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Abstract—As computer systems continue to grow in scale and complexity, performance problems become common and a major

concern for large-scale computing. Performance anomalies caused by application bugs, hardware or software faults, or resource

contention can have great impact on system-wide performance and could lead to significant economic losses for service providers.

While many detection methods have been presented in the past, the newly emerging challenges are detection scalability and practical

use. In this paper, we propose a scalable, non-parametric method for effectively detecting performance anomalies in large-scale

systems. The design is generic for anomaly detection in a variety of parallel and distributed systems exhibiting peer-comparable

property. It adopts a divide-and-conquer approach to address the scalability challenge and explores the use of non-parametric

clustering and two-phase majority voting to improve detection flexibility and accuracy. We derive probabilistic models to quantitatively

evaluate our decentralized design. Experiments with a suite of applications on production systems demonstrate that this method

outperforms existing methods in terms of detection accuracy with a negligible runtime overhead.

Index Terms—Large-scale systems, performance anomalies, hierarchical grouping, non-parametric clustering
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1 INTRODUCTION

PERFORMANCE anomalies, which may be caused by vari-
ous factors such as resource contention, application

bugs, and hardware/software faults, become common and
a major concern for large-scale computing. A performance
anomaly is a type of error, indicating a deviation from the
expected performance of a computing node or device. While
performance anomaly usually appears only on a portion of
the system and does not necessarily lead to a compete crash
of the computing, it can introduce serious performance
impacts (e.g., greatly slowing down task execution). Studies
have shown that a single problematic node can lead to job
completion time being extended up to five times [1]. Conse-
quently, an effective anomaly detection method is crucial
for large scale computing not only to mitigate system-wide
performance degradation, but also to improve cost effi-
ciency for service providers.

Commonly adopted detection approaches can be gener-
ally categorized as either model-based or data-driven. A
model-based approach derives a probabilistic or analytical
model of the system and uses it as a reference for evaluation
[2], [3], [4], [5], [6], [7]. Despite its broad usability, a major
limitation of model-based approach is the difficulty of gen-
erating and maintaining a consistent model for systems
with high variability.

A data-driven approach, in contrast, relies only on sys-
tem data for decision making, thus being applicable to a
variety of dynamic computing environments. For anomaly
detection in large scale computing, the data-driven
approach based on node comparison has been widely stud-
ied [8], [9], [10], [11], [12], [13]. These methods assume a
peer-comparable environment where nodes performing
comparable activities are expected to exhibit similar behav-
iors, differing in ways they use to compare node similarity.

As computer systems continue to grow in scale and com-
plexity, comparison-based detection methods faces two key
challenges. First is scalability. Existing methods are typically
based on a centralized design, where a central node is
responsible for collecting data from other nodes and analyz-
ing them together for decision making [8], [9], [10].
Although these methods provide good detection accuracy,
they fail to meet the scalability requirement. A large-scale
system may consist of thousands or hundreds of thousands
of nodes. The computation cost required to analyze the
huge volume of data at the central node is non-trivial. More-
over, the communication cost involved to transfer data from
all other nodes to the central node can be significant, espe-
cially when the computing resources are remotely located.

Second is practical use. Existing detection schemes tend to
use parametric methods that require a manual parameter
tuning process based on a prior knowledge of system char-
acteristics. For example, some methods need to adjust
threshold values to achieve optimal detection accuracy
according to a predefined system anomaly rate [8], [14],
[15]; some others assume the number of abnormal behavior
types is known in advance [11], [12], [13]. In practice, these
assumptions hardly hold due to the fact that in large-scale
systems with high complexity, anomaly rate can vary and
problematic nodes can behave distinctly due to different
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root causes. Fig. 1 illustrates an example where a parametric
method fails to identify the anomaly.

To address the above challenges, the primary contribu-
tion of this paper lies in a collection of techniques. First, we
adopt a grouping strategy, through which we divide the big
problem involving the analysis of a large system into many
small problems while at the same time maintain the peer-
comparable environment. As the number of nodes in each
group is limited and only local communication is needed
for problem solving, such a decentralized design is able to
achieve high scalability. Second, we explore a non-parametric
clustering method that does not rely on any pre-defined clus-
ter numbers and thus is capable of handling multiple anom-
aly types such as the example shown in Fig. 1. Third, we
develop a two-phase majority voting mechanism to improve
anomaly detection in case of high anomaly rate. We also
derive probabilistic models to quantify detection accuracy of
our decentralized design under various configurations.
Together, these techniques form a scalable and non-
parametric detection framework for large-scale computing.

We demonstrate the effectiveness of our design by means
of a set of experiments on two systems. One is a production
system named Stampede at Texas Advanced Computing
Center (TACC). It consists of more than 6; 000 compute
nodes and is mainly used for large scale scientific comput-
ing [16]. The other is a local cluster with 64 compute nodes,
which is mainly used for data intensive computing. We
inject a variety of anomaly types into the computing, and
test whether the proposed method is capable of pinpointing
these anomalies accurately under various computing scales.
Experiments clearly demonstrate that our decentralized
design is highly scalable and outperforms existing detection
schemes by 12 percent on average in terms of detection
accuracy. The proposed detection method incurs a very low
runtime overhead, e.g., less than 120 ms for performance
anomaly detection of 2K nodes on Stampede.

The rest of the paper is organized as follows. Section 2
describes basic assumptions of this study. Section 3 gives
the details of methodology. Section 4 present analytical
models to quantify method accuracy. Sections 5 and 6 pres-
ent experiments and list experimental results. Section 7 dis-
cusses limitations and the potential use of the proposed
method, followed by related work in Section 8. Finally, this
work is concluded in Section 9.

2 PROBLEM STATEMENT

In large-scale computing, performance anomalies are an
important class of errors that are difficult to diagnose and

isolate. Performance anomalies can stem from different sys-
tem layers such as a bug in the application code, a flaw in
the hardware or software, an unexpected interaction
between computing components, or a conflict over access to
a shared resource such as network devices. They often
result in a “limping-but-alive” system, i.e., the system con-
tinues to work, but with degraded performance. Google
reported that more than 95 percent machines experience a
variety of performance problems like packet-loss, disk hogs,
random connectivity lost, etc. in the first year of a cluster’s
operation [17]. Studies on system logs showed that more
than 30 percent of Hadoop bugs are manifested as degraded
performance instead of system crash [18].

