03078(E) | .04235(E) | 02843(E) | .02583(E) | .05761(F)
.01305(W) | .02224(W) | .02206(W) | .02603(W) | .04361(W) | .01879(W) | .02761(W) | .02033(W) | .03230(W) | .01835(W)
JrR | 0039 (E) | 0091 (E) | -0140 (E) | .0187 (E) | .0248 (E) | .0289 (E) | .0332 (E) | .0399 () | 0419 (E) | -0529 (E)
.0050 (W) | .0092 (W) | .0136 (W) | .0184 (W) | .0238 (W) | .0265 (W) | .0302 (W) | .0333 (W) | .0379 (W) | .0458 (W)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

—o—Resp —&—Util —4&—Thru
Exp Failure & FSD-D e [T Exp Failure & JFR-D
100% o Exp Failure & SUL-D
80% 80% 80%
60% 60% 60%
40% 40% M‘ 40%
20% 20% 20%
0% 0% 0%
0.1 0.3 0.5 07 09 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
System Load System Load System Load
(a)
—&—Resp —=— Uil —&—Thru

——SUL —*—FSD —e—JFR

100% Weibull Failure & FSD-D 100%

100% Weibull Failure & JFR-D

Weibull Failure & SUL-D

80% 80% 80%
60% 60% 60%
40% 40% 40%
20% 20% 20%
0% 0% 0%
0.1 0.3 0.5 07 09 0.1 0.3 0.5 0.7 0.9 0.1 03 0.4 0.6 0.9
System Load System Load System Load
(b)
I —+—FSD-D —&—SUL-D JFR-D I ——FSD-D —&—SUL-D JFR-D
60% 60%
55% 55%

50%
45%
40%
35%
30%
25%
20%

50%
45%
40%
35%
30%
25%
20%

15% Exp Failure 15% - Weibull Failure
10% 10%
01 02 03 04 05 06 07 08 09 095 01 02 03 04 05 06 07 08 09 095
System Load System Load

(c)

Fig. 6. Sensitivity to system load. Figure (a)-(b) plot tledative gain of each metric over FCFS, under Exponentialribision and Weibull Distribution
respectively. Figure (c) presents the overall gains okdiffit rescheduling strategies, based on Kiviat graph. Enermance of FARS drops as system load
increases. FARS always outperforms FCFS by av&l, even when the system has high load.

nodes, thereby limiting the effect of FARS for failure avoidfrom zero to around0% as node MTBF decreases fromis to
ance. The same trend is observed on FSD (failure slowdow8); days. This is because a lower value of MTBF means higher
except that it drops more sharply when system load increasaidure rate, thereby resulting in more opportunities foRS
beyond0.8. We attribute this to the instability of FSD: whento avoid failures and consequently reducing job respomse. ti
the load is high, more dynamics is introduced into the systeWVhen node MTBF drops belov8.5 days, the curve starts
thereby making it hard to accurately estimate the reschegiulto drop. We believe this is caused by the insufficiency of
gain v;, particularly O,. spare nodes. When the system becomes extremely unreliable,
Figure 6(c) presents the overall gains of different resuhed suspicious nodes significantly outnumber the availableespa
ing strategies over FCFS under Exponential and Weibulbdes, thereby degrading the performance of FARS.
failure distributions. As system load increases frormto 0.7, As shown in the figure, the curves for reliability metrics
the overall gain achieved by FARS smoothly decreas88% generally head down as node MTBF is getting smaller. The
When system load increases beydhd0, the gain decreasescurves of SUL (service unit loss) and JFR (job failure rate)
to 15%. In both plots, we observe that the performance @fradually drop from50% to 20%, whereas the FSD curve
FSD-D is slightly lower than those achieved by SUL-D angfailure slowdown) drops more quickly. A major reason for
JFR-D. This result is consistent with the results obtained ihe fast drop of FSD is due to the instability of FSD.
Figure 4 and 5. As discussed earlier, getting an accurate estimatiorOpf
3) Sensitivity to Node MTBF: We also studied FARS sen-is difficult, especially when failure interrupts become mor
sitivity to failure rate by tuning node MTBFs based on thé&equent.
baseline value with the ratio linearly changed frdn82 to Figure 7 (c) shows the composite gains of different
8. In other words, node MTBF was varied fro#d8 days to rescheduling strategies over FCFS. As we can see, the per-
1.75 days. formance achieved by FARS drops as node MTBF decreases.
Similar to Figure 6, we first plot the relative gains ofFor the systems whose node MTBFs are larger than 14 days,
individual metrics in Figure 7(a)-(b), and then present theARS can provide more thaB0% performance gain; when
overall gains of different FARS strategies in Figure 7(c). system nodes become unreliable with a low MTBF value (e.g.,
The curves of utilization rate and system throughput atewer than 14 days), FARS still outperforms FCFS/EASY by
close to zero, meaning there is no significant change on thesere than20%. We also notice that when node MTBF drops
metrics. In terms of job response time, the curve first heads below 7 days (extremely unreliable), the gain achieved by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE V
RAW RESULTS BY USING PLAIN FCFS/EASYUNDER DIFFERENTNODE MTBFS. THERE ARE TWO VALUES IN EACH CELL THE UPPER ONE IS FROM
EXPONENTIAL DISTRIBUTION (E) AND THE BOTTOM ONE IS FROMWEIBULL DISTRIBUTION (W).

