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1 Introduction

In this survey, we will discuss the design and evalua-
tion of conventional dynamic memory allocators. By
“conventional,” we mean allocators used for general
purpose “heap” storage, where the a program can re-
quest a block of memory to store a program object,
and free that block at any time. A heap, in this sense,
is a pool of memory available for the allocation and
deallocation of arbitrary-sized blocks of memory in ar-
bitrary order.® An allocated block is typically used to
store a program “object,” which 1s some kind of struc-
tured data item such as a Pascal record, a C struct,
or a C++ object, but not necessarily an object in the
sense of object-oriented programming.’

Throughout this paper, we will assume that while
a block is in use by a program, its contents (a data
object) cannot be relocated to compact memory (as
is done, for example, in copying garbage collectors
[Wil95]). This is the usual situation in most im-
plementations of conventional programming systems
(such as C, Pascal, Ada, etc.), where the memory
manager cannot find and update pointers to program
objects when they are moved.® The allocator does not

* This sense of “heap” is not to be confused with a quite
different sense of “heap,” meaning a partially ordered
tree structure.

® While this is the typical situation, it is not the only
one. The “objects” stored by the allocator need not
correspond directly to language-level objects. An exam-
ple of this is a growable array, represented by a fixed
size part that holds a pointer to a variable-sized part.
The routine that grows an object might allocate a new,
larger variable-sized part, copy the contents of the old
variable-sized part into it, and deallocate the old part.
We assume that the allocator knows nothing of this, and
would view each of these parts as separate and indepen-
dent objects, even if normal programmers would see a
“single” object.

1t is also true of many garbage-collected systems. In



examine the data stored in a block, or modify or act
on it in any way. The data areas within blocks that are
used to hold objects are contiguous and nonoverlap-
ping ranges of (real or virtual) memory. We generally
assume that only entire blocks are allocated or freed,
and that the allocator is entirely unaware of the type
of or values of data stored in a block—it only knows
the size requested.

Scope of this survey. In most of this survey, we will
concentrate on issues of overall memory usage, rather
than time costs. We believe that detailed measures of
time costs are usually a red herring, because they ob-
scure issues of strategy and policy; we believe that
most good strategies can yield good policies that
are amenable to efficient implementation. (We be-
lieve that it’s easier to make a very fast allocator
than a very memory-efficient one, using fairly straight-
forward techniques (Section 3.12). Beyond a certain
point, however, the effectiveness of speed optimiza-
tions will depend on many of the same subtle issues
that determine memory usage.)

We will also discuss locality of reference only briefly.
Locality of reference is increasingly important, as the
difference between CPU speed and main memory (or
disk) speeds has grown dramatically, with no sign of
stopping. Locality 1s very poorly understood, however;
aside from making a few important general comments,
we leave most issues of locality to future research.

Except where locality issues are explicitly noted,
we assume that the cost of a unit of memory 1s fixed
and uniform. We do not address possible interactions
with unusual memory hierarchy schemes such as com-
pressed caching, which may complicate locality issues
and interact in other important ways with allocator
design [WLMO91, Wil91, Dou93].

We will not discuss specialized allocators for partic-
ular applications where the data representations and
allocator designs are intertwined.”

some, insufficient information is available from the com-
piler and/or programmer to allow safe relocation; this is
especially likely in systems where code written in differ-
ent languages is combined in an application [BW88]. In
others, real-time and/or concurrent systems, it is dif-
ficult for the garbage collector to relocate data with-
out incurring undue overhead and/or disruptiveness
[Wil95].

Examples inlude specialized allocators for chained-
block message-buffers (e.g., [Wol65]), “cdr-coded” list-
processing systems [BCT79], specialized storage for over-
lapping strings with shared structure, and allocators

-

Allocators for these kinds of systems share many
properties with the “conventional” allocators we dis-
cuss, but introduce many complicating design choices.
In particular, they often allow logically contiguous
items to be stored non-contiguously, e.g., in pieces of
one or afew fixed sizes, and may allow sharing of parts
or (other) forms of data compression. We assume that
if any fragmenting or compression of higher-level “ob-
jects” happens, it is done above the level of abstrac-
tion of the allocator interface, and the allocator is en-
tirely unaware of the relationships between the “ob-
jects” (e.g., fragments of higher-level objects) that it
manages.