Performance anomalies can cause great impact on system
performance. A single poorly performing node can signifi-
cantly affect the behavior of the overall system and intro-
duce system-wide performance issues like poor task
turnaround time, low job response time, system throughput
drop, and violation of service level agreement. These perfor-
mance issues can lead to poor system utilization of expen-
sive high-performance computing systems as well as
economical losses for business service providers.

Paper goals and non-goals. In this work, we seek to
develop a decentralized method for detecting perfor-
mance anomalies in large-scale computing. The goal is to
identify the computing nodes that undergo performance
problems (not necessarily leading to system crash) and
cause an application to take longer time to complete than
that if the problem were not present. The detection is
based on both OS level (black-box) performance metrics
and middleware level (white-box) performance metrics.
In addition, an important feature of this work is applica-
tion-transparent, meaning that our method does not
require any modifications of the hosted applications. We
shall point out that in this work, we do not target fail-
stop failures nor code-level debugging. Further, this work
is concentrated in detecting node-level performance
anomalies, and subsequent correction operations after
detection are beyond the scope of this paper. We believe
various methods such as process migration [19] and/or
those listed in [20] can be taken for error handling.

Assumptions. Our design is based on two assumptions.
First is the peer-comparable property. In a peer-comparable
environment, nodes performing comparable activities are
expected to exhibit similar behaviors. Peer comparability is
commonly observed in parallel computing environments.
For instance, in the MPI paradigm, when an application is
well distributed across multiple compute nodes, these com-
puting nodes often show similar patterns and complete
their tasks around the same time. Distributed computing
like Map/Reduce may also form a peer-comparable envi-
ronment in case of homogeneous hardware resources. Fur-
thermore, this assumption can be relaxed for peer
comparability per group, rather than across the entire sys-
tem. As we will show in Section 3.1, the grouping method
can be applied to provide a peer-comparable environment
in each group. Second, we assume that normal nodes are
the majority and have similar behaviors. This is a minor
requirement given that anomalies are rare events. Both
assumptions are commonly used for any detection methods
based on similarity comparison [21].

Fig. 1. Limitation of parametric detection methods. P3 and P4 are abnor-
mal but exhibit distinct behaviors due to different root causes. (left) A
parametric clustering method arbitrarily categorizes the nodes into two
groups, thus failing to identify the anomalies by using a majority voting
based detection mechanism. (right) An ideal method should divide these
nodes into three groups.

YU AND LAN: A SCALABLE, NON-PARAMETRIC METHOD FOR DETECTING PERFORMANCE ANOMALY IN LARGE SCALE COMPUTING 1903



3 METHODOLOGY

Fig. 2 depicts our design and its main components, includ-
ing hierarchical grouping, feature extraction, non-paramet-
ric clustering and two-phase majority voting.

3.1 Hierarchical Grouping

Grouping denotes a process of splitting a group of system
nodes into a number of smaller subgroups [22], [23]. The
purpose of hierarchical grouping is to avoid global compu-
tation and communication for decision making, and to guar-
antee a peer-comparable environment within each group.
Specifically, our grouping strategy is conducted in three
steps:

� Geographical grouping. Computing nodes are grouped
according to their geographical locations.

� Topology-aware grouping. Computing nodes are fur-
ther divided based on their network topologies and
hardware configurations.

� Random ouping. Finally, every node serves as a cen-
tral node and forms a group by randomly assigning
n neighbors to it.

Geographical grouping is conducted first, which is
applied to avoid the long distance communication between
remote nodes. The goal of topology-aware grouping is to fur-
ther reduce the group size and maintain hardware homoge-
neity. The rule in this step varies according to different
system environments. For example, compute nodes built on
a fat-tree topology can be grouped by switches in the net-
work. The last step is adopted when the group size is still
large after the first two grouping steps, e.g., a group contains
hundreds of identical nodes that are fully connected via a
local area network. Using the random grouping strategy, a
node may belong to one or more groups, but its state is only
determined by the groupwhere it is the central node.

With respect to the third step, we note that other group-
ing strategies like nearest neighbor (NN) based grouping or
grouping based on manager/worker thread similarity could
be used. While these grouping strategies could bring addi-
tional benefits (e.g., reducing workload dependent variabil-
ity in the local group), they run counter to the application-
transparent goal of our detection design. An important
reason of choosing random grouping is that it can decrease
the possibility of our method falling into a local trap, which
happens when a performance anomaly propagate to its
nearest neighbors and make the majority of a local group
become abnormal.

As nodes only communicate with neighbors within the
same group, the group size is an important factor for both

detection accuracy and detection overheads. A smaller group
size indicates lower communication cost and faster detection,
but suffers from low detection accuracy due to insufficient
number of comparable samples (e.g., abnormal nodes make
up the majority of the group). A larger group size usually
provides better detection accuracy; however, it introduces
more overheads due to higher computation and communica-
tion cost. Hence, an important task of this work is to strike for
a balance between accuracy and speed. We will present an
analytical study to quantify the tradeoff in Section 4.

3.2 Feature Extraction

Following hierarchical grouping, our design performsmulti-
ple group analysis concurrently. In each group, we collect
data to characterize node behaviors, and transfer them into a
uniform format for further analysis. The data gathered from
each group are put into a m � n matrix X, where m is the
number of features (rows) per node and n is the number of
nodes (columns) in the group. The value of m can be further
represented as m ¼ c � t, where c is the number of features
gathered to characterize node behaviors and t is the number
of snapshots sampled per node. As the collected data have
different scales, the matrix X is normalized across columns
such that all feature values fall into the range of 0.0 and 1.0.

