
CS 351 Fall 2017

Midterm Exam

October 18th, 2017

Instructions:

• This exam is closed-book, closed-notes. Calculators are not permitted.

• For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

• For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

• Turn in the exam question packet, bubble sheet, and written solution sheet separately.

• Good luck!

Page 1 of 8

Multiple Choice (24 points):

1. Which exemplifies C’s weak type checking?

(a) the ability to assign pointers of any type to/from a (void *) variable without warning

(b) the requirement that all variables be declared before being used

(c) the static nature of variable types — e.g., once declared an int, always an int

(d) the fact that data type widths (e.g., for ints) can be dependent on the platform

2. Consider the following macro definition and variable declaration:

#define FOO(x) (2 * x - x)

int val = 10;

What is the value of the expression FOO(val + 5)?

(a) 15

(b) 20

(c) 25

(d) 35

3. Consider the following variable and function definitions:

int g = 10;

int q3() {

static int g = 5;

return ++g;

}

int q4() {

extern int g;

return ++g;

}

int q5() {

int g = 1;

return ++g;

}

What is the value of the expression q3() + q3() + q4() + q4() + q5() + q5()?

(a) 32

(b) 34

(c) 38

(d) 40

Page 2 of 8

4. Given the following variable declarations:

char *args[] = {"hello", "world"};

void *v = args;

Which prints out hello world?

(a) printf("%c %c\n", *v, *(v + 1));

(b) printf("%s %s\n", *(char **)v, *((char **)v + 1));

(c) printf("%s %s\n", *(char *)v, *((char *)v + 1));

(d) printf("%s %s\n", **v, **(v + 1));

5. Given the following code, which performs dynamic memory allocation:

void *v = 0, *p, *q;

for (int i=0; i<10; i++) {

p = malloc(sizeof(void *));

*(void **)p = v;

v = p;

}

Which correctly deallocates the memory allocated above?

(a) for (int j=0; j<10; j++) {

free p[j];

}

(b) for (int j=0; j<10; j++) {

p = v[j];

q = *p;

free(p);

p = q;

}

(c) p = *(void **)v;

while (p) {

q = *p;

free(p);

p = *q;

}

(d) p=v;

while (p) {

q = *(void **)p;

free(p);

p = q;

}

Page 3 of 8

6. Which correctly completes the blanks in the following code so that the todo function is
effectively called a total of 10 times?

void repeat(_______________, int n) {

for (int i=0; i<n; i++) {

_______________;

}

}

void todo() {

/* do something */

}

main() {

repeat(_______________, 10);

}

(a) void (*f)() / f() / todo

(b) void *f() / *f / &todo

(c) (void)(*f()) / *f() / *todo

(d) void *(f)() / (*f)() / &todo

7. Which is an example of an asynchronous exception?

(a) a call to fork

(b) a segmentation fault

(c) unexpected loss of power to the system

(d) a kernel panic due to accessing defective memory

8. Which is an example of a trap?

(a) a call to fork

(b) a segmentation fault

(c) unexpected loss of power to the system

(d) a kernel panic due to accessing defective memory

9. Which is not inherited by a child process from its parent (i.e., by way of fork-ing)?

(a) group ID

(b) signal handlers

(c) registered atexit handlers

(d) the “pending” signals vector

10. Which is not retained across a successful call to exec?

(a) group ID

(b) process ID

(c) signal handlers

(d) the “pending” signals vector

Page 4 of 8

11. What condition(s) will lead to a process being “adopted” (and reaped upon termination) by
the kernel?

(a) when all its children have been reaped

(b) when it terminates due to an uncaught signal

(c) when its parent terminates

(d) when it invokes the exec system call

12. Given the following global variable declarations:

char a, b;

Which of the following functions is reentrant?

(a) void f_a() {

char *p = &a;

*p += 1;

}

(b) char f_b(char c) {

c = a;

c += b;

return c;

}

(c) void f_c(char c) {

c = a;

a = b;

b = c;

}

(d) void f_d() {

static char c = 0;

c -= a;

}

Page 5 of 8

WP1. Process Trees (8 points):

For each of the following programs, (1) sketch the corresponding process tree — being sure to
indicate any outputs and synchronization points, if they exist — and (2) write down at least three
separate outputs that could be produced when it is executed.

A) main() {

for (int i=0; i<2; i++) {

if (fork()) {

printf("%d", i);

} else {

printf("%d", 3-i);

}

}

}

B) main() {

if (fork()) {

printf("0");

wait(NULL);

printf("1");

} else {

if (fork()) {

printf("2");

wait(NULL);

printf("3");

} else {

printf("4");

}

}

}

Page 6 of 8

WP2. Signal Handlers (6 points):

For the following program, (1) sketch the corresponding process tree — being sure to indicate any
outputs and synchronization points, if they exist — and (2) write down the output it will produce
when executed.

int done = 0;

void handler(int sig) {

printf("0");

done = 1;

}

main() {

pid_t pid;

int status;

signal(SIGUSR1, handler);

if ((pid = fork()) == 0) {

while (!done) ;

printf("1");

exit(2);

} else {

printf("3");

kill(pid, SIGUSR1);

if (wait(&status) > 0)

printf("%d", WEXITSTATUS(status));

}

if (done)

printf("4");

else

printf("5");

}

Page 7 of 8

WP3. Shell Implementation (8 points):

Provide a rough implementation of the central loop of a UNIX shell that correctly handles only
foreground jobs, even when an invalid command is entered. Your implementation should use the
fork, execv, wait, and exit system calls (whose prototypes are given below), and demonstrate
that you understand their semantics. Note that you do not need to implement any signal handlers
nor handle any built-in commands.

• pid_t fork(void);

• int execv(const char *path, char *const argv[]);

• pid_t wait(int *stat_loc);

• void exit(int status);

To read and parse a command line input into an array of arguments, assume that the following
code will suffice:

char cmdline[MAXLINE];

char *argv[MAXARGS];

fgets(cmdline, MAXLINE, stdin);

parseline(cmdline, argv);

State any assumptions in a comment at the start of your code.

Page 8 of 8

