
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Fault-Aware Runtime Strategies for High
Performance Computing

Yawei Li, Student Member, IEEE, Zhiling Lan*, Member, IEEE, Prashasta Gujrati,Member, IEEE, and
Xian-He Sun,Senior Member, IEEE

Abstract—As the scale of parallel systems continues to grow,
fault management of these systems is becoming a critical chal-
lenge. While existing research mainly focuses on developing or
improving fault tolerance techniques, a number of key issues
remain open. In this paper, we propose runtime strategies for
spare node allocation and job rescheduling in response to failure
prediction. These strategies, together with failure prediction and
fault tolerance techniques, construct a runtime system called
FARS (Fault-Aware Runtime System). In particular, we propose a
0-1 knapsack model and demonstrate its flexibility and effective-
ness for reallocating running jobs to avoid failures. Experiments,
by means of synthetic data and real traces from production
systems, show that FARS has the potential to significantly
improve system productivity (i.e., performance and reliability).

Index Terms—High performance computing, runtime strate-
gies, fault tolerance, performance, reliability, 0-1 knapsack.

I. I NTRODUCTION

BY 2011, it is anticipated that researchers will be able
to access a rich mix of systems with some capable of

delivering sustained performance in excess of one petaflop/s.
Production systems with hundreds of thousands of processors
are being designed and deployed. Such a scale, combined
with the ever-growing system complexity, is introducing a
key challenge on fault management for high performance
computing (HPC). Despite great efforts on designing ultra-
reliable components, the increase in system size and complex-
ity has outpaced the improvement of component reliability.
Recent studies have pointed out that the mean-time-between-
failure (MTBF) of teraflop and soon-to-be-deployed petaflop
machines are only on the order of 10 - 100 hours [30]. This
situation is only likely to deteriorate in the near future, thereby
threatening the promising productivity of large-scale systems
[26].

The conventional method for fault tolerance is checkpoint-
ing, which periodically saves a snapshot of the system to
a stable storage and uses it for recovery in case of failure.
Yet it does not prevent failure, and work loss is inevitable
due to the rollback process. An increasing interest in high

Yawei Li is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616. Email: liyawei@iit.edu

Zhiling Lan is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616. Email: lan@iit.edu.Asterisk indicates
corresponding author

Prashasta Gujrati is with the Department of Computer Science,Illinois
Institute of Technology, Chicago, IL 60616. Email: gujrpra@iit.edu

Xian-He Sun is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616. Email: sun@iit.edu

Manuscript received October 30, 2007; revised May 12, 2008;accepted
July 1, 2008.

performance computing is to explore proactive techniques
like process migration to avoid failures by leveraging the
research on failure prediction. For example, object migration
is proposed for AMPI based applications to avoid hardware
failures [5]. The experiment with a Sweep3D application has
shown that object migration may only take less than 2 seconds.
In [21], live migration is explored on Xen virtual machines,
and the experiments with scientific applications have shown
that migration overhead is as low as30 seconds. In our own
previous study [17], we have demonstrated that timely process
migrations can greatly improve application performance —
application execution times — by up to43%.

While process migration itself has been studied extensively,
a number of issues remain open in the design of fault-aware
runtime systems. Key issues include how to allocate resources
to accommodate proactive actions, and how to coordinate
multiple jobs for an efficient use of the resources in case
of resource contention. Further, there is a lack of systematic
study of runtime fault management by taking into account var-
ious factors including system workload, failure characteristics,
and prediction accuracy. As an example, a commonly asked
question is, “Given that prediction misses and false alarmsare
common in practice, how much gain can a fault-aware runtime
system provide?”

This study aims at filling the gap between failure prediction
and fault tolerance techniques by designing runtime strategies
for spare node allocation andjob rescheduling (i.e., reallocate
running jobs to avoid failures). These strategies, together with
failure prediction and fault tolerance techniques, construct a
runtime system called FARS (Fault-Aware Runtime System)
for high performance computing.

The first runtime strategy is for spare node allocation. To
enable running jobs to avoid anticipated failures, spare nodes
are needed. As jobs in the queues also compete for computing
resources, a desirable runtime system should make a balanced
allocation of resources between failure prevention and regular
job scheduling. While static allocation by reserving a fixed
number of nodes in prior is simple, it does not adapt to the
runtime dynamics inherent in production environments. We
propose a non-intrusive allocation strategy that dynamically
allocates spare nodes for failure prevention.

The second runtime strategy is for job rescheduling. Given
the existence of failure correlations in large-scale systems,
simultaneous failures on multiple nodes are possible. Selection
of jobs for rescheduling becomes crucial when spare nodes are
not sufficient to accommodate migration requests originating
from jobs. Previous research generally assumed the availability



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

of sufficient spare nodes. But unfortunately, system resources
are limited. Job rescheduling in case of resource contention
can significantly impact the overall system productivity, given
that jobs have quite different characteristics. In this study, we
present a 0-1 knapsack model to address the job rescheduling
problem, and then demonstrate its flexibility and effectiveness
by presenting three job rescheduling strategies.

We evaluate FARS under a wide range of system settings
by using both synthetic data and real traces from production
systems. Considering that the often used performance metrics
like system utilization rate are mainly designed to measure
system performance without giving much attention to failure,
we choose a set of six metrics (including both performance
and reliability metrics) and a six-dimensional Kiviat graph
for a comprehensive assessment of FARS. We also examine
the sensitivity of FARS to system load, node MTBF, and
prediction accuracy.

Preliminary results show that FARS can substantially re-
duce job response time, job slowdown caused by failure,
job failure rate and work loss, as well as slightly improve
system utilization and job throughput. For a moderately loaded
system, FARS is capable of improving its productivity (i.e.,
performance and reliability) by over30% as against the case
without it. Our experiments demonstrate the effectivenessof
FARS as long as the failure predictor can capture25% of
failure events with a false alarm rate lower than75%.

FARS complements existing research on checkpointing and
job scheduling by reallocating running jobs to avoid failures
in response to failure prediction. It can be easily integrated
with job schedulers and checkpointing tools to jointly address
the fault management challenge in HPC. The proposed 0-1
knapsack model provides a flexible method to address the job
rescheduling problem, from which new rescheduling strategies
can be easily derived.

The remainder of this paper is organized as follows. Section
II gives an overview of FARS. A dynamic strategy for spare
node allocation is described in Section III. Section IV
formalizes the rescheduling problem as a 0-1 knapsack model
and presents three rescheduling strategies. Section V describes
our evaluation methodology, followed by experimental results
in Section VI. Section VII briefly discusses related work.
Finally, Section VIII summarizes the paper and presents future
work.

II. PROBLEM DESCRIPTION

Consider a system withN compute nodes. User jobs are
submitted to the system through a batch scheduler. For ex-
ample, FCFS (first-come, first-serve) scheduling is commonly
used by batch schedulers in high performance computing [20].
A job may be a sequential application or a parallel application.
A job request is generally described by a three-parameter tuple
{ai, ti, ni}, whereai is job arrival time,ti is job execution
time, andni is job size in terms of number of compute nodes.

The job scheduler is responsible for allocatinginactive
jobs (i.e., jobs in the queues) to compute nodes. Once a
job is allocated, it is termed as anactive job. FARS is
responsible for fault management of active jobs in responseto

Fig. 1. Overview of FARS. User jobs are submitted through the job scheduler,
while FARS is responsible for managing active jobs (i.e. running jobs) in the
presence of failure. The dark shaded boxes indicate the majorcontributions of
this study: spare node allocation (Section III) and job rescheduling (Section
IV)

failure prediction. Here, afailure is defined as an unexpected
event in system hardware or software that stops a running
application immediately. In case of parallel applicationslike
MPI applications [4], a single node failure usually aborts the
entire application. Failed nodes are excluded from the pool
of compute nodes until the problem is repaired. Active jobs
are supposed to be checkpointed by application-initiated or
system-initiated checkpointing tools [3], [11], [37]. Figure 1
gives an overview of FARS.