Next we project high-dimensional data to a space with
lower dimensionality using feature extraction. Feature
extraction brings several benefits to anomaly detection.
First, it captures useful information hidden in features that
is hard to discover via direct comparison. Second, it
removes noise in data, thus improving detection accuracy.
Third, a lower feature space can reduce diagnosis overhead
significantly. Feature extraction techniques like principal
component analysis (PCA) [24] and independent compo-
nent analysis (ICA) [25] have been adopted in a number of
anomaly detection studies [26], [27], [28]. In this study, we
apply kernel principal component analysis (KPCA), a non-
linear extension of PCA, to project the original feature space
to a three-dimensional feature space. The main reason of
using KPCA, rather than PCA, is that KPCA has proven to
provide better recognition rate than PCA [29]. According to
the literature, a two-dimensional or three-dimensional pro-
jected feature space is sufficient to provide good detection
accuracy.

3.3 Non-Parametric Clustering

Clustering analysis is used to distinguish node behaviors
within the same group. Commonly adopted clustering
methods can be categorized into four types, including
centroid-based (e.g., k-means), connectivity-based (e.g.,

Fig. 2. Overview of our anomaly detection framework.
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hierarchical), distribution-based (e.g., Gaussian mixture)
and density-based (e.g., DBSCAN and mean-shift) [30], [31],
[32]. Despite different types, most clustering algorithms
require data information as input parameters. For example,
k-means and hierarchical clustering need the number of
clusters, DBSCAN needs the neighborhood size and mean-
shift needs a predefined bandwidth value for the searching
window. However, as stated earlier, the assumption of pri-
ori knowledge can cause serious detection issues in practice.

In this study, we explore a density-based clustering
algorithm called adaptive mean shift clustering (AMS) that
requires no priori knowledge of the data [33]. Compared to
commonly used parametric methods, AMS makes fewer
assumptions about system characteristics. It differs from
mean-shift clustering in that its searching bandwidth can be
determined automatically. Specifically, for each data point
xiði ¼ 1; . . . ; nÞ that is associated with a bandwidth hi, AMS
involves following steps:

1) A window is created with a bandwidth hi for each xi.
2) The mean of the data in the window is calculated

and denoted as the new center ~xi.
3) Starting from ~xi, step 2 and 3 are repeated until a

convergence.
4) Finally, data points leading to the same center are

assigned to a cluster.
The new center in Step 2 is calculated by:

~xi ¼
Pn

j¼1 xi;jgðk xi�xi;jhi
k2ÞPn

j¼1 gðk xi�xi;jhi
k2Þ ; (1)

where each xi;j represents a point in the search window of xi
and gðxÞ ¼ �k0ðxÞ. The function kðxÞ; 0 � x � 1, is called the
profile of the kernel and is used to estimate the density at
location xi in the feature space. The bandwidth hi is calcu-
lated in an adaptive manner and defined as a L1 norm:

hi ¼ kxi � xi;n=2k1; (2)

where xi;n=2 is the n=2 nearest neighbor of the point xi and n
is the number of nodes in the group.

The time complexity of AMS is OðTn2Þ, where T is the
number of iterations. Due to the small number of nodes in
each group and the low dimension feature space after data

transformation, the algorithm converges very fast (typically
within several milliseconds) in our experiments, indicating
a negligible overhead.

3.4 Two-Phase Majority Voting

Based on the clustering, the next component of our design is
two-phase majority voting, aiming to identify abnormal
nodes in each group. Majority voting was introduced by
Blough et al. to detect faulty processors inmultiprocessor sys-
tems [34]. Several variants have been applied to fault detec-
tion in wireless network [35], [36]. In this study, we extend
the basic majority voting algorithm to a two-phase version
for better detection accuracy. In the first phase, a node is
labeled with M (“Majority”) if it belongs to the majority of all
group members; otherwise it is labeled with F (“Fewness”).
In the second phase, only the nodes labeled with M have the
right to vote. A node is labeled with N (“Normal”) if it
belongs to the majority of the group members labeled with
M; otherwise, it is labeledwith A (“Abnormal”).

Algorithm 1. Two-phase Majority Voting

1: Given GðaiÞ and CðaiÞ
2: if jCðaiÞj > jGðaiÞj=2 then
3: Si  M
4: else
5: Si  F
6: end if (Phase one ends here)
7: ifMðaiÞ 6¼ ; then
8: if jCðaiÞ \MðaiÞj � jMðaiÞj=2 then
9: Si  N
10: else
11: Si  A
12: end if
13: else
14: if Si ¼M then
15: Si  N
16: else
17: Si  A
18: end if
19: end if (Phase two ends here)

Algorithm 1 presents our two-phase voting mechanism
using notations summarized in Table 1. All the central
nodes of the groups execute the algorithm concurrently.
At the beginning of Phase two, every central node needs
to communicate with its neighbors to get their labels
obtained from Phase one. Fig. 3 gives an example of the

TABLE 1
Notations for the Two-Phase Voting Method

n group size

p anomaly probability of a node
ai the central node in a group
Si state of ai, Si 2 fM;F;N;Ag, where M ¼Majority,

F ¼ Fewness, N ¼Normal and A ¼ Abnormal
MðaiÞ set of group members of ai being labeled with M after

the first phase
F ðaiÞ set of group members of ai being labeled with F after

the first phase
GðaiÞ set of group members of ai, where

GðaiÞ ¼MðaiÞ
S

F ðaiÞ and jGðaiÞj ¼ n
CðaiÞ set of group members of ai belonging to the same

cluster as ai
PS! ~S probability of ai with true state S being labeled with

state ~S

Fig. 3. In this example, there are two clusters fa1; a2; a4g and fa3g in the
group where a1 is the central node. In phase one, jGða1Þj = 3 and jCða1Þj
= 2, thus a1 is labeled with M. In phase two, assuming a2 and a4 are
labeled with M and a3 is labeled with F after the first phase, then
jCða1Þ \Mða1Þj = 2 and jMða1Þj = 2, thus a1 is finally labeled with N.
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two-phase majority voting process in a group, where a1 is
the central node.