Node MTBF | 448 days [224 days [112 Days | 56 days | 28days [14 days [7 days [35days [1.75days

R 15532(E) | 15618(E) | 15913(E) | 16036(E) | 16983(E) | 19429(E) | 25522(E) | 59453(E) | 798254(F)
esp 15516(W) | 15702(W) | 15836(W) | 16311(W) | 17191(W) | 19070(W) | 25216(W) | 55196(W) | 459605(W)
Ut 70.043(E) | 70.043(E) | 70.043(E) | 70.042(E) | 70.043(E) | 70.043(E) | 69.750(E) | 69.154(E) | 54.893(F)
70.017(W) | 70.043(W) | 70.020(W) | 69.966(W) | 70.013(W) | 69.887(W) | 69.562(W) | 69.185(W) | 58.810(W)
Thru ‘00997(E) | .00997(E) | .00997(E) | .00997(E) | .00997(E) | .00997(E) | .00993(E) | .00984(E) | .00781(E)
.00996(W) | .00997(W) | .00997(W) | .00996(W) | .00996(W) | .00995(W) | .00990(W) | .00985(W) | .00837(W)
SUL 23(E) 58(E) 184(E) 406(E) 629(E) 1467(E) | 2838(E) | 5677(E) | 11979(F)
65(W) 115(W) 284(W) 331(W) 775(W) 1274(W) | 2774(W) | 4893(W) | 10017(W)
FSD ‘00082(E) | .00131(E) | .00233(E) | .01005(E) | .00926(E) | .04235(E) | .05369(E) | .09220(E) | .33466(E)
.00069(W) | .00282(W) | .00382(W) | .00756(W) | .01757(W) | .02761(W) | .04262(W) | .12889(W) | .21687(W)
IR 0009 (E) | .0020 (E) | .0043 (E) | .0103 (E) | .0153 (E) | .0332 (E) | .0676 (E) | .1392 (E) | .3011 (E)
.0017 (W) | .0033 (W) | .0069 (W) | .0076 (W) | .0178 (W) | .0302 (W) | .0631 (W) | .1188 (W) | .2539 (W)

—&—Resp —&— Uil —&—Thru
—»—SUL —*—FSD —e—JFR

Exp Failure & JFR-D

1009 —— xPFailure &FSD-D 1 100% Exp Failure & SUL-D | || 1°°%
80% 80% 80%
60% 60% 60%
40% 40% 40%
20% 20% 20%
0% 0% 0%
448 112 28 7 175 48 112 28 7175 448 112 28 7 175
Node MTBF (days) Node MTBF (days) Node MTBF (days)
(a)
—&—Resp —=—Util —4&—Thru
Weibull Failure & FSD-D —SUL —x=FSD —e—JRR || Weibull Failure & JFR-D
100% elbull Failure - 100% — Weibull Failure & SUL-D o
80% 80% 80%
60% 60% 60%
40% 40% 40%
20% 20% 20%
0% 0% 0%
448 112 28 7 175 48 112 28 7175 448 112 28 7 175
Node MTBF (days) Node MTBF (days) Node MTBF (days)
(b)
—+—FSD-D —=—SUL-D JFR-D | [——Fsp-0 —s=—suLD JFR-D |
60% 60%
55% 55% |
50% 50%
45% 45% \
40% - 40% - TP R | S
35% 35%
30% 30%
25% 25%
20% - 20% - -
15% - Exp Failure 15% Weibull Failure
10% 10%
448 224 112 56 28 14 7 35 175 448 224 112 56 28 14 7 35 175
Node MTBF (days) Node MTBF (days)