FARS may be triggered in two ways: (1) pre-defined,
where FARS is invoked at pre-defined points set by system
administrators; and (2) event-triggered, where FARS is alerted
by the failure predictor when a worrisome event occurs. This
paper assumes pre-defined mechanism for the convenience of
study.

FARS periodically consults the failure predictor for the
status of each compute node during the next interval. Regard-
less of prediction techniques, prediction result can be either
categorical where the predictor forecasts whether a failure
event will occur or not, ornumerical where the predictor
estimates failure probability. Numerical results can be easily
converted to categorical results via threshold based splitting;
hence in this paper, we uniformly describefailure prediction
as a process that periodically estimates whether a node will
fail during the next interval. Such a prediction mechanism is
generally measured by two metrics:precision and recall as
described in Table I.

Upon each invocation, FARS identifies the set of nodes that
are likely to fail in the next interval based on failure prediction.
Suppose thatNs out of N nodes are predicted to be failure-
prone (denoted assuspicious nodes) and {js

i |1 ≤ i ≤ Js}
is the set of active jobs residing on these suspicious nodes
(denoted assuspicious jobs).

The objective of FARS is to dynamically reallocate sus-
picious jobs so as to minimize failure impact on system
productivity. Toward this end, runtime strategies are developed
for allocating spare nodes and reallocating suspicious jobs.
based on these runtime strategies, process migration support
can be applied to transfer application processes away from
failure-prone nodes to healthy spare nodes.

Before presenting our strategies, we present our nomencla-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE I
NOMENCLATURE

Symbol Description

precision, recall Prediction accuracy, defined asTp

Tp+Fp
and Tp

Tp+Fn
respectively

whereTp is no. of true positives,Fp is no. of false positives, andFn is no. of false negatives
N, Ns Number of nodes (suspicious nodes) in the system
S Number of spare nodes
J, Js Number of active jobs (suspicious jobs)
ti failure-free execution time of jobji

ni, n
s
i Number of nodes (suspicious nodes) allocated to jobi

fi Failure probability of jobji

ti
last The most recent time where the job can be safely started from

IF FARS interval
Ockp Job checkpoint overhead
Or Job restart cost
OF FARS overhead
Oq Job re-queuing time

ture in Table I.

III. SPARE NODE ALLOCATION

Spare nodes for failure prevention can be allocated either
statically or dynamically. Static allocation, which reserves a
fixed set of nodes, is commonly used in existing studies due
to its simplicity [29]. Static allocation is simple. However,
it is difficult, if not impossible, to determine an optimal
reservation at a prior time. An excessive allocation can lead
to low system productivity due to less resources for regular
job scheduling, while a conservative allocation can undermine
the effectiveness of FARS because of insufficient spare nodes
for process migration. Further, system load tends to change
dynamically during operation, and static allocation does not
adapt to these changes.

We propose a dynamic allocation strategy, which is based
on a key observation in high performance computing.

A. Observation

After examining a number of job logs that are shared on the
public domain [13] or are collected from production systems,
we have observed thatidle nodes are common in production
systems, even in the systems under high load.

In Table II, we list the statistics of idle nodes from ten
production systems. This list contains a variety of systemswith
different scales, utilization rates, and architectures. Production
systems typically consist of a collection of compute nodes and
some service and I/O nodes. The data shown in the table only
lists the results from compute nodes.

While these systems may exhibit different patterns in terms
of idle node distributions, they share a common characteristic,
that is, idle nodes are often available. In fact, on all the systems
we have examined, the probability that at least2% of the
system resources are idle at any instant of time is high (more
than70%), and in some systems the probability is even as high
as90%. We believe that the table clearly delivers the message
that idle nodes are common in production systems. Indeed,
this observation is confirmed by system administrators and is
also mentioned in [43].

TABLE II
STATISTICS OF IDLE NODES IN PRODUCTION SYSTEMS. THE LAST

COLUMN GIVES THE PROBABILITY THAT AT LEAST 2% OF SYSTEM NODES

ARE IDLE AT ANY TIME INSTANT .

System Period CPUs Jobs Util Prob
SDSC SP2 24 mo 128 59,725 83.5% 73.0%

NASA iPSC 3 mo 128 18,239 46.7% 79.2%
OSC Cluster 22 mo 178 36,097 43.1% 79.2%
LLNL T3D 4 mo 256 21,323 61.6% 96.9%

SDSC Paragon 24 mo 400 86,105 71.0% 99.3%
CTC SP2 11 mo 430 77,222 66.2% 93.0%

TACC Lonestar 6 mo 1024 25,000 94.0% 95.8%
LANL CM5 24 mo 1024 122,060 75.2% 98.0%
SDSC Blue 32 mo 1152 243,314 76.2% 94.0%
LANL O2K 5 mo 2048 121,989 64.0% 99.7%

B. Dynamic Allocation Strategy

Based on the above observation, we proposea non-intrusive,
dynamic allocation strategy for FARS. Here, the “dynamic”
means that spare nodes are determined at runtime, and the
“non-intrusive” indicates that FARS does not violate any
reservation made by the job scheduler. The detailed steps are
as follows:

• Upon invocation, FARS first harvests the available idle
nodes into a candidate pool.

• Next it excludes failure-prone nodes from the candidate
pool according to failure prediction. The rationale is
to avoid the situation wherein an application process is
transferred to a failure-prone node.

• Finally, FARS excludes a number of nodes from the
candidate pool to ensure job reservations made by the
batch scheduler for some queued jobs [20]. The resulting
pool is denoted asspare pool, and will be used for
runtime failure prevention.

Figure 2 illustrates how our dynamic allocation strategy
works with FCFS/EASY backfilling scheduling [20]. Under
FCFS/EASY, jobs are served in first-come first-served order,
and subsequent jobs continuously jump over the first queued
job as long as they do not violate the reservation of the
first queued job. FCFS/EASY backfilling is widely used by



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Fig. 2. Dynamic Node Allocation. An example by using FARS with
FCFS/EASY is shown, in which spare nodes are not sufficient. At time t4,
there are two suspicious jobs (j1 and j2) and two idle nodes (n4 and n5).
To guarantee the reservation of the first queued jobj4 at t4 required by
FCFS/EASY, FARS only putsn5 into the spare pool.

many batch schedulers, and it has been estimated that 90 to
95 percent of batch schedulers use this default configuration
[39]. As shown in the figure, to guarantee the reservation of
the first queued job (job 4 at timet4), FARS only puts one
idle node into the spare pool. After this, FARS will apply the
rescheduling method presented in Section IV to select a job
(which is j2 in this case) for rescheduling, andj1 will fail if
the failure prediction is correct.

This dynamic allocation strategy is not limited to
FCFS/EASY, and can be applied to other scheduling policies.
For example, in case of a greedy scheduling that does not
guarantee any job reservation, FARS aggressively acquiresall
idle nodes and puts them into the spare pool; in case of a more
conservative scheduling such as conservative backfilling [20],
FARS excludes the nodes to guarantee the reservation of all
the queued jobs and only puts the remaining idle nodes into
the spare pool.

IV. JOB RESCHEDULING

After acquiring the spare pool, the next step is to provide
a strategy for rescheduling suspicious jobs. In case that the
number of spare nodes is sufficient, all the suspicious jobs
will be reallocated. Otherwise, contention occurs among the
suspicious jobs for the spare nodes. A desirable rescheduling
strategy should weigh the benefit of reallocating different
jobs, with the goal of minimizing failure impact on system
productivity.

In this section, we first describe how to formalize the
problem into a 0-1 knapsack model and then present three
rescheduling strategies derived from this model.

A. 0-1 Knapsack Model

Suppose there areS nodes in the spare pool,Js suspicious
jobs {js

i |1 ≤ i ≤ Js}, with each jobji residing onns
i

suspicious nodes. Hence, the rescheduling problem can be
formalized as:

Problem 1: To select a set of application processes from
the suspicious jobs, with the objective of minimizing failure
impact on system productivity.