Similarly, parallel allocators are not discussed, due
to the complexity of the subject.

Structure of the paper.This survey is intended to
serve two purposes: as a general reference for tech-
niques in memory allocators, and as a review of the
literature in the field, including methodological con-
siderations. Much of the literature review has been
separated into a chronological review, in Section 4.
This section may be skipped or skimmed if method-
ology and history are not of interest to the reader,
especially on a first reading. However, some poten-
tially significant points are covered only there, or only
made sufficiently clear and concrete there, so the seri-
ous student of dynamic storage allocation should find
it worthwhile. (It may even be of interest to those
interested in the history and philosophy of computer
science, as documentation of the development of a sci-
entific paradigm.®)

The remainder of the current section gives our mo-
tivations and goals for the paper, and then frames
the central problem of memory allocation—fragmen-
tation—and the general techniques for dealing with
it.

Section 2 discusses deeper issues in fragmentation,
and methodological issues (some of which may be
skipped) in studying it.

Section 3 presents a fairly traditional taxonomy of

used to manage disk storage in file systems.

& We use “paradigm” in roughly the sense of Kuhn
[Kuh70], as a “pattern or model” for research. The
paradigms we discuss are not as broad in scope as the
ones usually discussed by Kuhn, but on our reading, his
ideas are intended to apply at a variety of scales. We are
not necessarily in agreement with all of Kuhn’s ideas,
or with some of the extreme and anti-scientific purposes
they have been put to by some others.



known memory allocators, including several not usu-
ally covered. It also explains why such mechanism-
based taxonomies are very limited, and may obscure
more important policy issues. Some of those policy
issues are sketched.

Section 4 reviews the literature on memory alloca-
tion. A major point of this section is that the main
stream of allocator research over the last several dec-
ades has focused on oversimplified (and unrealistic)
models of program behavior, and that little is actu-
ally known about how to design allocators, or what
performance to expect.

Section 5 concludes by summarizing the major
points of the paper, and suggesting avenues for future
research.

Table of Contents

1 Imtroduction . ... ... ... ... ... 1
1.1 Motivation . . . . .. . ... ... .. 4
1.2 What an Allocator Must Do . . . . . 5
1.3 Strategies, Placement Policies; and

Splitting and Coalescing . . . . . 6
Strategy, policy, and mechanism. . . . 6
Splitting and coalescing. . . . . . . . . 8

2 A Closer Look at Fragmentation, and

How to Study It . . . . . . ... ... .. 8

2.1 Internal and External Fragmentation . 8
2.2 The Traditional Methodology: Proba-
bilistic Analyses, and Simulation

Using Synthetic Traces . . . . .
Random simulations.. . . . . . . . .. 10
Probabilistic analyses. . . . . . .. .. 11
A note on exponentially-distributed

random lifetimes. . . . . . . . .. 12
A note on Markov models. . . . . .. 12
2.3 What Fragmentation Really Is, and

Why the Traditional Approach is

Unsound . . . ... ... .. .. 14
Fragmentation is caused by isolated

deaths. . . . .. ... ... 15
Fragmentation 1s caused by time-

varying behavior. . . . . . .. .. 15
Implications for experimental method-

ology.. . .. ... L. 15

2.4 Some Real Program Behaviors . . .. 16

Ramps, peaks, and plateaus. . . . . . 16

Fragmentation at peaks is important. 17

Exploiting ordering and size depen-

dencies. . . . . ... ... ... 18
Implications for strategy. . . . . . .. 18
Implications for research. . . . . . .. 18
Profiles of some real programs. . . .. 19
Summary. . . . .. ... 22

2.5 Deferred Coalescing and Deferred Reuse 22
Deferred coalescing. . . . . .. .. .. 22
Deferred reuse. . . . . .. ... ... 24

2.6 A Sound Methodology: Simulation Us-

ing Real Traces . . . . ... ... 25

Tracing and simulation. . . . . . . .. 25
Locality studies. . . . .. ... . ... 26