(c)

Fig. 7. Sensitivity to Node MTBF. Figure (a)-(b) plot theatle gain of each metric over FCFS under Exponential and Widgdlures respectively. Figure
(c) presents the overall gains of different reschedulinatsgies, where the overall gain is calculated based oraKgriaph. The results show that in general,
the benefit brought by FARS drops as node MTBF decreases.

Distribution of SUL-D Gain versus FCFS Distribution of SUL-D Gain versus FCFS
(Exponential Failure) (Weibull Failure)
-~ 0.1 r 0.1
0.2 0.2
0.3 - 03
0.4 E - 04 §
05 £ 05 2
- 0.6 - 0.6
0.7 0.7
0.8 0.8
L 1.0 1.0
- 90000000 O0CGOC - PO 0O0O0O000O0O0
©W oo NO U R ON= © 0o NGO BR WN =
Precision Precision

0-20.00%-0.00% 00.00%-20.00% 820.00%-40.00% M40.00%-60.00%

Fig. 8. Distribution of SUL-D gain versus FCFS. Similar distitions are observed for JFR-D and FSD-D (not shown)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Response Time(Seconds) Utilization Rate Throughput

260000 80.0% — 0.08

250000 79.0% 0.079 — I

240000 1 78.0% 0.078

230000 - —

220000 | M 1 77.0% 0.077

210000 - | 76.0% 0.076 «[

200000 oo - 75.0% — 0.075 A :
FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D

Service Unit Loss Failure SlowDown Job Failure Rate

20000 (CPU*Hour) 10% 22:2 11—02

19000 - 8% 4.0% 806 g1 ga7

18000 - 6% - 3.5% _

17000 —~ % _ ~ :g;/: Ht+———

16000

15000 | i:l» 2% 1 _|‘ f::f: 1

14000 T i — 0% 1.0%

FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D

Fig. 9. Results on system traces. The data label in the plilofailure rate indicates the actual number of failed jobe Thlative gain over FCFS, based
on the Kiviat graph, i35.45%(FSD-D), 38.47% (SUL-D), and35.21% (JFR-D).

FARS decreases dramatically. This is caused by insufficidiit Results on System Trace

spare nodes due to high failure rate. We also observe that thgsigyre 9 presents the results obtained with the systemstrace
performance of FSD-D is slightly lower than those achievegl; ysing the same baseline configuration as listed in Table II
by SUL-D and JFR-D, which is consistent with the resultgycept that the failure events and the job events are froin rea
shown in the previous figure. system traces.

The above study also justifies that promising gain may be Consistent with the results on synthetic data, FARS outper-
achieved in production systems by using FARS. According torms FCFS, especially in terms of reliability metrics. Bac
the failure data repository [32], node MTBFs of real systentescheduling policy is capable of minimizing its target nuet
vary from 120 days to a couple of years. By a simpl&s an example, SUL-D gives the best result in terms of service
projection based on the gain curves in Figure 7, for thes#it loss (SUL), whereas JFR-D is good at minimizing job
systems, FARS can provide more tha5?% gain. failure rate (JFR). All these rescheduling strategies apable
of providing over35% composite gain, as compared to FCFS.
We also examined the impact of failure prediction by tuning
ediction accuracies. Figure 10 shows the distributiothef
omposite gain achieved by SUL-D as against FCFS, where

4) Sensitivity to Prediction Accuracy: Obviously, the per-
formance of FARS depends on prediction accuracy. In tlﬁ
set of simulations, we simulated different levels of prédit
accuracies anq quantified. the a”.“?“"“ of gain achieved Mecision and recall vary from 0.1 to 1.0. Similar trends are
FARS under different predictioprecision andrecall rates. observed by using JFR-D and FSD-D, so we only present the