For a parallel job (e.g., a MPI job), failure of even a single
process usually aborts the entire job. Thus, for a suspicious job,
migrating some of its suspicious processes does not eliminate
the possibility of failure. An effective rescheduling strategy
should be morejob-oriented, meaning that all suspicious
processes belonging to the same job should be migrated
together if possible. As a result, problem 1 can be transformed
into the following problem:

Problem 2: To select a subset of{js
i |1 ≤ i ≤ Js} such

that their rescheduling requires no more thanS spare nodes,
with the objective of minimizing failure impact on system
productivity.

For each suspicious jobji, we associate it with a gainvi

and a weightwi. Here, vi represents productivity gain by
rescheduling the job, which will be elaborated in the next
subsection. Andwi denotes its rescheduling cost, which is the
number of spare nodes needed for rescheduling the job. We
can further transform Problem 2 into a standard 0-1 knapsack
model:

Problem 3: To determine a binary vectorX = {xi|1 ≤
i ≤ Js} such that

maximize
∑

1≤i≤Js

xi · vi, xi = 0 or 1

subject to
∑

1≤i≤Js

xi · n
s
i ≤ S

(1)

The solutionX determines the jobs for rescheduling. Ifxi

is 1, meaning thatji is selected for reallocation by transferring
some of its application processes so as to avoid job failure.

B. Three Rescheduling Strategies

Depending on the primary objective of fault management,
a variety of rescheduling strategies can be derived from the
aforementioned 0-1 knapsack model by properly settingvi.

In practice, failure impact can be observed from different
aspects. When a failure occurs, the affected job fails and
rolls back to its initial state or the most recent checkpoint,
thereby causing a loss of computing cycles. In the field of high
performance computing, such a loss is generally measured by
service units which is defined as the aggregated processing
time. Users are typically concerned about failure probability
of their jobs. This can be quantified byjob failure rate, which
is defined as the ratio between the number of failed jobs
and the total number of jobs submitted. Furthermore, given
that different jobs have different characteristics, it is often
important to determine the average slowdown caused by failure
on user jobs.Failure slowdown, defined as the ratio of the time
delay caused by failure to failure-free job execution time,can
be used to serve the purpose.

In this paper, we propose three rescheduling strategies, each
focusing on reducing one specific failure impact as discussed
above.

1) Service Unit Loss Driven (SUL-D). It aims at minimizing
the loss of service units (defined as the product of
the number of compute nodes and the amount of time
wasted due to failure). Not knowing the exact failure



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

time, we assume that failures are uniformly distributed
in the next interval. Hence, for a suspicious jobji, its
rescheduling gain can be estimated as:

vi = fi · ni · (t +
IF

2
− tilast − OF ) (2)

wherefi = 1 − (1 − precision)ns
i

Here,t is the current time,IF is FARS interval,ni is job
size,ns

i is number of suspicious nodes,fi is job failure
probability, andtilast is the most recent time where the
job can be safely started from, e.g., the last checkpoint
or the job start time. As we can see,(t + IF

2 − tilast) is
the amount of time saved by reschedulingji. OF is the
overhead of reallocating the job, which can be obtained
by tracking operational costs at runtime. Depending
on the specific implementation of process migration,
OF may differ. For example, in case of a stop-and-
restart design that checkpoints the application and then
restarts it on a new set of resources [18],OF can be
approximated by(Ockp +Or); in case of live migration
support, it can be estimated byOr. Both Ockp andOr

can be tracked in practice [17].
2) Job Failure Rate Driven (JFR-D). It aims at reschedul-

ing as many suspicious jobs as possible. This strategy
intends to minimize job interrupts caused by failure so
as to improve user satisfaction of system service. Hence,
for a suspicious jobji, its rescheduling gainvi is:

vi = fi · 1 (3)

3) Failure SlowDown Driven (FSD-D). The objective of
this strategy is to minimize the slowdown caused by
failure. For a suspicious jobji, failure impact includes
job re-queuing costOq, its restart costOr and the
recomputation time on the lost work. The recomputation
time can be estimated in the same way as in the SUL-
D strategy;Oq can be determined based on historical
data, such as by using LAST or MEAN predictive
method [22]. Thus, the gain of rescheduling jobi can
be estimated as:

vi = fi · (t +
IF

2
− tilast + Oq + Or − OF )/ti (4)

whereti is failure-free job execution time.

C. Dynamic Programming

After setting the gain value in Equation (1), the 0-1 knap-
sack model can be solved in pseudo-polynomial time by
using dynamic programming method [6]. To avoid redundant
computation, we use the tabular approach by defining a two-
dimensional tableG, where G[k,w] denotes the maximum
gain that can be achieved by rescheduling suspicious jobs
{js

i |1 ≤ i ≤ k} with no more thanw spare nodes, where

1 ≤ k ≤ Js and 1 ≤ w ≤ Ns. G[k,w] has the following
recursive feature:

=

{

0 kw = 0
G[k − 1, w] ns

k > w
max(G[k − 1, w], vk + G[k − 1, w − ns

k]) ns
k ≤ w

(5)

The solutionG[Js, S] and the corresponding binary vector
X determine the selection of suspicious jobs for rescheduling.
The computation complexity of Equation (5) isO(Js · S).

D. Residual Issue

After the aforementioned job-oriented selection, it is pos-
sible that there are some spare nodes and suspicious jobs
left. We call thisa residual issue. To address the issue, we
adopt a best-effort method to select one more suspicious job
for rescheduling [16]. Suppose there areR spare nodes left
after the job-oriented selection, FARS calculates rescheduling
gain for each of the remaining suspicious jobs and selects
the job with the maximal gain value. The calculation of
vi is the same as shown in Equation (2)-(4), except that
fi = 1 − (1 − precision)(n

s
i−R).

V. EVALUATION METHODOLOGY

Our experiments were based on event-driven simulations
by means of synthetic data and real traces collected from
production systems. An event driven simulator was developed
to emulate a HPC system using FCFS/EASY scheduling [16].
We compared FARS-enhanced FCFS/EASY as against the
plain FCFS/EASY. In the rest of the paper, we simply use
the term SUL-D, JFR-D, FSD-D, and FCFS to denote three
rescheduling strategies and the plain FCFS/EASY. This section
describes our evaluation methodology, and the results willbe
presented in the next section.

A. Simulator

The simulator was driven by three classes of events: (1)
job events including job arrivals and terminations; (2)failure
events including failure arrivals and repairs; and (3)fault
tolerant events including job checkpointing and rescheduling
events. Upon a job arrival, the simulator was informed of job
submission time, job size, and its estimated runtime. It started
the job or placed it in the queue based on FCFS/EASY. Upon a
job termination, it removed the job and scheduled other queued
jobs based on FCFS/EASY. Upon a node failure, the simulator
suspended the node and the job running on it for failure repair.
After failure repair, the simulator resumed the job that was
suspended by the failure and the time delay was added into
job completion time. Each job was checkpointed periodically,
and the checkpoint frequency for each job was set based on
the widely used formula [42]. Upon checkpointing events,
checkpoint overhead was added into job completion time. In
case of FARS rescheduling, FARS overhead was added into
the corresponding job completion time.

The behavior of a failure predictor was emulated and its
prediction accuracy was controlled by two metrics:



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

1) Recall: If there exists a failure on a node in the next
interval, the predictor reports a failure on the node with
the probability ofrecall.

2) Precision: Suppose the predictor has totally reported
x failures for the intervals with actual failures. Ac-
cording to the definition ofprecision, for intervals
without an actual failure, the predictor randomly selects
x×(1−precision)

precision
intervals and gives a false alarm on each

of them.

B. Synthetic Data and System Traces

Both synthetic data and real machine traces were used for
the purpose of comprehensive evaluation. Synthetic data was
used to extensively study the sensitivity of FARS to a variety
of system parameters, whereas machine traces were criticalfor
assessing the practical effectiveness of FARS in real computing
environments.

1) Synthetic Data: Our synthetic data was generated to
emulate a 512-node cluster:

• Job events. The job arrivals, lengths and sizes were
based on Exponential distributions, where the means were
set to 1000.0 seconds,1500.0 seconds and10 CPUs
respectively. The system utilization rate was set to70%,
to reflect a moderate system load.