3 A Taxonomy of Allocators . . . . . .. 26
3.1 Allocator Policy Issues . . . . . . . .. 27

3.2 Some Important Low-Level Mechanisms 27

Header fields and alignment. . . . . . 27
Boundary tags. . . . ... ... ... 28

Link fields within blocks. . . . . . .. 28

Lookup tables. . . . . ... ... ... 29

Special treatment of small objects. . . 29
Special treatment of the end block of

the heap. . . . . ... ... .. .. 29

3.3 Basic Mechanisms . . . . ... .. .. 30

3.4 Sequential Fits . . . . . . .. ... .. 30
3.5 Discussion of Sequential Fits and Gen-

eral Policy Issues. . . . .. ... 32

3.6 Segregated Free Lists . . . .. .. .. 36

3.7 Buddy Systems . . . . .. ... ... 38

3.8 Indexed Fits . . . . ... .. ... .. 40

Discussion of indexed fits. . . . . . . . 41

3.9 Bitmapped Fits . . . .. ... ... 41
3.10 Discussion of Basic Allocator Mecha-

NISMS. . . . . . o 42

3.11 Quick Lists and Deferred Coalescing . 43

Scheduling of coalescing. . . . . . .. 44

What to coalesce. . . . . . ... ... 45

Discussion. . . .. . ... ... ... 45

3.12 A Note on Time Costs . . . . . . . .. 45
4 A Chronological Review of The Liter-

ature . . . . ... Lo 46

4.1 The first three decades: 1960 to 1990 . 46

1960 to 1969. . . . . . .. ... .. .. 47

1970 to 1979. . . . . . ... 50

1980 to 1990. . . . . . . . ... ... 57

4.2 Recent Studies Using Real Traces . . 65

Zorn, Grunwald, et al. . . . . . . . .. 65

Vo. .. 67

Wilson, Johnstone, Neely, and Boles. . 67



5 Summary and Conclusions . . . . . .. 69
5.1 Models and Theories . . . . . . . . .. 69
5.2 Strategies and Policies . . . . . . . .. 70
5.3 Mechanisms . . . . . . . ... .. ... 70
5.4 Experiments . . .. ... .. ... .. 71
55 Data. . . .. ... oo 71
5.6 Challenges and Opportunities . . . . . 71

1.1 Motivation

This paper is motivated by our perception that there
is considerable confusion about the nature of memory
allocators, and about the problem of memory alloca-
tion in general. Worse, this confusion is often unrec-
ognized, and allocators are widely thought to be fairly
well understood. In fact, we know little more about
allocators than was known twenty years ago, which
is not as much as might be expected. The literature
on the subject is rather inconsistent and scattered,
and considerable work appears to be done using ap-
proaches that are quite limited. We will try to sketch
a unifying conceptual framework for understanding
what is and is not known, and suggest promising ap-
proaches for new research.

This problem with the allocator literature has con-
siderable practical importance. Aside from the human
effort involved in allocator studies per se, there are ef-
fects in the real world, both on computer system costs,
and on the effort required to create real software.

We think it 1s likely that the widespread use of poor
allocators incurs a loss of main and cache memory
(and CPU cycles) upwards of of a billion U.S. dollars
worldwide—a significant fraction of the world’s mem-
ory and processor output may be squandered, at huge
cost.”

Perhaps even worse is the effect on programming
style due to the widespread use of allocators that
are simply bad ones—either because better allocators
are known but not widely known or understood, or
because allocation research has failed to address the

® This is an unreliable estimate based on admittedly ca-
sual last-minute computations, approximately as fol-
lows: there are on the order of 100 million PC’s in the
world. If we assume that they have an average of 10
megabytes of memory at $30 per megabyte, there is 30
billion dollars worth of RAM at stake. (With the ex-
pected popularity of Windows 95, this seems like it will
soon become a fairly conservative estimate, if it isn’t al-
ready.) If just one fifth (6 billion dollars worth) is used
for heap-allocated data, and one fifth of that is unnec-
essarily wasted, the cost 1s over a billion dollars.

proper issues. Many programmers avoid heap alloca-
tion in many situations, because of perceived space or
time costs. !0

It seems significant to us that many articles in non-
refereed publications—and a number in refereed pub-
lications outside the major journals of operating sys-
tems and programming languages—are motivated by
extreme concerns about the speed or memory costs
of general heap allocation. (One such paper [GM85]
is discussed in Section 4.1.) Often, ad hoc solutions
are used for applications that should not be problem-
atic at all, because at least some well-designed gen-
eral allocators should do quite well for the workload
in question.