3.5 Implementation

The implementation of our design includes both an online
version and an offline version. For the online version, we
use C programming language based on MPI paradigm. MPI
group routines such as MPI_Comm_group and MPI_Grou-
p_incl are adopted to implement our grouping strategy;
MPI_Gather function is used to collect sample data within
each group. The offline version is based on MATLAB, which
requires log data (i.e., node metrics collected from the sys-
tem) as input and is mainly used for the comparison of our
method with existing anomaly detection methods. The
downloads are available at http://bluesky.cs.iit.edu/snd/.

4 ANALYTICAL ANALYSIS

In this section, we derive probabilistic models to quantify
detection accuracy of our design under different configura-
tions. These models enable us to analyze the impacts of dif-
ferent factors on detection accuracy. The factors include
group size, anomaly probability, number of anomaly types
and number of voting phases.

Using the notations listed in Table 1, the probability of a
normal node being labeled with M in Phase one is given by
Equation (3), where f is the number of abnormal nodes in
the group,

sPN!M ¼ ð1� pÞ
Xdn2e�1
f¼0

Cf
nð1� pÞn�fpf : (3)

The probability of a normal node being labeled with F in
Phase one can be given in a similar way. It is also defined as:

PN!F ¼ 1� p� PN!M: (4)

The probability of an abnormal node being labeled with F
in Phase one is given by Equation (5). In the best-case, all the
abnormal nodes behave differently and are labeled with F
in Phase one. In the worst-case, all the abnormal nodes
behave similarly (e.g., caused by the same root cause) and
are put into the same cluster,

PA!F ¼
p best� case

p
Pbn2c

f¼0 C
f
nð1� pÞn�fpf worst� case
::

8<
: (5)

The probability of an abnormal node being labeled with
M in Phase one can be given similarly.

PA!M ¼ p� PA!F : (6)

Based on Equations (3)-(6), we obtain the probability of a
normal node being correctly labeled as below,

PN!N ¼ ð1� pÞ
Xn
m¼1

Cm
n

Xdm2 e�1
a¼0

Ca
mP

m�a
N!MPa

A!M

0
@

1
A

Xn�m
b¼0

Cb
n�mP

b
N!FP

n�m�b
A!F

 !
þ PN!M

Xn
c¼0

Cc
nP

c
N!FP

n�c
A!F

 !
:

(7)

Similarly, we can derive PA!A. The detection accuracy of
our method is calculated as PN!N þ PA!A, indicating the
probability of a node being correctly classified.

These probabilistic models allow us to analytically evalu-
ate our design under a variety of configurations. We can
examine detection accuracy of our method under different
group sizes and anomaly probabilities, and the results are
presented in Fig. 4. It shows that detection accuracy
increases as group size grows, but the improvement
becomes not obvious when the group size is larger than
eight. Also, accuracy gap exists between the best-case and
worst-case given by Equation (5), which is particularly signif-
icant when anomaly probability is high (i.e., p � 20%). This
observation implies that if our method is able to distinguish
different abnormal behaviors, the accuracy of the voting
mechanism can be improved. In other words, in case of
high anomaly probability, the non-parametric clustering
can greatly outperform parametric clustering methods that
assume a predefined number of behavioral patterns.

We can also use these models to compare our two-phase
voting with the conventional one-phase voting, and the
results are presented in Fig. 5. It clearly demonstrates that
the two-phase majority voting outperforms one-phase

Fig. 4. Detection accuracy of the proposed method under different group sizes and anomaly probabilities. The gap between the best-case (solid line)
and worst-case (dash line) is given by Equation (5).

Fig. 5. Comparison of our two-phase majority voting represented by solid curves and the conventional one-phase majority voting represented by
dash curves.
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voting. According to the probabilistic models, two-phase
voting gives significantly better detection accuracy than the
one-phase version until the anomaly probability reaches 50
percent. Actually, we can extend the two-phase voting to n-
phase voting by repeating line 7 to line 19 of Algorithm 1 in
a similar manner, i.e., only the nodes labeled as majority in
last phase have the right to vote in the current phase. How-
ever, according to our study, n-phase voting (n> 2) can not
deliver significantly better accuracy than two-phase voting,
but rather introduce higher overhead (i.e., for n-phase vot-
ing, we need n times communication among nodes within
each group). Two-phase voting provides a good tradeoff
between detection accuracy and detection overhead.

5 EXPERIMENT CONFIGURATION

5.1 Testbeds

5.1.1 Stampede at TACC

Stampede is one of the most powerful supercomputers in the
world [37]. It is a 6;400-node system located at TACC. Each
node is configured with two Intel Xeon E5-2680 processors,
32 GB memory and a 250 GB local disk. All nodes are inter-
connected with Mellanox FDR, the InfiniBand technology in
a two-level fat-tree topology. The network topology of Stam-
pede, alongwith our grouping, is described in Fig. 6.

Following the three steps listed in Section 3.1, we apply
our hierarchical grouping strategy to Stampede by leverag-
ing its topology query service [38]. In the first step, all com-
pute nodes are put into one group because they are
assembled in the same machine room. In the second step,
we divide the compute nodes into groups according to the
level 0 switches as shown in Fig. 6. After this step, the dis-
tance between nodes within the same group is two hops. In
the third step, we further divide nodes by randomly assign-
ing each node with n� 1 neighbors, where n is the group
size for our parallel analysis.

We evaluate our design with five application kernels and
two proxy applications. The five kernels, summarized in
Table 2, are from a spectrum of computational domains,
including sparse linear algebra, N-body methods, struc-
tured grids, spectral methods and Monte Carlo [39], [40],
[41]. The two proxy applications include a multi-physics
multi-scale simulation code and an open-source computa-
tional fluid dynamics solver [42], [43].

5.1.2 HEC Cluster

HEC is a 65-node computing system located at Illinois Insti-
tute of Technology. It consists of 64 compute nodes and one
head node. Each computing node has two Quad-Core AMD
Opteron(tm) processors, 8 GB memory and a 250 GB
7200 RPM SATA-II disk. All the nodes are equipped with
Gigabit Ethernet interconnection. Similarly, in the first step
of hierarchical grouping, we put all compute nodes into one
group as they are located within the same cluster. In the
second step, we divide the nodes into three groups accord-
ing to their physical distances, which are determined by the
three switches in the network. In the third step, we further
divide nodes within each group using our random group-
ing strategy.