• Failure events. Exponential and Weibull distributions are
two commonly used models for failure arrivals [12],
[32]. Hence, we generated two sets of failure events
with Exponential distribution and Weibull distribution
respectively. For the Weibull distribution, to reflect the
commonly observed “bathtub” behavior [35], we used a
composite Weibull distribution with three subpopulations
where the shape parameters were set toβ = 0.5, β = 1.0
andβ = 1.5 respectively. They were used to simulate the
burn-in, normal and worn-out phases of the system [23].
To study the sensitivity of FARS to MTBF, we tuned
the mean of Exponential distributionλ−1 and the scale
parameter of Weibull distributionη. The failure repair
process was based on an exponential distribution at a
mean of MTTR (mean-time-to-repair).

2) System Traces: System traces were collected from 512-
node production systems:

• Job events. A six-month job log was collected from the
Lonestar system at Texas Advanced Computing Center
(TACC). The cluster contained 512 Dell PowerEdge 1750
compute nodes, 13 Dell PowerEdge 2650 I/O server
nodes and 2 Dell PowerEdge 2650 login/management
nodes. The job log only contained workload information
from the compute nodes. As shown in Table II, the
system utilization rate was94%. The average job running
time was3171.0 seconds, the job arrival rate was 0.0044
and the average job size was 14 CPUs.

• Failure events. Due to the unavailability of a correspond-
ing failure log from the TACC Lonestar, we used a failure
log from a comparable Linux cluster at NCSA [19]. The
machine had 520 two-way SMP 1 GHz Pentium-III nodes
(1040 CPUs), 512 of which were compute nodes (2 GB
memory), and the rest were storage nodes and interactive

Fig. 3. Exemplar 6-D Kiviat Graph. The range of each metric is from zero
to the largest value observed in the experiments. The relative gain of method
B over A is defined asK(B)−K(A)

K(A)
, whereK(·) denotes the K-value of a

method. The K-Value of a method is the shaded area. The smaller a K-value
is, the better performance a method has.

access nodes (1.5 GB memory). The MTBF was 0.79
hours for the system, and was 14.16 days per node. The
MTTR was about1.73 hours.

C. Evaluation Metrics

Three performance metrics and threereliability metrics
were used for evaluation:

1) Average response time (Resp). Let J be the total number
of jobs,ci be the completion time of jobji, andai be job
arrival time. The average response time of the system is
defined by:

[
∑

1≤i≤J

(ci − ai)]/J

2) Utilization rate (Util). Let T be the total elapsed time
for J jobs,N be the number of nodes in the system,si

be the start time of jobi, andni be the size of jobi.
System utilization rate is defined as:

[
∑

1≤i≤J

(ci − si) · ni]/(N · T )

3) Throughput (Thru). It is defined as the average number
of completed jobs in a unit of time.

4) Service unit loss (SUL). Defined as the total amount of
wasted service units (i.e., product of wall clock hours
and number of nodes) caused by failure. This metric
directly indicates the amount of computing cycles lost
due to failures - an important metric to both system
managers and users.

5) Job failure rate (JFR). Defined as the ratio between the
number of failed jobs and the total number of jobs sub-
mitted. It reflects percentage of jobs that are interrupted
by failures, an important indicator of system’s quality of
service.

6) Failure slowdown (FSD). Defined as the ratio of time
delay caused by failure to failure-free job execution time,
average over the total number of jobs. To mitigate the
impact of small jobs, A threshold of10.0 seconds was
applied in the calculation of FSD. Different from the
widely used scheduling metricbounded slowdown, this
metric provides a direct indication of failure impact on
job completion time.

In addition, a six-dimensional Kiviat graph was employed to
provide a composite view of these metrics (see Figure 3) [46].



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

TABLE III
BASELINE CONFIGURATION

System load (i.e., utilization) 0.7
Node MTBF 14 days
Node MTTR 45 minutes
Job restart costOr 3 minutes
Job checkpoint overheadOckp 3 minutes
FARS overheadOF 6 minutes
FARS intervalIF 30 minutes
Predictionprecision 0.7
Predictionrecall 0.7
Number of jobs 21048
Duration of jobs 249.79 days

The graph consists of six dimensions, each representing one
of the aforementioned metrics emanating from a central point.
Note thatnon-utilization rate (defined as(1−Util)) andmean-
time-between-completion (MTBC) (defined as(1/Thru)) are
used in the graph. The range of each metric is from zero to
the largest value observed in the experiments. As shown in the
figure, the composite view of six metrics is the shaded area.
The smaller the area is, the better performance is.

To compare two methods A and B, we calculate the relative
gain of B over A asK(B)−K(A)

K(A) , where K(·) denotes the
K-value of a method. A K-Value of a method is defined as
the shaded area of its associated Kiviat graph. Obviously, the
smaller a K-Value is, the better performance a method has.

VI. EXPERIMENTAL RESULTS

A. Results on Synthetic Data

A series of simulations were conducted to analyze the im-
pact of system load, node MTBF, and prediction accuracy on
FARS. The baseline configuration is summarized in Table III.
These parameters and their corresponding ranges were chosen
according to the results reported in [23], [41], [43] and our
experiments [17].

1) Baseline Results: Baseline results are presented in Fig-
ure 4 (Exponential Failure Distribution) and 5 (Weibull Fail-
ure Distribution). FARS-enhanced methods outperforms FCFS
in terms of both performance and reliability metrics, with
the improvement on reliability metrics being more substantial.
Let’s first take a look at reliability metrics. As we can see,
the use of FARS can reduce service unit loss by more than
2000 CPU hours and the number of failed jobs is reduced from
600+ to 400 under both failure distributions. We also observe
that each rescheduling strategy achieves the best improvement
with regard to its target metric. As an example, SUL-D is
able to minimize service unit loss (SUL). This result implicitly
validates the calculation ofvi in Equation (2)-(4).

With regard to performance metrics, a noticeable improve-
ment is observed on response time. For example, under Expo-
nential distribution, the average response time is reducedfrom
19400+ seconds by using FCFS to around18000 seconds by
using either of the rescheduling strategies. It indicates that
the improvement on reliability by using FARS can lead to an
increase in scheduling performance. In terms of utilization rate
and throughput, the improvement is relatively trivial. This is
because utilization rate and throughput are mainly determined

by job arrivals and the scheduling policy. This observationalso
indicates the necessity of using other metrics, in additionto
performance metrics, to measure system productivity in the
presence of failure.

It is hard to tell which rescheduling strategy is better by
simply comparing the results in Figure 4 and 5. To provide
a holistic comparison of different rescheduling strategies, we
calculated their relative gains over FCFS by using Kiviat graph
as shown in Figure 3. All the strategies are able to provide
more than30% gain over FCFS. We also observe that the gain
achieved by FSD-D is relatively lower than the other two. We
believe this stems from the fact that the estimation ofvi in
Equation (4) is not precise. Getting an accurate estimationof
Oq is difficult as it is influenced by many dynamic factors
such as failure repair time, job queue status and resource
availability. This observation implies that more sophisticated
methods such as the one presented in [22] may be applied to
improve prediction of job queuing time.

In summary, the results indicate that the use of FARS can
greatly improve system productivity in the presence of failure,
with the relative improvement of over30% as compared to the
case without using it. The selection of rescheduling strategy
depends on the primary objective of fault management. In
general, if the objective is to improve the overall productivity,
then both SUL-D and JFR-D are good candidates.

2) Sensitivity to System Load: In this set of simulations,
we varied failure-free system utilization rate from0.1 to 0.95
by adjusting job service timesti. The purpose is to assess the
impact of system load on FARS.