We suspect that in some cases, the perceptions are
wrong, and that the costs of modern heap allocation
are simply overestimated. In many cases, however, it
appears that poorly-designed or poorly-implemented
allocators have lead to a widespread and quite under-
standable belief that general heap allocation is neces-
sarily expensive. Too many poor allocators have been
supplied with widely-distributed operating systems
and compilers, and too few practitioners are aware
of the alternatives.

This appears to be changing, to some degree. Many
operating systems now supply fairly good allocators,
and there is an increasing trend toward marketing li-
braries that include general allocators which are at
least claimed to be good, as a replacement for de-
fault allocators. It seems likely that there is simply a
lag between the improvement in allocator technology
and its widespread adoption, and another lag before
programming style adapts. The combined lag is quite
long, however, and we have seen several magazine ar-
ticles in the last year on how to avoid using a general
allocator. Postings praising ad hoc allocation schemes
are very common in the Usenet newsgroups oriented
toward real-world programming.

The slow adoption of better technology and the lag
in changes in perceptions may not be the only prob-
lems, however. We have our doubts about how well
allocators are really known to work, based on a fairly
thorough review of the literature. We wonder whether
some part of the perception is due to occasional pro-

10 Tt is our impression that UNIX programmers’ usage of
heap allocation went up significantly when Chris Kings-
ley’s allocator was distributed with BSD 4.2 UNIX—
simply because it was much faster than the allocators
they’d been accustomed to. Unfortunately, that alloca-
tor is somewhat wasteful of space.



grams that interact pathologically with common allo-
cator designs, in ways that have never been observed
by researchers.

This does not seem unlikely, because most experi-
ments have used non-representative workloads, which
are extremely unlikely to generate the same problem-
atic request patterns as real programs. Sound studies
using realistic workloads are too rare. The total num-
ber of real, nontrivial programs that have been used
for good experiments is very small, apparently less
than 20. A significant number of real programs could
exhibit problematic behavior patterns that are simply
not represented in studies to date.

Long-running processes such as operating sys-
tems, interactive programming environments, and
networked servers may pose special problems that
have not been addressed. Most experiments to date
have studied programs that execute for a few minutes
(at most) on common workstations. Little is known
about what happens when programs run for hours,
days, weeks or months. It may well be that some
seemingly good allocators do not work well in the
long run, with their memory efficiency slowly degrad-
ing until they perform quite badly. We don’t know—
and we're fairly sure that nobody knows. Given that
long-running processes are often the most important
ones, and are increasingly important with the spread
of client/server computing, this is a potentially large
problem.

The worst case performance of any general alloca-
tor amounts to complete failure due to memory ex-
haustion or virtual memory thrashing (Section 1.2).
This means that any real allocator may have lurking
“bugs” and fail unexpectedly for seemingly reasonable
inputs.

Such problems may be hidden, because most pro-
grammers who encounter severe problems may simply
code around them using ad hoc storage management
techniques—or, as is still painfully common, by stat-
ically allocating “enough” memory for variable-sized
structures. These ad-hoc approaches to storage man-
agement lead to “brittle” software with hidden limi-
tations (e.g., due to the use of fixed-size arrays). The
impact on software clarity, flexibility, maintainability,
and reliability is quite important, but difficult to esti-
mate. It should not be underestimated, however, be-
cause these hidden costs can incur major penalties in
productivity and, to put it plainly, human costs in
sheer frustration, anxiety, and general suffering.

A much larger and broader set of test applications

and experiments is needed before we have any assur-
ance that any allocator works reliably, in a crucial
performance sense—much less works well. Given this
caveat, however, it appears that some allocators are
clearly better than others in most cases, and this pa-
per will attempt to explain the differences.

1.2 What an Allocator Must Do

An allocator must keep track of which parts of mem-
ory are in use, and which parts are free. The goal of
allocator design is usually to minimize wasted space
without undue time cost, or vice versa. The ideal allo-
cator would spend negligible time managing memory,
and waste negligible space.