Hadoop benchmark TeraSort, Bayesian Classification and
Hive Join server as the test workloads on HEC [44]. These
three workloads are summarized in Table 2 as well.

5.2 Fault Injection

We randomly injectmultiple faults into the testbeds by gener-
ating faulty threads in the background, separating from the
application threads. Three factors are considered in our fault
injection. First is the number of nodes to inject faults, second
is the location of nodes to inject faults, and the last is the types
of faults to inject. In our experiments, the number of nodes to
inject faults is determined by anomaly probability. For exam-
ple, given 100 nodes and 10 percent anomaly probability, we
randomly inject faults into 10 nodes out of the 100 nodes. In
addition, we inject different number of fault types, denoted
as one-anomaly to four-anomaly, and evaluate them separately.
The injected fault types are summarized as below.

� CPU-intensive threads: On randomly selected nodes,
the injected threads compete for the CPU resource
with the normal computation on the nodes.

Fig. 6. The network topology of stampede.

TABLE 2
Workloads Used in this Work

Workload Name Category Programming Model Testbed Implementation Input size

Conjugate Gradient (CG) Sparse linear algebra MPI Stampede NPB CG [39] Class C
Barnes-Hut simulation (NB) N-body method MPI Stampede [40] 10,000 Particles
Multi-grid (MG) Structured grids MPI Stampede NPB MG [39] Class C
FFT (FT) Spectral methods MPI Stampede NPB FT [39] Class C
Monte Carlo
simulation (MC)

Monte Carlo MPI Stampede XSBench [41] Large,
Lookups = 108

Flash (FL) Multi-physics simulation MPI Stampede FLASH [42] maxPerProc = 105

Nek5000 (NK) Computational fluid
dynamics

MPI Stampede Nek5000 [43] Large

TeraSort (TS) Sorting Map/Reduce HEC [44] 10 GB data / node
Bayesian Classification (BC) Machine Learning Map/Reduce HEC [44] 5 GB data / node
Hive Join (HJ) Analytical Query Map/Reduce HEC [44] 5 GB data / node
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� Memory leaking: On randomly selected nodes, the
injected threads generate memory leaking on the
nodes.

� Frequent I/O operations: On randomly selected nodes,
the injected threads keep reading and writing a large
amount of bytes from local files.

� Network volume overflow: On randomly selected
nodes, the injected threads send and receive a large
amount of data between nodes.

� Deadlock: On randomly selected nodes, the injected
threads block MPI application processes from sys-
tem resources.

� Task Hang: On randomly selected nodes, the injected
threads deliberately miscompute checksum to trig-
ger a hang at the reducer of Hadoop application.

We select these faults based on the literature and our
own experience on system log analysis [45]. For example,
we have found that some job delays are triggered by dead-
lock, some network-related problems like packet loss are
caused by heavy traffic volume, and some performance
problems are due to frequent I/O operations. While we gen-
erate all these faults from the operating system layer, they
are used to simulate the manifestation of performance
anomalies originated from different system layers.

5.3 Features

We collect 18 features per node. At the operating system
layer, we collect node-level metrics from CPU, memory,
I/O, and network by using four system commands,
namely vmstat, mpstat, iostat, and netstat. At the middle-
ware layer, we collect application-level metrics from the
MPI workload by adopting profiling interface (PMPI) [46]
and from the Hadoop workload by tracking the log file of
DataNode. These features are summarized in Table 3. In
experiments, the feature collection interval is set to 10 sec-
onds and the detection interval is set to 30 seconds.
Hence, in each detection, we collect three samples from
every node and the matrix X described in Section 3.2 has
a size of ð18 � 3Þ � n.

5.4 Evaluation Metrics

We choose a widely used metric, F-measure, to evaluate
detection accuracy. It is defined as

F �measure ¼ 2TP

2TP þ FP þ FN
; (8)

where TP is the number of correctly detected abnormal
nodes, TN is the number of correctly detected normal nodes,
FP is the number of normal nodes detected as abnormal
and FN is the number of abnormal nodes detected as nor-
mal. It is worth noting that F-measure is a combined metric.
Detection accuracy can be further evaluated by
sensitivity ¼ TP=ðTP þ FNÞ and specificity ¼ TN=ðFP þ TNÞ
respectively. A sensitivity of 1:0means that the method iden-
tifies all the abnormal nodes, and a specificity of 1:0 means
that the method spots all the normal nodes.

We also use Rand Index [47] to measure the accuracy
of clustering. Specifically, given a group of nodes
A ¼ ða1; a2; . . . ; anÞ, let P be the partition according to the
clustering and G be the partition according to the true class
labels, clustering accuracy (R) is defined as:

R ¼ aþ b

aþ bþ cþ d
; (9)

where a is the number of pairs of elements in A that are in
the same set in P and in the same set in G, b is the number
of pairs in different sets in P and in different sets in G, c is
the number of pairs in the same set in P and in different
sets in G and d is the number of pairs in different sets in P
and in the same set in G. Rand index is in the range of ½0; 1�,
with 0 indicating P and G do not agree on any pair of nodes
and 1 indicating P and G are exactly the same. A good clus-
tering should provide a high value (close to 1.0) for R.

6 RESULTS

6.1 Detection Accuracy

In this set of experiments, we evaluate detection accuracy of
our method under different workloads. The group size is set
to 8, and the anomaly probability is set to 15 percent. Tables 4
and 5 present the results with single anomaly type and the
combination of multiple anomaly types respectively. For
single anomaly, the results (sensitivity & specificity) are
the average detection accuracy of multiple experiments
(i.e., multiple runs). For multiple anomalies, we randomly
injected two or three or four anomalies out of the six anomaly
types listed in Section 5.2 into the computing.