The raw data achieved by using FCFS is listed in Table
IV. Figure 6 presents relative improvements by using FARS.
First, let’s look at Figure 6(a)-(b). There are six curves ineach
plot, representing the relative gains of six metrics over FCFS as
system load changes. It shows that the performance of FARS
drops as system load increases. This is reasonable because a
higher system load means a smaller sized spare pool, thereby
degrading the effectiveness of FARS. The plots also show that
for each metric, its trends under both failure distributions are
similar, although the absolute value under Weibull distribution
is lower than that under Exponential distribution. Hence,
failure distribution does not have a significant impact on the
performance of FARS. A major reason is that FARS is mainly
influenced by failure prediction, instead of by long-term failure
characteristics.

Different metrics exhibit different trends, according to the
figure. The curves of utilization and throughput stay close to
the x-axis, meaning the relative gain on these metric is close to
0. As stated earlier, this is due to the fact that both metrics are
mainly determined by job arrivals and the scheduling policy.
The curve of response time is heading up when the load
increases to0.9. After that, it starts to drop. When the load
is beyond a certain point, meaning that the system is about
saturating, spare nodes become scarce, thereby limiting the
capability of FARS.

More apparent changes are observed on SUL (service unit
loss) and JFR (job failure rate), when system load increases
from 0.1 to 0.95. Recall that FARS adopts a dynamic strategy
for spare pool allocation. A higher load leads to fewer spare



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Fig. 4. Synthetic data under Exponential failure distribution. The data label in the plot of job failure rate indicates the actual number of failed jobs. The
composite gain over FCFS is34.02% (FSD-D),36.35% (SUL-D), and37.34% (JFR-D).

Fig. 5. Synthetic data under Weilbull bathtub failure distribution. Thed data label in the plot of job failure rate indicates the actual number of failed jobs.
The composite gain over FCFS, based on the Kiviat graph, is33.73%(FSD-D), 36.62% (SUL-D), and33.84% (JFR-D).

TABLE IV
RAW RESULTS BY USING PLAIN FCFS/EASY UNDER DIFFERENTSYSTEM LOADS. THERE ARE TWO VALUES IN EACH CELL: THE UPPER ONE IS FROM

EXPONENTIAL DISTRIBUTION (E) AND THE BOTTOM ONE IS FROMWEIBULL DISTRIBUTION (W).

Load 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Resp
1392(E) 2599(E) 4169(E) 6187(E) 8867(E) 12470(E) 19429 (E) 41142(E) 178782(E) 751660(E)
1403(W) 2619(W) 4212(W) 6252(W) 9157(W) 12819(W) 19070(W) 39816(W) 143803(W) 708973(W)

Util
11.270(E) 20.045(E) 29.999(E) 40.453(E) 50.880(E) 60.547(E) 70.043(E) 79.903(E) 87.005(E) 89.470(E)
11.270(W) 20.037(W) 29.987(W) 40.436(W) 50.861(W) 60.494(W) 69.887(W) 79.923(W) 87.688(W) 90.075(W)

Thru
.01003(E) .01002(E) .01001(E) .01000(E) .00999(E) .00998(E) .00997(E) .00991(E) .00952(E) .00807(E)
.01003(W) .01002(W) .01001(W) .01000(W) .00998(W) .00997(W) .00995(W) .00992(W) .00959(W) .00812(W)

SUL
133(E) 302(E) 565(E) 811(E) 1041(E) 1292(E) 1467(E) 1651(E) 1808(E) 2224(E)
168(W) 342(W) 498(W) 724(W) 920(W) 1101(W) 1274(W) 1440(W) 1548(W) 1971(W)

FSD
.00881(E) .01571(E) .03641(E) .04543(E) .04650(E) .03078(E) .04235(E) .02843(E) .02583(E) .05761(E)
.01305(W) .02224(W) .02206(W) .02603(W) .04361(W) .01879(W) .02761(W) .02033(W) .03230(W) .01835(W)

JFR
.0039 (E) .0091 (E) .0140 (E) .0187 (E) .0248 (E) .0289 (E) .0332 (E) .0399 (E) .0419 (E) .0529 (E)
.0050 (W) .0092 (W) .0136 (W) .0184 (W) .0238 (W) .0265 (W) .0302 (W) .0333 (W) .0379 (W) .0458 (W)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Fig. 6. Sensitivity to system load. Figure (a)-(b) plot the relative gain of each metric over FCFS, under Exponential Distribution and Weibull Distribution
respectively. Figure (c) presents the overall gains of different rescheduling strategies, based on Kiviat graph. The performance of FARS drops as system load
increases. FARS always outperforms FCFS by over15%, even when the system has high load.

nodes, thereby limiting the effect of FARS for failure avoid-
ance. The same trend is observed on FSD (failure slowdown),
except that it drops more sharply when system load increases
beyond0.8. We attribute this to the instability of FSD: when
the load is high, more dynamics is introduced into the system,
thereby making it hard to accurately estimate the rescheduling
gain vi, particularlyOq.

Figure 6(c) presents the overall gains of different reschedul-
ing strategies over FCFS under Exponential and Weibull
failure distributions. As system load increases from0.1 to 0.7,
the overall gain achieved by FARS smoothly decreases to30%.
When system load increases beyond0.70, the gain decreases
to 15%. In both plots, we observe that the performance of
FSD-D is slightly lower than those achieved by SUL-D and
JFR-D. This result is consistent with the results obtained in
Figure 4 and 5.

3) Sensitivity to Node MTBF: We also studied FARS sen-
sitivity to failure rate by tuning node MTBFs based on the
baseline value with the ratio linearly changed from1/32 to
8. In other words, node MTBF was varied from448 days to
1.75 days.

Similar to Figure 6, we first plot the relative gains of
individual metrics in Figure 7(a)-(b), and then present the
overall gains of different FARS strategies in Figure 7(c).

The curves of utilization rate and system throughput are
close to zero, meaning there is no significant change on these
metrics. In terms of job response time, the curve first heads up

from zero to around40% as node MTBF decreases from448 to
3.5 days. This is because a lower value of MTBF means higher
failure rate, thereby resulting in more opportunities for FARS
to avoid failures and consequently reducing job response time.
When node MTBF drops below3.5 days, the curve starts
to drop. We believe this is caused by the insufficiency of
spare nodes. When the system becomes extremely unreliable,
suspicious nodes significantly outnumber the available spare
nodes, thereby degrading the performance of FARS.

As shown in the figure, the curves for reliability metrics
generally head down as node MTBF is getting smaller. The
curves of SUL (service unit loss) and JFR (job failure rate)
gradually drop from50% to 20%, whereas the FSD curve
(failure slowdown) drops more quickly. A major reason for
the fast drop of FSD is due to the instability of FSD.
As discussed earlier, getting an accurate estimation ofOq

is difficult, especially when failure interrupts become more
frequent.

Figure 7 (c) shows the composite gains of different
rescheduling strategies over FCFS. As we can see, the per-
formance achieved by FARS drops as node MTBF decreases.
For the systems whose node MTBFs are larger than 14 days,
FARS can provide more than30% performance gain; when
system nodes become unreliable with a low MTBF value (e.g.,
lower than 14 days), FARS still outperforms FCFS/EASY by
more than20%. We also notice that when node MTBF drops
below 7 days (extremely unreliable), the gain achieved by



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE V
RAW RESULTS BY USING PLAIN FCFS/EASYUNDER DIFFERENTNODE MTBFS. THERE ARE TWO VALUES IN EACH CELL: THE UPPER ONE IS FROM

EXPONENTIAL DISTRIBUTION (E) AND THE BOTTOM ONE IS FROMWEIBULL DISTRIBUTION (W).