A conventional allocator cannot control the num-
ber or size of live blocks—these are entirely up to the
program requesting and releasing the space managed
by the allocator. A conventional allocator also can-
not compact memory, moving blocks around to make
them contiguous and free contiguous memory. It must
respond immediately to a request for space, and once
it has decided which block of memory to allocate, it
cannot change that decision—that block of memory
must be regarded as inviolable until the application'!
program chooses to free it. It can only deal with mem-
ory that is free, and only choose where in free mem-
ory to allocate the next requested block. (Allocators
record the locations and sizes of free blocks of mem-
ory in some kind of hidden data structure, which may
be a linear list, a totally or partially ordered tree, a
bitmap, or some hybrid data structure.)

An allocator is therefore an online algorithm, which
must respond to requests in strict sequence, immedi-
ately, and 1its decisions are irrevocable.

The problem the allocator must address is that
the application program may free blocks in any or-
der, creating “holes” amid live objects. If these holes
are too numerous and small, they cannot be used to
satisfy future requests for larger blocks. This prob-
lem is known as fragmentation, and it is a poten-
tially disastrous one. For the general case that we
have outlined—where the application program may
allocate arbitrary-sized objects at arbitrary times and
free them at any later time—there 1s no reliable algo-
rithm for ensuring efficient memory usage, and none

11 We use the term “application” rather generally; the “ap-
plication” for which an allocator manages storage may
be a system program such as a file server, or even an
operating system kernel.



1s possible. It has been proven that for any possible
allocation algorithm, there will always be the possi-
bility that some application program will allocate and
deallocate blocks in some fashion that defeats the al-
locator’s strategy, and forces it into severe fragmen-
tation [Rob71, GGU72, Rob74, Rob77]. Not only are
there no provably good allocation algorithms, there
are proofs that any allocator will be “bad” for some
possible applications.

The lower bound on worst case fragmentation is
generally proportional to the amount of live data!?
multiplied by the logarithm of the ratio between the
largest and smallest block sizes, i.e., M log, n, where
M 1s the amount of live data and n is the ratio be-
tween the smallest and largest object sizes [Rob71].

(In discussing worst-case memory costs, we gener-
ally assume that all block sizes are evenly divisible
by the smallest block size, and n 1s sometimes sim-
ply called “the largest block size,” i.e., in units of the
smallest.)

Of course, for some algorithms, the worst case is
much worse, often proportional to the simple product
of M and n.

So, for example, if the minimum and maximum ob-
jects sizes are one word and a million words, then
fragmentation in the worst case may cost an excel-
lent allocator a factor of ten or twenty in space. A
less robust allocator may lose a factor of a million, in
its worst case, wasting so much space that failure is
almost certain.

Given the apparent insolubility of this problem, it
may seem surprising that dynamic memory allocation
is used in most systems, and the computing world does
not grind to a halt due to lack of memory. The rea-
son, of course, is that there are allocators that are
fairly good in practice, in combination with most ac-
tual programs. Some allocation algorithms have been
shown in practice to work acceptably well with real
programs, and have been widely adopted. If a partic-
ular program interacts badly with a particular alloca-
tor, a different allocator may be used instead. (The
bad cases for one allocator may be very different from
the bad cases for other allocators of different design.)

The design of memory allocators is currently some-

12 We use “live” here in a fairly loose sense. Blocks are
“live” from the point of view of the allocator if it doesn’t
know that it can safely reuse the storage—i.e., if the
block was allocated but not yet freed. This is different
from the senses of liveness used in garbage collection or
in compilers’ flow analyses.

thing of a black art. Little is known about the inter-
actions between programs and allocators, and which
programs are likely to bring out the worst in which al-
locators. However, one thing is clear—most programs
are “well behaved” in some sense. Most programs
combined with most common allocators do not squan-
der huge amounts of memory, even if they may waste
a quarter of 1t, or a half, or occasionally even more.

That 1s, there are regularities in program behavior
that allocators exploit, a point that is often insuffi-
ciently appreciated even by professionals who design
and implement allocators. These regularities are ex-
ploited by allocators to prevent excessive fragmenta-
tion, and make it possible for allocators to work in
practice.