In Figure 8, we show the distribution of composite gaifesults by using SUL-D here.
achieved by SUL-D as against FCFS, wherecison and The maximum gairb3% is achieved under a perfect pre-
recall range betweer0.1 and 1.0. We have also analyzeddiction whereprecision andrecall are1.0. The negative gain
the sensitivities of JFR-D and FSD-D to different predintiO(_4%) is observed only when both parameters are as low as
accuracies. Their distributions (not shown) are similattte (.1. Although the trends are similar to those obtained with syn-
results shown in Figure 8. thetic data shown in Figure 8, we notice that the performance

The figure clearly shows that the more accurate a predictioh SUL-D drops fast as prediction precision decreases. This
mechanism is, the higher gain SUL-D can provide. For exar$- caused by the higher load in the job log, which reaches
ple, under both failure distributions, the best perforneaie= 84% even under a failure-free computing environment. A
achieved whemprecision andrecall are1.0 (perfect prediction) lower precision means more false alarms, which consequently
and the worst case occurs when both are séttqmeaning demands more spare nodes. This situation is exacerbated whe
that 90% of the predicted failures are false alarms &ty the available spare resources are limited under a highreyste
of the failures are not captured by the failure predictorjthw load.

a perfect prediction, the optimal gain achieved by SUL-D is

more thar50%. We also notice that as long as battecision C- Result Summary

andrecall are higher thai®.2, SUL-D always outperforms the In summary, our experiments with synthetic data and real
plain FCFS. In other words, although false alarms may causgstem traces have shown that:

unnecessary job rescheduling, the benefit brought by FARS FARS can effectively improve system productivity as
often overcomes its negative impact, under the conditiab th long as failure prediction is capable of predictiag%

the failure predictor can captu®% of failures with the false of failure events with a false alarm rate lower theiV
alarm rate lower tha®0%. (see Figure 8 and 10).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Distribution of SUL-D Gain versus FCFS Fault-aware scheduling mainly focuses on providing an
(System Traces) optimal mapping ofnactive jobs (i.e. jobs in the queues) onto
NI available resources based lang-term failure models, such as
0.3 observed failure characteristics or distributions. Défg from
=== 0.4 fault-aware scheduling, this study emphasizes on dyndiyica
— 05 g
06 S adjusting the placement ddctive jobs (i.e., running jobs)
07 to avoid imminent failures discovered Ighort-term failure
0.8 predictors. Here, “short-term” means the time is on the order