Node MTBF 448 days 224 days 112 Days 56 days 28 days 14 days 7 days 3.5 days 1.75 days

Resp
15532(E) 15618(E) 15913(E) 16036(E) 16983(E) 19429(E) 25522(E) 59453(E) 798254(E)
15516(W) 15702(W) 15836(W) 16311(W) 17191(W) 19070(W) 25216(W) 55196(W) 459605(W)

Util
70.043(E) 70.043(E) 70.043(E) 70.042(E) 70.043(E) 70.043(E) 69.750(E) 69.154(E) 54.893(E)
70.017(W) 70.043(W) 70.020(W) 69.966(W) 70.013(W) 69.887(W) 69.562(W) 69.185(W) 58.810(W)

Thru
.00997(E) .00997(E) .00997(E) .00997(E) .00997(E) .00997(E) .00993(E) .00984(E) .00781(E)
.00996(W) .00997(W) .00997(W) .00996(W) .00996(W) .00995(W) .00990(W) .00985(W) .00837(W)

SUL
23(E) 58(E) 184(E) 406(E) 629(E) 1467(E) 2838(E) 5677(E) 11979(E)
65(W) 115(W) 284(W) 331(W) 775(W) 1274(W) 2774(W) 4893(W) 10017(W)

FSD
.00082(E) .00131(E) .00233(E) .01005(E) .00926(E) .04235(E) .05369(E) .09220(E) .33466(E)
.00069(W) .00282(W) .00382(W) .00756(W) .01757(W) .02761(W) .04262(W) .12889(W) .21687(W)

JFR
.0009 (E) .0020 (E) .0043 (E) .0103 (E) .0153 (E) .0332 (E) .0676 (E) .1392 (E) .3011 (E)
.0017 (W) .0033 (W) .0069 (W) .0076 (W) .0178 (W) .0302 (W) .0631 (W) .1188 (W) .2539 (W)

Fig. 7. Sensitivity to Node MTBF. Figure (a)-(b) plot the relative gain of each metric over FCFS under Exponential and Weibull failures respectively. Figure
(c) presents the overall gains of different rescheduling strategies, where the overall gain is calculated based on Kiviat graph. The results show that in general,
the benefit brought by FARS drops as node MTBF decreases.

Fig. 8. Distribution of SUL-D gain versus FCFS. Similar distributions are observed for JFR-D and FSD-D (not shown)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Fig. 9. Results on system traces. The data label in the plot ofjob failure rate indicates the actual number of failed job. The relative gain over FCFS, based
on the Kiviat graph, is35.45%(FSD-D), 38.47% (SUL-D), and35.21% (JFR-D).

FARS decreases dramatically. This is caused by insufficient
spare nodes due to high failure rate. We also observe that the
performance of FSD-D is slightly lower than those achieved
by SUL-D and JFR-D, which is consistent with the results
shown in the previous figure.

The above study also justifies that promising gain may be
achieved in production systems by using FARS. According to
the failure data repository [32], node MTBFs of real systems
vary from 120 days to a couple of years. By a simple
projection based on the gain curves in Figure 7, for these
systems, FARS can provide more than35% gain.

4) Sensitivity to Prediction Accuracy: Obviously, the per-
formance of FARS depends on prediction accuracy. In this
set of simulations, we simulated different levels of prediction
accuracies and quantified the amount of gain achieved by
FARS under different predictionprecision and recall rates.

In Figure 8, we show the distribution of composite gain
achieved by SUL-D as against FCFS, whereprecision and
recall range between0.1 and 1.0. We have also analyzed
the sensitivities of JFR-D and FSD-D to different prediction
accuracies. Their distributions (not shown) are similar tothe
results shown in Figure 8.

The figure clearly shows that the more accurate a prediction
mechanism is, the higher gain SUL-D can provide. For exam-
ple, under both failure distributions, the best performance is
achieved whenprecision andrecall are1.0 (perfect prediction)
and the worst case occurs when both are set to0.1 (meaning
that 90% of the predicted failures are false alarms and90%
of the failures are not captured by the failure predictor). With
a perfect prediction, the optimal gain achieved by SUL-D is
more than50%. We also notice that as long as bothprecision
andrecall are higher than0.2, SUL-D always outperforms the
plain FCFS. In other words, although false alarms may cause
unnecessary job rescheduling, the benefit brought by FARS
often overcomes its negative impact, under the condition that
the failure predictor can capture20% of failures with the false
alarm rate lower than80%.

B. Results on System Trace

Figure 9 presents the results obtained with the system traces
by using the same baseline configuration as listed in Table III,
except that the failure events and the job events are from real
system traces.

Consistent with the results on synthetic data, FARS outper-
forms FCFS, especially in terms of reliability metrics. Each
rescheduling policy is capable of minimizing its target metric.
As an example, SUL-D gives the best result in terms of service
unit loss (SUL), whereas JFR-D is good at minimizing job
failure rate (JFR). All these rescheduling strategies are capable
of providing over35% composite gain, as compared to FCFS.

We also examined the impact of failure prediction by tuning
prediction accuracies. Figure 10 shows the distribution ofthe
composite gain achieved by SUL-D as against FCFS, where
precision and recall vary from 0.1 to 1.0. Similar trends are
observed by using JFR-D and FSD-D, so we only present the
results by using SUL-D here.

The maximum gain53% is achieved under a perfect pre-
diction whereprecision and recall are1.0. The negative gain
(−4%) is observed only when both parameters are as low as
0.1. Although the trends are similar to those obtained with syn-
thetic data shown in Figure 8, we notice that the performance
of SUL-D drops fast as prediction precision decreases. This
is caused by the higher load in the job log, which reaches
84% even under a failure-free computing environment. A
lower precision means more false alarms, which consequently
demands more spare nodes. This situation is exacerbated when
the available spare resources are limited under a high system
load.

C. Result Summary

In summary, our experiments with synthetic data and real
system traces have shown that:

• FARS can effectively improve system productivity as
long as failure prediction is capable of predicting25%
of failure events with a false alarm rate lower than75%
(see Figure 8 and 10).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Fig. 10. Distribution of SUL-D gain versus FCFS on system traces

• System load implicitly determines number of spare nodes,
thereby impacting the performance of FARS. In the
systems under a moderate load (e.g.≤ 0.7), the gain
achieved by FARS is always above30%. Even when the
system load is as high as0.95, the gain is still above15%
(see Figure 6).

• For systems with node MTBF ranging between several
weeks to a couple of years, FARS is capable of providing
more than30% gain in terms of system productivity (see
Figure 7).

VII. R ELATED WORK

Considerable research has been conducted on fault manage-
ment for high performance computing. They generally fall into
two categories, one on fault-aware scheduling and the otheron
runtime fault tolerance techniques.

Fault-aware scheduling focuses on making an appropriate
mapping of jobs or tasks to compute resources by taking
system reliability into consideration. The objective is toopti-
mize performance metrics, such as job response time or job
slowdown [1]. In [10], Hariri and Raghavendra proposed two
reliability-aware task allocation algorithms to optimizethe
probability of successful task completions. Shatz et al. pre-
sented a task graph based performance model for maximizing
a reliability cost function, and developed several scheduling
algorithms based on this model [34]. Dogan and Ozguner
investigated two reliability-aware cost functions to enable
scheduling of precedence-constrained tasks in heterogeneous
environments [7]. Srinivasa and Jha introduced the safety
concept for reliable task allocation in distributed systems
[38]. There are also several studies on utilizing redundant
resources for task scheduling. Kartik and Murthy proposed
a branch-and-bound algorithm to maximize the reliability
of distributed systems by using two-level redundancy [14].
Recently, an increasing attention has been paid to fault-aware
scheduling in the field of high performance computing. In
[43], Zhang et al. suggested utilizing temporal and spatial
correlations among failure events for better scheduling. Oliner
et al. presented a fault-aware job scheduling algorithm forBlue
Gene/L systems by exploiting node failure probabilities [24].
In [15], a fault-aware scheduling was presented for the HA-
OSCAR framework.

Fault-aware scheduling mainly focuses on providing an
optimal mapping ofinactive jobs (i.e. jobs in the queues) onto
available resources based onlong-term failure models, such as
observed failure characteristics or distributions. Different from
fault-aware scheduling, this study emphasizes on dynamically
adjusting the placement ofactive jobs (i.e., running jobs)
to avoid imminent failures discovered byshort-term failure
predictors. Here, “short-term” means the time is on the order
of several minutes to an hour. There are several active projects
on exploiting data mining and pattern recognition technologies
for the development of short-term failure predictors [31],[45].
For example, Fu and Xu have designed and implemented a
framework called hPREFECTS for failure prediction in net-
worked computing systems [47]; in our own studies [44], [45],
[48], we have investigated online failure prediction for large-
scale systems by applying ensemble learning and automated
data reduction techniques.