These regularities are surprisingly poorly under-
stood, despite 35 years of allocator research, and
scores of papers by dozens of researchers.

1.3 Strategies, Placement Policies, and
Splitting and Coalescing

The main technique used by allocators to keep frag-
mentation under control is placement choice. Two
subsidiary techniques are used to help implement that
choice: splitting blocks to satisfy smaller requests, and
coalescing of free blocks to yield larger blocks.

Placement choice is simply the choosing of where in
free memory to put a requested block. Despite poten-
tially fatal restrictions on an allocator’s online choices,
the allocator also has a huge freedom of action—it
can place a requested block anywhere it can find a
sufficiently large range of free memory, and anywhere
within that range. (It may also be able to simply re-
quest more memory from the operating system.) An
allocator algorithm therefore should be regarded as
the mechanism that implements a placement policy,
which is motivated by a strategy for minimizing frag-
mentation.

Strategy, policy, and mechanism. The strategy
takes into account regularities in program behavior,
and determines a range of acceptable policies as to
where to allocate requested blocks. The chosen pol-
icy 1s implemented by a mechanism, which is a set
of algorithms and the data structures they use. This
three-level distinction is quite important.
In the context of general memory allocation,

— a strategy attempts to exploit regularities in the
request stream,



— a policy 1s an implementable decision procedure
for placing blocks in memory, and

— a mechanism is a set of algorithms and data struc-
tures that implement the policy, often over-sim-
ply called “an algorithm.”!3

An ideal strategy is “put blocks where they won’t
cause fragmentation later”; unfortunately that’s im-
possible to guarantee, so real strategies attempt to
heuristically approximate that ideal, based on as-
sumed regularities of application programs’ behavior.
For example, one strategy is “avoid letting small long-
lived objects prevent you from reclaiming a larger con-
tiguous free area.” This is part of the strategy underly-
ing the common “best fit” family of policies. Another
part of the strategy i1s “if you have to split a block
and potentially waste what’s left over, minimize the
size of the wasted part.”

The corresponding (best fit) policy is
concrete—it says “always use the smallest block that
is at least large enough to satisfy the request.”

more

The placement policy determines exactly where in
memory requested blocks will be allocated. For the
best fit policies, the general rule is “allocate objects
in the smallest free block that’s at least big enough to

1% This set of distinctions is doubtless indirectly influenced
by work in very different areas, notably Marr’s work in
natural and artificial visual systems [Mar82] and Mc-
Clamrock’s work in the philosophy of science and cog-
nition [McC91, McC95]. The distinctions are impor-
tant for understanding a wide variety of complex sys-
tems, however. Similar distinctions are made in many
fields, including empirical computer science, though of-
ten without making them quite clear.

In “systems” work, mechanism and policy are often
distinguished, but strategy and policy are usually not
distinguished explicitly. This makes sense in some con-
texts, where the policy can safely be assumed to im-
plement a well-understood strategy, or where the choice
of strategy is left up to someone else (e.g., designers of
higher-level code not under discussion).

In empirical evaluations of very poorly understood
strategies;, however, the distinction between strategy
and policy is often crucial. (For example, errors in the
implementation of a strategy are often misinterpreted
as evidence that the expected regularities don’t actu-
ally exist, when in fact they do, and a slightly different
strategy would work much better.)

Mistakes are possible at each level; equally important,
mistakes are possible between levels, in the attempt to
“cash out” (implement) the higher-level strategy as a
policy, or a policy as a mechanism.

hold them.” That’s not a complete policy, however,
because there may be several equally good fits; the
complete policy must specify which of those should be
chosen, for example, the one whose address is lowest.

The chosen policy is implemented by a specific
mechanism, chosen to implement that policy effi-
ciently in terms of time and space overheads. For best
fit, a linear list or ordered tree structure might be used
to record the addresses and sizes of free blocks, and
a tree search or list search would be used to find the
one dictated by the policy.

These levels of the allocator design process inter-
act. A strategy may not yield an obvious complete
policy, and the seemingly slight differences between
similar policies may actually implement interestingly
different strategies. (This results from our poor un-
derstanding of the interactions between application
behavior and allocator strategies.) The chosen policy
may not be obviously implementable at reasonable
cost in space, time, or programmer effort; in that case
some approximation may be used instead.