We make several observations from Tables 4 and 5. First,
detection accuracy varies according to different anomaly
types. Our method can achieve 100 percent sensitivity and
high specificity for CPU hog, memory leaking and disk hog.
This observation makes sense as we find that the features
collected from CPU, memory and disk exhibit good similar-
ity among healthy nodes. We also find that the false positive
(i.e., specificity< 1:0) is mainly caused by the variability of
network features on normal nodes. With respect to network
anomaly, detection accuracy is obviously lower than that
with other anomaly types. The main reason is that the peer-
comparable property of the network features collected in
our experiments is interfered by factors such as application

TABLE 3
The Summary of Collected Features

Name Description

OS Layer CPU_SYS CPU utilizations
CPU_USER

CPU_WAIT
MEMORY_Free Free memory (KB)

MEMORY_Swapped Used virtual memory (KB)
DEV_BLOCK_IN No. of blocks sent / s

DEV_BLOCK_OUT No. of blocks read / s
PACKET_IN No. of packets received / s

PACKET_OUT No. of packets sent / s
NET_BYTE_IN Bytes received (KB / s)

NET_BYTE_OUT Bytes sent (KB / s)
Context_Switch No. of context switches / s

Middleware Layer BLOCK_RECEIVED No. of blocks received / s

TASK_LAUNCH No. of tasks launched / s
TASK_FINISH No. of tasks finished / s

TASK_DURATION Average task duration (s)
Comp. Time Computation time
Comm. Time Communication time
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communication patterns, network environments, etc. For
instance, in the MPI environment, FT has the lowest detec-
tion accuracy because it is a highly communication-inten-
sive application, whose collectives/point-to-point ratio and
communication/computation ratios are much higher than
other MPI workloads. On the contrary, MC has the highest
detection accuracy because it involves very few communi-
cations among nodes. With respect to deadlock and task
hang, detection accuracy is higher than that with net hog
but lower than that with other anomaly types. This observa-
tion is understandable as we note that the features collected
from middleware layer show lower variability on normal
nodes than the features collected from network.

We make similar observations from the two proxy appli-
cations. The detection method has slightly better perfor-
mance on FL than on NK. This is mainly because the peer
variability of network features from NK is significantly
higher than that from FL. Specifically, NK features scalable
all-to-all communication, which performs well on large-
scale computing. On the contrary, FL is less communication
intensive and its inter-process interactions are mainly
through local point-to-point communications.

Second, we find the number of anomaly types has contra-
dictory impacts on detection accuracy. Two-anomaly leads
to a comparable or even better detection accuracy than one-
anomaly. This observation accords with our analysis of the
best-case and worst-case in Fig. 4. That is, multiple anomaly
types are more distinguishable than single anomaly type
using the majority voting mechanism. However, as the
number of anomaly types increases to three and four, detec-
tion accuracy begins to drop because more noise are
introduced.

Third, our method shows better performance on Stam-
pede than on HEC. For the tightly-coupled scientific appli-
cations on Stampede, the number of anomaly types does
not impact on detection accuracy significantly; while for the

data-intensive applications on HEC, a larger number of
anomaly types always indicates a lower detection accuracy.
There are several explanations. On one hand, the tightly-
coupled computing environment introduces less noise to
node behaviors than the loosely-coupled environment. On
the other hand, the MPI paradigm tends to impose more
strict parallelism on compute nodes than the Hadoop para-
digm, thus exhibiting a better peer-comparable property. In
addition, as the HEC cluster used for our experiments is
shared by other users, the normal node behaviors are inter-
fered by resource contention.

6.2 Communication and Computation Cost

In this set of experiments, we study the scalability of our
method by examining the overhead introduced by one
detection. The sum of computation and communication
time is measured in milliseconds (ms) with varying group
sizes and number of nodes. Figs. 7a and 7b present the aver-
age detection overhead of different workloads on Stampede
and HEC respectively. Each plot contains three curves, rep-
resenting different group sizes.

We make two observations from Figs. 7a and 7b. First,
given the same number of nodes, group size n impacts on
detection overhead significantly. The main reason for this
observation is that computation cost increases greatly as

TABLE 4
Detection Accuracy Measured by Sensitivity (Upper) and Specificity (Lower) with Single Anomaly Type

Single Anomaly
Stampede HEC

CG NB MG FT MC FL NK TS BC HJ

CPU 1:000:98 1:001:00 1:001:00 1:000:97 1:001:00 1:000:99 1:000:97 1:001:00 1:000:95 1:000:93
memory 1:000:99 1:000:99 1:000:98 1:000:98 1:001:00 1:001:00 1:000:98 1:001:00 1:000:98 1:000:96
I/O 1:000:99 1:001:00 1:001:00 1:000:99 1:001:00 1:000:00 1:000:99 1:001:00 1:000:98 1:000:98
network 1:000:97 1:000:94 0:980:92 0:960:88 1:000:99 1:000:97 1:000:96 0:980:95 0:920:83 0:890:76
deadlock 1:000:98 1:000:96 1:000:96 0:980:92 1:000:98 0:000:98 1:000:97 n=an=a n=an=a n=an=a
hang n=an=a n=an=a n=an=a n=an=a n=an=a n=an=a n=an=a 0:980:95 0:940:90 0:920:87

Anomaly probability is set to 15 percent. Group size is set to 8. The anomaly type “deadlock” is only applicable to MPI workloads, and the anomaly type “hang” is
only applicable to Hadoop workloads.

TABLE 5
Detection Accuracy Measured by Sensitivity (Upper) and Specificity (Lower) with Multiple Anomaly Types

Multiple Anomaly
Stampede HEC

CG NB MG FT MC FL NK TS BC HJ

two-anomaly 1:000:99 1:000:98 1:000:95 0:980:95 1:000:99 1:000:99 1:000:98 0:980:95 0:930:87 0:910:82
three-anomaly 0:990:96 1:000:94 0:980:92 0:950:91 1:000:98 1:000:97 0:980:95 0:930:90 0:880:81 0:860:77
four-anomaly 0:980:94 1:000:92 0:970:91 0:920:87 1:000:97 1:000:96 0:960:93 0:910:89 0:830:75 0:810:72

Anomaly probability is set to 15 percent. Group size is set to 8.