Fault-aware scheduling and FARS complement each other,
where fault-aware scheduling prevents inactive jobs from the
failures that are well captured in the long-term failure models
and FARS enables active jobs to avoid imminent failures that
may not follow any long-term pattern but can be discovered
via runtime diagnosis.

Checkpointing and process migration are two prevailing
fault tolerance techniques. Checkpointing centers upon re-
ducing recovery cost by periodically saving an intermediate
snapshot of the system to a stable storage. A detailed de-
scription and comparison of different checkpointing techniques
can be found in [9]. A number of checkpointing libraries and
tools have been developed for HPC, and examples include
libckpt [27], BLCR [11], open MPI [4], MPICH-V [3], and
the C3 (Cornell Checkpoint (pre)Compiler) [33]. In addition,
a number of optimization techniques have been developed to
reduce its cost and overhead [25], [28], [42]. Oliner et al.
proposed to dynamically skip unnecessary checkpoints via
failure prediction [23]. In essence, checkpointing is reactive,
meaning that it only deals with failures after their occurrences.
In contrast to these studies on checkpointing, the proposed
FARS emphasizes the use of proactive action (i.e., reallocating
running jobs) to avoid failures.

Unlike checkpointing, process migration takes preventive
actions — transferring application processes away from
failure-prone nodes — before failures. Intensive researchhas
been done on process migration. Process migration can be
performed at the kernel-level or the user-level. Kernel-level
migration requires a modification of the operating system,
whereas user-level methods allow migration without changing
the operating system kernel. A detailed survey regarding
migration can be found in [36]. There are several active
projects on providing process migration support for sequential
and parallel applications. For instance, Condor allows user-
level process migration by first checkpointing the application
and then restarting it on a new set of resources [18]. The
PCL protocol used in the MPICH-V package applies a similar
stop-and-restart approach for migrating MPI applications[3].
There are several research efforts on developing live migration
support for MPI applications. Du and Sun proposed distributed
migration protocols to support live migration [8]. In the AMPI



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

project, a proactive migration scheme was proposed to move
objects to reliable nodes based on fault prediction provided
by hardware sensors [5]. Nagarajian et al. discussed the use
of Xen virtual machine technology to facilitate transparent
process migration [21].

The majority of research focuses on the development and
optimization of runtime techniques, yet there is a lack of
systematic study on fault-aware runtime management by tak-
ing account of various factors.This study bridges the gap by
presenting runtime strategies for spare node allocation and job
rescheduling. These strategies coordinate jobs and computing
resources in response to failure prediction. To the best of
our knowledge, we are among the first to comprehensively
and systematically study fault-aware runtime system for high
performance computing.

The term ofjob rescheduling has been used in Grid com-
puting. For example, in the GrADS project, an application-
level job migration and processor swapping approach was
presented to reschedule a Grid application when a better
resource is found [2]. Fundamentally different from these
studies, our work utilizes job rescheduling to improve system
resilience to failures. The issues such as spare node allocation
and job selection for rescheduling are not addressed in Grid
computing.

VIII. C ONCLUSIONS

Although much work remains to make FARS fully opera-
tional, our results have shown the importance and potentialof
exploiting runtime failure prediction to improve system pro-
ductivity. In particular, we have presented runtime strategies
for coordinating jobs and computing resources in response to
failure prediction. Our extensive experiments have indicated
that FARS is capable of improving system productivity as long
as the failure predictor can capture25% of failure events with
a false alarm rate lower than75%. With the advance in failure
prediction, we believe FARS will become more effective. The
proposed 0-1 knapsack model gives a general and flexible
method for job rescheduling, from which we can derive a
variety of rescheduling strategies.

Our study has some limitations that remain as our future
work. First, we are in the process of collecting more workloads
and failure events from production systems to further evaluate
the effectiveness of FARS. Second, we plan to integrate FARS
with fault-aware scheduling work such as [24]. We expect
that this combination can further improve system productivity.
Lastly, exploiting failure patterns for failure prediction is an
on-going project in our group [44], [45], [48]. Integrating
FARS with the work on failure prediction is part of our future
work. Our ultimate goal is to implement FARS, along with
failure prediction work, in job scheduling systems for better
fault management of high performance computing.

ACKNOWLEDGMENT

We would like to thank Warren Smith at TACC for providing
us the Lonestar job log. This work was supported in part
by US National Science Foundation grants CNS-0720549,
CCF-0702737, and a TeraGrid Compute Allocation. Some
preliminary results of this work were presented in [16].

REFERENCES

[1] S. Albers and G. Schmidt, “Scheduling with Unexpected Machine Break-
downs,” Discrete Applied Mathematics, Vol. 110(2-3), pp.85-99, 2001.

[2] F. Berman, H. Casanova et al., “New Grid Scheduling and Reschedul-
ing Methods in the GrADS Project,“International Journal of Parallel
Programming, Vol. 33, No.2-3,pp.209-229,2005.

[3] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier andF. Cappello,
“MPICH-V: A Multiprotocol Automatic Fault Tolerant MPI,”Interna-
tional Journal of High Performance Computing and Applications, vol.
20, no.3 pp. 319-333, 2006.

[4] E. Gabriel, G. Fagg, et al., “Open MPI: Goals, Concept, and Design of
a Next Generation MPI Implementation”,Proc. of The 11th European
PVM/MPI Users’ Group Meeting, Hungary, September 2004.

[5] S. Chakravorty, C. Mendes and L. Kale, “Proactive Fault Tolerance in
MPI Applications via Task Migration”,Proc. of International Conference
on High Performance Computing, pp. 485, 2006.

[6] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Introduction to
Algorithms (Second Edition)”The MIT Press and McGraw-Hill Book,
2001.

[7] A. Dogan and F. Ozguner, “Reliable Matching and Scheduling of
Precedence-Constrained Tasks in Heterogeneous Distributed Computing,”
Proc. of International Conference on Parallel Processing, pp.307-314,
2000.

[8] C. Du and X. Sun, “MPI-Mitten: Enabling Migration Technology in MPI,”
Proc. of International Symposium on Cluster Computing and the Grid,
pp. 11-18, 2006.

[9] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Surveyof Rollback
Recovery Protocols in Message-passing Systems,”ACM Computing
Surveys, vol. 34(3),pp. 375-408, 2002.

[10] S. Hariri and C. Raghavendra, “Distributed Functions Allocation for
Reliability and Delay Optimization,”Proc. of ACM Fall joint computer
conference, pp.344-352,1986.

[11] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart (BLCR) for
Linux Clusters,”Proc. of SciDAC , 2006.

[12] R. Jain, “The Art of Computer Systems, Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, andModel-
ing,” Wiley-Interscience, New York, 1991.

[13] Parallel Workloads Archive,http://www.cs.huji.ac.il/labs/parallel/workload/
[14] S. Kartik and C. Murthy, “Task Allocation Algorithms forMaximizing

Reliability of Distributed Computing Systems,”IEEE Transactions on
Computer Systems, Vol. 46, pp.719-724, 1997.

[15] K. Limaye,C. Leangsuksun, and A. Tikotekar, “Fault Tolerance Enabled
HPC Scheduling with HA-OSCAR Framework,”Proc. of the High
Availability and Performance Workshop, 2005.

[16] Y. Li, P. Gujrati, Z. Lan and X. Sun, “Fault-Driven Re-Scheduling
for Improving System-Level Fault Resilience,”Proc. of International
Conference on Parallel Processing(ICPP), 2007.

[17] Z. Lan and Y. Li, “Adaptive Fault Management of Parallel Applications
for High Performance Computing,” To appear in theIEEE Trans. on
Computers, 2008.