- - 09

10 of several minutes to an hour. There are several active gisoje

on exploiting data mining and pattern recognition techgies
for the development of short-term failure predictors [345].
For example, Fu and Xu have designed and implemented a
framework called hPREFECTS for failure prediction in net-
worked computing systems [47]; in our own studies [44], [45]
[48], we have investigated online failure prediction forgle-
scale systems by applying ensemble learning and automated
« System load implicitly determines number of spare nodegata reduction techniques.
thereby impacting the performance of FARS. In the Fault-aware scheduling and FARS complement each other,
systems under a moderate load (esg.0.7), the gain where fault-aware scheduling prevents inactive jobs from t
achieved by FARS is always abo86%. Even when the failures that are well captured in the long-term failure ®isd
system load is as high @95, the gain is still abové5% and FARS enables active jobs to avoid imminent failures that
(see Figure 6). may not follow any long-term pattern but can be discovered
« For systems with node MTBF ranging between severgia runtime diagnosis.
weeks to a couple of years, FARS is capable of providing Checkpointing and process migration are two prevailing
more than30% gain in terms of system productivity (se€fault tolerance techniques. Checkpointing centers upen re
Figure 7). ducing recovery cost by periodically saving an intermesliat
snapshot of the system to a stable storage. A detailed de-
VII. RELATED WORK scription and comparison of different checkpointing téghes
Considerable research has been conducted on fault manager be found in [9]. A number of checkpointing libraries and
ment for high performance computing. They generally fatin tools have been developed for HPC, and examples include
two categories, one on fault-aware scheduling and the aimerlibckpt [27], BLCR [11], open MPI [4], MPICH-V [3], and
runtime fault tolerance techniques. the C3 (Cornell Checkpoint (pre)Compiler) [33]. In additjo
Fault-aware scheduling focuses on making an appropri@ewumber of optimization techniques have been developed to
mapping of jobs or tasks to compute resources by takimgduce its cost and overhead [25], [28], [42]. Oliner et al.
system reliability into consideration. The objective isaoti- proposed to dynamically skip unnecessary checkpoints via
mize performance metrics, such as job response time or jiallure prediction [23]. In essence, checkpointing is teac
slowdown [1]. In [10], Hariri and Raghavendra proposed twmeaning that it only deals with failures after their occages.
reliability-aware task allocation algorithms to optimizee In contrast to these studies on checkpointing, the proposed
probability of successful task completions. Shatz et ad- prFARS emphasizes the use of proactive action (i.e., redilara
sented a task graph based performance model for maximizimgning jobs) to avoid failures.
a reliability cost function, and developed several schiedul Unlike checkpointing, process migration takes preventive
algorithms based on this model [34]. Dogan and Ozgunactions — transferring application processes away from
investigated two reliability-aware cost functions to eeabfailure-prone nodes — before failures. Intensive reseiah
scheduling of precedence-constrained tasks in heterogenebeen done on process migration. Process migration can be
environments [7]. Srinivasa and Jha introduced the safgigrformed at the kernel-level or the user-level. Kerneéle
concept for reliable task allocation in distributed systemmigration requires a modification of the operating system,
[38]. There are also several studies on utilizing redundawhereas user-level methods allow migration without chaggi
resources for task scheduling. Kartik and Murthy proposdie operating system kernel. A detailed survey regarding
a branch-and-bound algorithm to maximize the reliabilitynigration can be found in [36]. There are several active
of distributed systems by using two-level redundancy [14projects on providing process migration support for setigen
Recently, an increasing attention has been paid to faudr@wand parallel applications. For instance, Condor allows-use
scheduling in the field of high performance computing. Itevel process migration by first checkpointing the appiarat
[43], Zhang et al. suggested utilizing temporal and spatiahd then restarting it on a new set of resources [18]. The
correlations among failure events for better schedulingmed® PCL protocol used in the MPICH-V package applies a similar
et al. presented a fault-aware job scheduling algorithnBfae stop-and-restart approach for migrating MPI applicatif8]s
Gene/L systems by exploiting node failure probabilitied][2 There are several research efforts on developing live itidgra
In [15], a fault-aware scheduling was presented for the HAupport for MPI applications. Du and Sun proposed disteibut
OSCAR framework. migration protocols to support live migration [8]. In the AN

precision

0-20.00%-0.00% ©0.00%-20.00% 820.00%-40.00% ®40.00%-60.00%

Fig. 10. Distribution of SUL-D gain versus FCFS on systentés

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

project, a proactive migration scheme was proposed to move REFERENCES

objects to reliable nodes based on fault prediction pralide S Ab 4G, Sehmidt. “Scheduling with U e Mae Broak
I . . ers an . Schmiat, cheauling wi nexpecte Ae break-

by hardware sensors [5]. Nagarajian et al. discussed the Hsledowns,”Discrete Applied Mathematics, Vol. 110(2-3), pp.85-99, 2001.

of Xen virtual machine technology to facilitate transparefny] F. Berman, H. Casanova et al., “New Grid Scheduling andcResul-
process migration [21]. ing Methods in the GrADS Project,International Journal of Parallel

P Programming, Vol. 33, No.2-3,pp.209-229,2005.
The majority of research focuses on the devek)pmem A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier aril Cappello,

optimization of runtime techniques, yet there is a lack of “MpICH-v: A Multiprotocol Automatic Fault Tolerant MPI, Interna-
systematic study on fault-aware runtime management by tak- tional Journal of High Performance Computing and Applications, vol.

; ; ; ; 20, no.3 pp. 319-333, 2006.
ing account of various factordhis study bridges the gap by [4] E. GabrieFI]pG. Fagg, et al., “Open MPI: Goals, Concept &esign of

presenti ng runtimearat@iesfor Spare F!Ode aJ.I ocation and job ~ a Next Generation MPI ImplementationProc. of The 11th European
rescheduling. These strategies coordinate jobs and computing PVM/MPI Users' Group Meeting, Hungary, September 2004.