Fig. 7. Average detection overhead with varying group size and number
of nodes.
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group size grows. This also implies that it is necessary to
limit the group size if wewant to apply complicatedmachine
learning algorithms to data analysis within each group. Sec-
ond, a larger number of nodes always results in a higher
detection overhead. This is because communication cost
grows significantly with the increase of number of nodes.

Fig. 8 further presents detection overhead under differ-
ent workloads. On one hand, as we use the same group size
for the test, the computation cost under different workloads
are quite close. On the other hand, the communication cost
under different workloads are impacted by the their com-
munication patterns greatly. For instance, the FT algorithm
which has heavy collective communications can lead to
detection overhead two times higher than the MC algorithm
which has very few communications. In sum, our anomaly
detection method introduces a very low overhead into com-
puting, indicating a high scalability. With the default group
size 8, the overall time cost of each detection on 2;048 com-
pute nodes is less than 120 ms. Comparing with the detec-
tion interval set in our study (i.e., 30 seconds), the relative
overhead is less than 0:4 percent.

6.3 Non-Parametric versus Parametric Clustering

In this set of experiments, we compare AMS with five well-
known parametric clustering algorithms. They are k-means
clustering, hierarchical clustering, Gaussian mixture cluster-
ing, DBSCAN and mean-shift clustering.

As mentioned in Section 3.3, parametric clustering
methods require predefined parameters as inputs. In this
study, we set the number of clusters to 2 for k-means,
hierarchical and Gaussian mixture clustering by assuming
there are two behavior patterns in the system. Also, based
on the average peer distance and group size, we set the
distance threshold to 0.2 and the minimum cluster size to
1 for DBSCAN, and set the bandwidth to 0.6 for mean-
shift clustering. Figs. 9 and 10 present the comparison in
term of clustering accuracy and detection accuracy
respectively.

We make two observations from Fig. 9, where clustering
accuracy is given by the average value under different
anomaly probabilities. First, when the true number of
behavior patterns is equal to the predefined number of clus-
ters, i.e., number of anomaly types = 1, all clustering meth-
ods are comparable to each other; while as the number of
anomaly types increases, the density-based clustering meth-
ods, including DBSCAN, mean-shift and AMS, outperform
other clustering methods obviously because they are capa-
ble of identifying a arbitrary number of anomaly types. Sec-
ond, AMS provides comparable detection accuracy as
DBSCAN and mean-shift when the number of anomaly
types is small; but slightly outperforms them when the
number becomes larger. This observation indicates that
AMS is more robust to the changing of data characteristics
(e.g., the number of anomaly types) than those two widely
adopted density-based clustering methods.

The comparison of detection accuracy shown in Fig. 10
basically coincides with the comparison of clustering accu-
racy shown in Fig. 9. Further, we find that k-means, hierar-
chical and Gaussian mixture clustering methods provide
remarkably low detection accuracy for low anomaly proba-
bilities (e.g., p ¼ 10%). The reason is that a low anomaly
probability tends to form a large number of anomaly-free
groups based on the random grouping strategy. As these
three clustering algorithms divide nodes arbitrarily into
two clusters, they result in a number of incorrect clusterings
in these anomaly-free groups.

6.4 Effect of Feature Extraction Methods

In this set of experiments, we evaluate the effect of feature
extraction methods on detection accuracy. Specifically, we
compare three cases, including no feature extraction
adopted, feature extraction by PCA and feature extraction
by KCA. Fig. 11 presents the results.

As shown in Fig. 11, feature extraction does not impact
on detection accuracy significantly when the number of
anomaly types is less than 3. We guess this is because when
the number of anomaly types is small, noise involved in
data is limited. Thus the adoption of feature extraction dose

Fig. 8. Detection overhead under different workloads, where group size
is set to 8. the number of nodes used on stampede is 2;048 and that
used on HEC is 64.

Fig. 9. Comparison of our non-parametric clustering method AMS and
existing parametric clustering methods.

Fig. 10. Comparison of our non-parametric clustering method AMS and parametric clustering methods.
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not remove noise effectively but instead of miss some infor-
mation. On the contrary, when the number of anomaly types
is larger than 2, feature extraction improves detection accu-
racy effectively, andKPCA always provides higher detection
accuracy than PCA. This indicates that KPCA can provide a
better recognition rate than PCA in the context of complex
behavior patterns. In addition, we find that if we limit group
size not to be greater than the number of features per node,
KPCA is computationally comparable to PCA.

6.5 Our Method versus Existing Methods

In this set of experiments, we compare our method with
three widely used detection approaches. They are dis-
tance-based (DB) approach [14], nearest neighbor
approach [48] and local outlier factor (LOF) based
approach [49]. To make a fair comparison, we tune the
parameters used in these methods carefully to achieve
their best performance. Figs. 12 and 13 present the results
on two testbeds respectively.

We make several observations from above figures. For a
single anomaly type, detection accuracy of DB and NN are
comparable to that of our method when anomaly probability
is low, e.g., p � 20%, but drops quickly as anomaly probabil-
ity increases. For multiple anomaly types, DB and NN fail to
achieve detection accuracy as high as ourmethod evenwhen
anomaly probability is low. Unlike DB and NN, LOF is com-
parable to our method when the number of anomaly types is
not larger than 2, but is outperformed by ourmethodwhen it
is larger than 2. The performance difference between these

methods is mainly caused by their underlying models. As
our method and LOF both rely on data density for anomaly
detection, they have closer performance when compared to
other two distance-basedmethods.

Compared to all other methods, our method has an aver-
age of more than 12 percent improvement in terms of detec-
tion accuracy, given multiple anomaly types (i.e., other than
one-anomaly) and high anomaly probability (i.e., p > 20%).
We believe the improvementmainly comes from two aspects.
First, the non-parametric clustering method distinguishes
multiple anomaly types more accurately than existing meth-
ods that rely on predefined distance or density thresholds.
Second, our two-phase voting strategy effectively boots
detection accuracy on datawith high anomaly probability.

7 DISCUSSION

In this section, we discuss the limitations and the potential
use of our design.