The strategy and policy are often very poorly-
defined, as well, and the policy and mechanism are
arrived at by a combination of educated guessing,
trial and error, and (often dubious) experimental
validation.!*

' In case the important distinctions between strategy, pol-
icy, and mechanism are not clear, a metaphorical exam-
ple may help. Consider a software company that has a
strategy for improving productivity: reward the most
productive programmers. It may institute a policy of
rewarding programmers who produce the largest num-
bers of lines of program code. To implement this policy,
it may use the mechanisms of instructing the managers
to count lines of code, and providing scripts that count
lines of code according to some particular algorithm.

This example illustrates the possible failures at each
level, and in the mapping from one level to another. The
strategy may simply be wrong, if programmers aren’t
particularly motivated by money. The policy may not
implement the intended strategy, if lines of code are an
inappropriate metric of productivity, or if the policy has
unintended “strategic” effects, e.g., due to programmer
resentment.

The mechanism may also fail to implement the spec-
ified policy, if the rules for line-counting aren’t enforced
by managers, or if the supplied scripts don’t correctly
implement the intended counting function.

This distinction between strategy and policy is over-
simplified, because there may be multiple levels of strat-
egy that shade off into increasingly concrete policies.
At different levels of abstraction, something might be



Splitting and coalescing. Two general techniques
for supporting a range of (implementations of) place-
ment policies are splitting and coalescing of free
blocks. (These mechanisms are important subsidiary
parts of the larger mechanism that is the allocator
implementation.)

The allocator may split large blocks into smaller
blocks arbitrarily, and use any sufficiently-large sub-
block to satisfy the request. The remainders from this
splitting can be recorded as smaller free blocks in their
own right and used to satisfy future requests.

The allocator may also coalesce (merge) adjacent
free blocks to yield larger free blocks. After a block
is freed, the allocator may check to see whether the
neighboring blocks are free as well, and merge them
into a single, larger block. This is often desirable, be-
cause one large block 1s more likely to be useful than
two small ones—large or small requests can be satis-
fied from large blocks.

Completely general splitting and coalescing can be
supported at fairly modest cost in space and/or time,
using simple mechanisms that we’ll describe later.
This allows the allocator designer the maximum free-
dom in choosing a strategy, policy, and mechanism for
the allocator, because the allocator can have a com-
plete and accurate record of which ranges of memory
are available at all times.

The cost may not be negligible, however, espe-
cially if splitting and coalescing work oo well—in

viewed as a strategy or policy.

The key point is that there are at least three quali-
tatively different kinds of levels of abstraction involved
[McC91]; at the upper levels, there are is the general de-
sign goal of exploiting expected regularities, and a set of
strategies for doing so; there may be subsidiary strate-
gies, for example to resolve conflicts between strategies
in the best possible way.

At at a somewhat lower level there is a general policy
of where to place objects, and below that is a more
detailed policy that exactly determines placement.

Below that there is an actual mechanism that is in-
tended to implement the policy (and presumably ef-
fect the strategy), using whatever algorithms and data
structures are deemed appropriate. Mechanisms are of-
ten layered, as well, in the usual manner of structured
programming [Dij69]. Problems at (and between) these
levels are the best understood—a computation may be
improperly specified, or may not meet its specification.
(Analogous problems occur at the upper levels occur as
well—if expected regularities don’t actually occur, or if
they do occur but the strategy does’t actually exploit
them, and so on.)

that case, freed blocks will usually be coalesced with
neighbors to form large blocks of free memory, and
later allocations will have to split smaller chunks off
of those blocks to obtained the desired sizes. It of-
ten turns out that most of this effort is wasted, be-
cause the sizes requested later are largely the same as
the sizes freed earlier, and the old small blocks could
have been reused without coalescing and splitting. Be-
cause of this, many modern allocators use deferred
coalescing—they avoid coalescing and splitting most
of the time, but use it intermittently, to combat frag-
mentation.