; ; i~ S. Chakravorty, C. Mendes and L. Kale, “Proactive Fawtefance in
resources in response to failure predlctlon. To the best [5} MPI Applications via Task Migration”Proc. of International Conference

our knowledge, we are among the first to comprehensively on High Performance Computing, pp. 485, 2006.

and systematically study fault-aware runtime system fghhi[6] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Intrdguc to
performance computing. Algorithms (Second Edition)The MIT Press and McGraw-Hill Book,

: . . . 2001.
The term ofjob rescheduling has been used in Grid COM-(7] A. Dogan and F. Ozguner, “Reliable Matching and Schewyiliof

puting. For example, in the GrADS project, an application- Precedence-Constrained Tasks in Heterogeneous Distlilitamputing,”
level job migration and processor swapping approach was Proc. of International Conference on Parallel Processing, pp.307-314,

. NS 2000.
presented to reschedule a Grid application when a betigr b, and x. sun, “MPI-Mitten: Enabling Migration Techiogy in MPI,"
resource is found [2]. Fundamentally different from these proc. of International Symposium on Cluster Computing and the Grid,

studies, our work utilizes job rescheduling to improve egst pp. 11-18, 2006.

- . - . [9] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Survef/Rollback
resilience to failures. The issues such as spare node tidioca Recovery Protocols in Message-passing SystemACM Computing

and job selection for rescheduling are not addressed in Grid surveys, vol. 34(3),pp. 375-408, 2002.
computing. [10] S. Hariri and C. Raghavendra, “Distributed Functiontoéation for
Reliability and Delay Optimization,Proc. of ACM Fall joint computer
conference, pp.344-352,1986.

VIIl. CONCLUSIONS [11] P. Hargrove and J. Duell, “Berkeley Lab CheckpointfaesBLCR) for
Although much work remains to make FARS fully opera- Linux Clusters,"Proc. of SciDAC , 2006.

tional, our results have shown the importance and poteoiall*?] R Jain. “The Art of Computer Systems, Performance Analy$ech-
! niques for Experimental Design, Measurement, Simulation, Model-

exploiting runtime failure prediction to improve systenopr ing,” Wley-Interscience, New York, 1991.
ductivity. In particular, we have presented runtime stggie [13] Parallel Workloads Archiventtp:/www.cs.huji.ac.il/labs/parallel/workioad/

for rdinating i n m ing r r inr [34] S.‘Ka_r‘tik and C Murthy, “Task _AIIocation Algorithms deIaxjmizing
or coordinat 9 JObS and co puting resources eSpwsle Reliability of Distributed Computing Systems,|EEE Transactions on

failure prediction. Our extensive experiments have in#ida computer Systems, Vol. 46, pp.719-724, 1997.
that FARS is capable of improving system productivity aglon15] K. Limaye,C. Leangsuksun, and A. Tikotekar, “Fault Talece Enabled

as the failure predictor can captu?e% of failure events with ~ HPC Scheduling with HA-OSCAR Framework,"Proc. of the High
. . . Availability and Performance Workshop, 2005.
a false alarm rate lower that$%. With the advance in failure [16) v. i p. Gujrati, z. Lan and X. Sun, “Fault-Driven ReSeduling

prediction, we believe FARS will become more effective. The for Improving System-Level Fault Resilience Proc. of International
proposed 0-1 knapsack model gives a general and flexible Conference on Parallel Processing(ICPP), 2007.

. . . . 1 Z. Lan and Y. Li, “Adaptive Fault Management of Parallgbplications
method for job rescheduling, from which we can derive a 't pjioh performance Computing.” To appear in tHeEE Trans, on

variety of rescheduling strategies. Computers, 2008.
Our study has some limitations that remain as our futuf&8] M. Litzkow, T. Tannenbaum, J. Basney and M. Livny, “Chpolnt

. . . and Migration of UNIX Processes in the Condor Distributeddessing
work. First, we are in the process of collecting more worklba System.” University of Wisconsin-Madison Computer Science Technical

and failure events from production systems to further ealu Report, no.1346, 1997.
the effectiveness of FARS. Second, we plan to integrate FARS] C. Lu, “Scalable Diskless Checkpointing for Large RlafaSystems,”