What happens after anomaly detection? Anomaly detection
plays the first and a crucial step in fault management. The
effectiveness of fault tolerant actions highly depend on
detection accuracy. A false positive causes unnecessary
error handling, while a false negative overlooks a potential
performance anomaly that could lead to a system crash. In
the past, numerous studies have been presented for error
handling based on anomaly detection, and these include
preemptive process migration, fault-aware job reschedul-
ing, etc. [19], [50].

Fig. 11. Comparison of feature extraction methods in terms of detection accuracy.

Fig. 12. Comparison of our detection method with existing detection methods on Stampede.

Fig. 13. Comparison of our detection method with existing detection methods on HEC.
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How should we select peer-comparable features? First of all,
we shall point out that in this work we only require peer
comparability per group, rather than across the entire sys-
tem or the entire computing scale. While a production
workload may not have such a peer-comparability property,
the use of hierarchical grouping is intended to split the com-
puting nodes into a number of smaller subgroups with a
group size of 4, 8, or 12. By limiting the size of a group, it is
more likely for preserving a peer-comparability property.
Moreover, in the cases of dynamic workload behaviors, a
performance monitor will be needed to dynamically deter-
mine when a new hierarchical grouping should be per-
formed to reshape the node division for preserving the
peer-comparability property.

Peer-comparable environment is one of the assumptions
used in this study. In order to apply our method, appropri-
ate features should be selected to characterize node behav-
iors to effectively represent the peer-comparable property.
However, how to select appropriate features for anomaly
detection is still a challenging problem. For instance,
according to our experimental results, the features collected
from CPU, memory and disk exhibit good peer-comparable
property among normal nodes, while the features from net-
work and application-layer are interfered by the workload
dependent variability.

There are two ways to address the above issues. First, we
can select more sophisticated features that are less vulnera-
ble to the noise introduced by peer variability. For example,
instead of using feature extraction to project the features into
another space, we can deal with each feature separately,
thus avoiding the situation where features with good peer-
comparable property are interfered by features with poor
peer-comparable property. Second, we can change our
method from application-transparent to application-aware.
For example, instead of using a fixed detection interval, the
detection process can be divided into different stages accord-
ing to the application’s computation or communication pat-
tern. By doing this, in each stage the nodes are expected to
exhibit better peer-comparable property. However, adopting
the second way will decrease the flexibility of our method
and also require a deeper understanding of applications.

Can we apply our method to heterogeneous environments?
The experiments in this work are conducted on two homo-
geneous clusters. The reason is that we do not have an
access to a heterogenous cluster with a large number of
nodes (e.g., hundreds to thousands of nodes). We are confi-
dent that our method works well in a heterogeneous envi-
ronment by dividing heterogeneous nodes into separate
groups through hierarchical grouping.

8 RELATED WORK

Anomaly detection techniques can be broadly classified into
two groups: model-based and data-driven. Representative
model-based techniques include rule based methods [51],
support vector machine (SVM) based methods [52], Bayes-
ian network based methods [53], etc.

A number of model-based methods have been adopted
for anomaly detection. For example, Tan et al. proposed a
performance anomaly prevention method for virtualized
cloud systems by building Markov chain models [2]; Wu

et al. detected faults in cluster systems by comparing the
current running state with normal running model [4]; Stew-
art et al. predicted application performance vis building
system profile [7]; Bronevetsky et al. combined classification
algorithms with information on the abnormality of applica-
tion behavior to improve detection accuracy [54].

Our method is a data-driven approach, which makes
detection using only the current system data. Data-driven
methods that rely on node comparison for anomaly detec-
tion can be further categorized into nearest neighbor based
and clustering based [21]. Representative nearest neighbor
based methods include distance-based [14], kth nearest
neighbor [48] and local outlier factor [49]. Representative
clustering based methods usually use the well-known k-
means algorithm [15].

A number of node comparison methods have been
adopted for anomaly detection in large-scale systems. For
example, Pertet et al. adopted peer comparison approach to
identify anomalous nodes in actively replicated systems
[10]; Kasick et al. developed anomaly detection mechanisms
in distributed environments by comparing system metrics
among nodes [9]; Ozonat adopted an information-theoretic
approach to detect performance anomalies in distributed
web services based on clustering [55].

Our study is distinguished from the above methods in
two aspects. First, our detection method uses clustering
analysis rather than deviation (threshold-based) to measure
the peer similarity. Also, our method works in a decentral-
ized manner and provides better scalability. Second, we
assume the number of behavior patterns is unknown and
adopt a non-parametric clustering method. It is more practi-
cal for realistic use.

Majority voting methods and their probabilistic models
are widely studied for anomaly diagnosis in multiprocessor
systems. Lee and Shin surveyed methods for automated
probabilistic diagnosis of large multiprocessor systems [56];
Mourad and Nayak introduced a diagnosis approach using
neural networks for fault identification using partial syn-
dromes [57]; Mi et al. developed CloudDiag to efficiently
pinpoint fine-grained causes of the performance problems
without any domain-specific knowledge [58].

Distinguishing from above studies that use one-
dimensional data and evaluate by simulation, this paper
tackles high dimensional data from large-scale produc-
tion systems. In addition, our design utilizes a new two-
phase majority voting to boot detection accuracy in case
of multiple anomaly types and high anomaly probability.

9 CONCLUSION

In this paper, we have presented a practical and scalable
anomaly detection method for large-scale systems. Our
design features a decentralized approach based on hierar-
chical grouping, non-parametric clustering, and two-phase
majority voting. Experimental results have demonstrated
that the proposed method can provide high detection accu-
racy by effectively distinguishing distinct anomaly patterns,
with a negligible overhead. The proposed design is applica-
ble to a variety of parallel and distributed computing envi-
ronments with the peer-comparable property.

Our ongoing work includes evaluating the proposed
detection method in other large scale computing
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environments. Further, we plan to study the issue of selec-
tion of features for anomaly detection. We will examine a
variety of features obtained from different system layers
and analyze their impact on detection under various paral-
lel computing environments.
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