[18] M. Litzkow, T. Tannenbaum, J. Basney and M. Livny, “Checkpoint
and Migration of UNIX Processes in the Condor Distributed Processing
System,”University of Wisconsin-Madison Computer Science Technical
Report, no.1346, 1997.

[19] C. Lu, “Scalable Diskless Checkpointing for Large Parallel Systems,”
Ph.D. thesis, University of Illinois at Urbana-Champaign, 2005.

[20] A. Mu’alem and D. Feitelson, “Utilization, Predictability, Workloads,
and User Runtime Estimates in Scheduling the IBM SP2 with Backfill-
ing,” IEEE Transactions on Parallel and Distributed System, Vol. 12(6),
pp. 529-543, 2001.

[21] A. Nagarajan, F. Mueller, C. Engelmann and S. Scott, “Proactive Fault
Tolerance for HPC with Xen Virtualization,”Proc. of International
Conference on Supercomputing, pp. 23-32,2007.

[22] D. Nurmi, A. Mandal,J. Brevik, C. Koelbel, R. Wolski and K. Kennedy,
“Evaluation of a Workflow Scheduler Using Integrated Performance
Modeling and Batch Queue Wait Time Prediction,”Proc. of ACM/IEEE
Conference on Supercomputing, 2006.

[23] A. J. Oliner, L. Rudolph and R. K. Sahoo,“Cooperative Checkpointing
A Robust Approach to Large-scale Systems Reliability,”Proc. of Inter-
national Conference on Supercomputing, pp. 14-23, 2006.

[24] A. Oliner, R. Sahoo, J. Moreira and M. Gupta, “Fault-aware Job
Scheduling for BlueGene/L Systems,”Proc. of IPDPS, pp.64, 2004.

[25] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-max Checkpoin
Placement under Incomplete Failure Information,”Proc. of International
Conference on Dependable Systems and Networks, pp. 721, 2004.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[26] F. Petrini, “Scaling to Thousands of Processors with Buffered
Coscheduling”,Proc. of the Scaling to New Height Workshop, 2002.

[27] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,”Proc. of Usenix, 1995.

[28] J. Plank, K. Li, and M. Puening, “Diskless Checkpointing, IEEE
Transactions on Parallel and Distributed Systems, vol. 9(10), pp. 972-
986, 1998.

[29] J. Plank and M. Thomason, “Processor Allocation and Checkpoint
Interval Selection in Cluster Computing Systems,”Journal of Parallel
and Distributed Computing, Vol. 61, No. 11, pp.1570-1590, 2001.

[30] D. Reed, C. Lu, and C. Mendes, “Big Systems and Big Reliability
Challenges,”Proc. of Parallel Computing, pp. 729-736, 2003.

[31] R. Sahoo, A. Oliner, et al., “Critical Event Predictionfor Proactive
Management in Large-scale Computer Clusters, ”Proc. of International
Conference on Knowledge Discovery and Data Mining, pp. 426-435,
2003.

[32] B. Schroeder and G. Gibson, “A Large Scale Study of Failures in High-
Performance-Computing Systems,”Proc. of International Symposium on
Dependable Systems and Networks, 2006.

[33] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K.Pingali,
and P. Stodghill, “Implementation and Evaluation of a Scalable Appli-
cation Level Checkpoint-recovery Scheme for MPI Programs,”Proc. of
ACM/IEEE Conference on Supercomputing, pp. 38, 2004.

[34] S. Shatz, J. Wang, and M. Goto, “Task Allocation for Maximizing Relia-
bility of Distributed Computer Systems,”IEEE Trans. on Computers,Vol.
41, No. 9, pp. 1156-1168,1992.

[35] R. Smith and D. Dietrich, “The Bathtub Curve: An Alternative Ex-
planation,”Proc. of Reliability and Maintainability Symposium, pp.241-
247,1994.

[36] J. Smith “A Survey of Process Migration Mechanisms,”Operating
Systems Review, Vol. 22, No.3, pp.102-106,1988.

[37] J. Squyres and A. Lumsdaine, “A Component Architecture for
LAM/MPI,” Proc. of European PVM/MPI, 2003.

[38] S. Srinivasan and N. Jha, “Safety and Reliability Driven Task Allocation
in Distributed Systems,”IEEE Trans. Parallel and Distributed Systems,
Vol 10(3), 1999.

[39] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates,”IEEE Trans.
on Parallel and Distributed Systems, vol. 18(6), 2007.

[40] R. Vilalta and S. Ma, “Predicting Rare Events in TemporalDomains, ”
Proc. of IEEE Intl. Conf. On Data Mining, 2002

[41] L. Wang, K. Pattabiraman, L. Votta,C. Vick, A. Wood, Z. Kalbarczyk
and R. Iyer, “ Modeling Coordinated Checkpointing for Large-Scale
Supercomputers,”Proc. of Dependable Systems and Networks, pp. 812-
821, 2005.

[42] J. Young, “A First Order Approximation to the Optimal Checkpoint
Interval,” Communications of the ACM, vol. 17(9), pp. 530-531 1974.

[43] Y. Zhang, M. Squillante, A. Sivasubramaniam and R. Sahoo, “Perfor-
mance Implications of Failures in Large-Scale Cluster Scheduling,” Proc.
of Workshop on Job Scheduling Strategies for Parallel Processing, pp.233-
252, 2004.

[44] Z. Zheng, Y. Li and Z. Lan, “Anomaly Localization in Large-scale
Clusters”,Proc. of IEEE Cluster’07, 2007.

[45] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Meta-Learning
Failure Predictor for Blue Gene/L Systems”,Proc. of International
Conference on Parallel Processing (ICPP’07), 2007.

[46] M. Morris, “Kiviat Graphs: Conventions and Figures of Merit”, ACM
SIGMETRICS Performance Evaluation Review, Vol. 3(3), 1974.

[47] S. Fu and C.Z. Xu, “Exploring Event Correlation for Failure Prediction
in Coalitions of Clusters”,Proc. of SC’07, 2007.

[48] J. Gu, Z. Zheng, Z. Lan,J. White, E. Hocks, B. Park, “Dynamic Meta-
Learning for Failure Prediction in Large-Scale Systems: A Case Study”,
Proc. of International Conference on Parallel Processing(ICPP), 2008.

PLACE
PHOTO
HERE

Yawei Li received the BS and MS degrees in
the University Of Electronic Science & Technology
of China in 1999 and 2002. He is now a PhD
candidate of Computer Science at Illinois Institute
of Technology since 2004. He specializes in par-
allel and distributed computing, scalable software
systems. His current research focuses on adaptive
fault management in large-scale computer systems,
checkpointing optimization and load balancing in
Grid environment. He is also an IEEE member.

PLACE
PHOTO
HERE

Zhiling Lan received the BS degree in Mathematics
from Beijing Normal University, the MS degree
in Applied Mathematics from Chinese Academy of
Sciences, and the PhD degree in Computer Engineer-
ing from Northwestern University in 2002. She is
currently an assistant professor of computer science
at the Illinois Institute of Technology. Her main
research interests include fault tolerant computing,
dynamic load balancing, and performance analysis
and modeling. She is a member of the IEEE Com-
puter Society.

PLACE
PHOTO
HERE

Prashasta Gujrati received Bachelor of Technology
degree at Institute of Technology, Banaras Hindu
University. He is currently a Masters student at
Computer Science Department of Illinois Institute of
Technology. His current research interests are fault-
tolerance in parallel/distributed systems, data mining
and pattern recognition. He is also an IEEE member.

PLACE
PHOTO
HERE

Xian-He Sun is a professor of computer science
at the Illinois Institute of Technology (IIT), a guest
faculty member at the Argonne National Laboratory
and the Fermi National Accelerator Laboratory, and
the director of the Scalable Computing Software
(SCS) laboratory at IIT. Before joining IIT, he was a
postdoctoral researcher at the Ames National Labo-
ratory, a staff scientist at ICASE, NASA Langley
Research Center, an ASEE fellow at the Naval
Research Laboratory, and an associate professor at
Louisiana State University-Baton Rouge. He is a

senior member of the IEEE and the IEEE Computer Society.