. _ . Ph.D. thesis, University of lllinois at Urbana-Champaign, 2005.
with fault-aware scheduling work such as [24]. We eXpeﬁO] A. Mu'alem and D. Feitelson, “Utilization, Predictdity, Workloads,

that this combination can further improve system proditgtiv and User Runtime Estimates in Scheduling the IBM SP2 with Blkckfi

Lastly, exploiting failure patterns for failure prediatias an ing,” |EEE Transactions on Parallel and Distributed System, Vol. 12(6),
AN ; ; ; pp. 529-543, 2001.

on gomg project in our grOUp [44]’ _[45,]’ [48]' Integratm(‘:][21] A. Nagarajan, F. Mueller, C. Engelmann and S. Scott, &etiwe Fault

FARS with the work on failure prediction is part of our futureé “rojerance for HPC with Xen Virtualization,Proc. of International

work. Our ultimate goal is to implement FARS, along with Conference on Supercomputing, pp. 23-32,2007.

; i~ in i ; [22] D. Nurmi, A. Mandal,J. Brevik, C. Koelbel, R. Wolski and Kennedy,
failure predlctlon work, in job scheduling systems for bett “Evaluation of a Workflow Scheduler Using Integrated Perfance

fault management of high performance computing. Modeling and Batch Queue Wait Time PredictioRfoc. of ACM/IEEE
Conference on Supercomputing, 2006.
ACKNOWLEDGMENT [23] A. J. Oliner, L. Rudolph and R. K. Sahoo,“CooperativeeCkpointing

. . - A Robust Approach to Large-scale Systems ReliabiliBrbc. of Inter-
We would like to thank Warren Smith at TACC for providing national COn?gence on Sjpe?computing,ypp. 14-23, 200&?r

us the Lonestar job log. This work was supported in pag4] A. Oliner, R. Sahoo, J. Moreira and M. Gupta, “Fault-asalob
by US National Science Foundation grants CNS-0720549, Scheduling for BlueGene/L Systemstoc. of IPDPS, pp.64, 2004.

CCFE-0702737 d TeraGrid C te All fi S ngZS] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-max Checkp
B » ana a feraGri ompute ocation. SOME “pjacement under Incomplete Failure Informatiorde. of International

preliminary results of this work were presented in [16]. Conference on Dependable Systems and Networks, pp. 721, 2004.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[26] F. Petrini, “Scaling to Thousands of Processors withffé&ed
Coscheduling” Proc. of the Scaling to New Height Workshop, 2002.
[27] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Traparent

Checkpointing under Unix,Proc. of Usenix, 1995.

[28] J. Plank, K. Li, and M. Puening, “Diskless Checkpoigtin EEE
Transactions on Parallel and Distributed Systems, vol. 9(10), pp. 972-
986, 1998.

[29] J. Plank and M. Thomason, “Processor Allocation and &peinit
Interval Selection in Cluster Computing Systemdgurnal of Parallel
and Distributed Computing, Vol. 61, No. 11, pp.1570-1590, 2001.

[30] D. Reed, C. Lu, and C. Mendes, “Big Systems and Big Rditgbi
Challenges,Proc. of Parallel Computing, pp. 729-736, 2003.

[31] R. Sahoo, A. Oliner, et al., “Critical Event Predictidor Proactive
Management in Large-scale Computer ClusterBrdc. of International
Conference on Knowledge Discovery and Data Mining, pp. 426-435,
2003.

[32] B. Schroeder and G. Gibson, “A Large Scale Study of Fagun High-
Performance-Computing System®foc. of International Symposium on
Dependable Systems and Networks, 2006.

[33] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques,Pkgali,
and P. Stodghill, “Implementation and Evaluation of a Scaakppli-
cation Level Checkpoint-recovery Scheme for MPI PrograrRsgc. of
ACM/IEEE Conference on Supercomputing, pp. 38, 2004.

[34] S. Shatz, J. Wang, and M. Goto, “Task Allocation for Makiing Relia-
bility of Distributed Computer SystemsJEEE Trans. on Computers,Vol.
41, No. 9, pp. 1156-1168,1992.

[35] R. Smith and D. Dietrich, “The Bathtub Curve: An Alterivat Ex-
planation,” Proc. of Reliability and Maintainability Symposium, pp.241-
247,1994.

[36] J. Smith “A Survey of Process Migration Mechanism&perating
Systems Review, Vol. 22, No.3, pp.102-106,1988.

[37] J. Squyres and A. Lumsdaine, “A Component Architecture
LAM/MPI,” Proc. of European PVM/MPI, 2003.

[38] S. Srinivasan and N. Jha, “Safety and Reliability Dnivieask Allocation
in Distributed Systems,JEEE Trans. Parallel and Distributed Systems,
Vol 10(3), 1999.

[39] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfiling Ug System-
Generated Predictions Rather than User Runtime EstimaE=E Trans.
on Parallel and Distributed Systems, vol. 18(6), 2007.

[40] R. Vilalta and S. Ma, “Predicting Rare Events in Tempddamains, ”
Proc. of IEEE Intl. Conf. On Data Mining, 2002

[41] L. Wang, K. Pattabiraman, L. Votta,C. Vick, A. Wood, Z. lKkarczyk
and R. lyer, “ Modeling Coordinated Checkpointing for Lai§eale
Supercomputers,Proc. of Dependable Systems and Networks, pp. 812-
821, 2005.

[42] J. Young, “A First Order Approximation to the Optimal Clpoint
Interval,” Communications of the ACM, vol. 17(9), pp. 530-531 1974.

[43] Y. Zhang, M. Squillante, A. Sivasubramaniam and R. SaliBerfor-
mance Implications of Failures in Large-Scale Cluster Sclivgl Proc.
of Workshop on Job Scheduling Strategies for Parallel Processing, pp.233-
252, 2004.

[44] Z. Zheng, Y. Li and Z. Lan, “Anomaly Localization in Largeale
Clusters”,Proc. of |EEE Cluster’07, 2007.

[45] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Metaearning
Failure Predictor for Blue Gene/L SystemsProc. of International
Conference on Parallel Processing (ICPP’07), 2007.

[46] M. Morris, “Kiviat Graphs: Conventions and Figures ofekit”, ACM
S GMETRICS Performance Evaluation Review, Vol. 3(3), 1974.

[47] S. Fu and C.Z. Xu, “Exploring Event Correlation for kai Prediction
in Coalitions of Clusters”Proc. of SC'07, 2007.

[48] J. Gu, Z. Zheng, Z. Lan,J. White, E. Hocks, B. Park, “Dynarkieta-
Learning for Failure Prediction in Large-Scale Systems: AeC&tudy”,
Proc. of International Conference on Parallel Processing(ICPP), 2008.

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

fo

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

14

Yawei Li received the BS and MS degrees in
the University Of Electronic Science & Technology
of China in 1999 and 2002. He is now a PhD
candidate of Computer Science at lllinois Institute
of Technology since 2004. He specializes in par-
allel and distributed computing, scalable software
systems. His current research focuses on adaptive
fault management in large-scale computer systems,
checkpointing optimization and load balancing in
Grid environment. He is also an IEEE member.

Zhiling Lan received the BS degree in Mathematics
from Beijing Normal University, the MS degree
in Applied Mathematics from Chinese Academy of
Sciences, and the PhD degree in Computer Engineer-
ing from Northwestern University in 2002. She is
currently an assistant professor of computer science
at the lllinois Institute of Technology. Her main
research interests include fault tolerant computing,
dynamic load balancing, and performance analysis
and modeling. She is a member of the IEEE Com-
puter Society.

Prashasta Guijrati received Bachelor of Technology

degree at Institute of Technology, Banaras Hindu
University. He is currently a Masters student at
Computer Science Department of lllinois Institute of

Technology. His current research interests are fault-
tolerance in parallel/distributed systems, data mining
and pattern recognition. He is also an IEEE member.

Xian-He Sun is a professor of computer science
at the lllinois Institute of Technology (lIT), a guest
faculty member at the Argonne National Laboratory
and the Fermi National Accelerator Laboratory, and
the director of the Scalable Computing Software
(SCS) laboratory at IIT. Before joining IIT, he was a
postdoctoral researcher at the Ames National Labo-
ratory, a staff scientist at ICASE, NASA Langley
Research Center, an ASEE fellow at the Naval
Research Laboratory, and an associate professor at
Louisiana State University-Baton Rouge. He is a

senior member of the |IEEE and the IEEE Computer Society.