2 A Closer Look at Fragmentation,
and How to Study It

In this section, we will discuss the traditional concep-
tion of fragmentation, and the usual techniques used
for studying it. We will then explain why the usual un-
derstanding is not strong enough to support scientific
design and evaluation of allocators. We then propose
anew (though nearly obvious) conception of fragmen-
tation and its causes, and describe more suitable tech-
niques used to study it. (Most of the experiments us-
ing sound techniques have been performed in the last
few years, but a few notable exceptions were done
much earlier, e.g., [MPS71] and [LH82], discussed in
Section 4.)

2.1 Internal and External Fragmentation

Traditionally, fragmentation is classed as external or
internal [Ran69], and is combatted by splitting and
coalescing free blocks.

External fragmentation arises when free blocks of
memory are available for allocation, but can’t be used
to hold objects of the sizes actually requested by a pro-
gram. In sophisticated allocators, that’s usually be-
cause the free blocks are too small, and the program
requests larger objects. In some simple allocators, ex-
ternal fragmentation can occur because the allocator
i1s unwilling or unable to split large blocks into smaller
ones.

Internal fragmentation arises when a large-enough
free block is allocated to hold an object, but there 1s
a poor fit because the block is larger than needed. In
some allocators, the remainder 1s simply wasted, caus-
ing internal fragmentation. (It’s called internal be-
cause the wasted memory is inside an allocated block,



rather than being recorded as a free block in its own
right.)

To combat internal fragmentation, most allocators
will split blocks into multiple parts, allocating part
of a block, and then regarding the remainder as a
smaller free block in its own right. Many allocators
will also coalesce adjacent free blocks (i.e., neighbor-
ing free blocks in address order), combining them into
larger blocks that can be used to satisfy requests for
larger objects.

In some allocators, internal fragmentation arises
due to implementation constraints within the allo-
cator—for speed or simplicity reasons, the allocator
design restricts the ways memory may be subdivided.
In other allocators, internal fragmentation may be ac-
cepted as part of a strategy to prevent external frag-
mentation—the allocator may be unwilling to frag-
ment a block, because if it does, it may not be able to
coalesce it again later and use it to hold another large
object.

2.2 The Traditional Methodology:
Probabilistic Analyses, and Simulation Using
Synthetic Traces

(Note: readers who are uninterested in experimental
methodology may wish to skip this section, at least
on a first reading. Readers uninterested in the history
of allocator research may skip the footnotes. The fol-
lowing section (2.3) is quite important, however, and
should not be skipped.)

Allocators are sometimes evaluated using proba-
bilistic analyses. By reasoning about the likelihood of
certain events, and the consequences of those events
for future events, it may be possible to predict what
will happen on average. For the general problem of
dynamic storage allocation, however, the mathemat-
ics are too difficult to do this for most algorithms
and most workloads. An alternative is to do simu-
lations, and find out “empirically” what really hap-
pens when workloads interact with allocator policies.
This is more common, because the interactions are so
poorly understood that mathematical techniques are
difficult to apply.

Unfortunately, in both cases, to make probabilistic
techniques feasible, important characteristics of the
workload must be known—i.e., the probabilities of
relevant characteristics of “input” events to the al-
location routine. The relevant characteristics are not
understood, and so the probabilities are simply un-
known.

This is one of the major points of this paper. The
paradigm of statistical mechanics'® has been used in
theories of memory allocation, but we believe that it
is the wrong paradigm, at least as it is usually ap-
plied. Strong assumptions are made that frequencies
of individual events (e.g., allocations and dealloca-
tions) are the base statistics from which probabilistic
models should be developed, and we think that this
1s false.

The great success of “statistical mechanics” in other
areas 18 due to the fact that such assumptions make
sense there. Gas laws are pretty good idealizations,
because aggregate effects of a very large number of
individual events (e.g., collisions between molecules)
do concisely express the most important regularities.

This paradigm is inappropriate for memory allo-
cation, for two reasons. The first 1s simply that the
number of objects involved is usually too small for
asymptotic analyses to be relevant, but this is not the
most important reason.

The main weakness of the “statistical mechanics”
approach 1s that there are important systematic in-
teractions that occur in memory allocation, due to
phase behavior of programs. No matter how large the
system 1s, basing probabilistic analyses on individual
events is likely to yield the wrong answers, if there
are systematic effects involved which are not captured
by the theory. Assuming that the analyses are appro-
priate for “sufficiently large” systems does not help
here—the systematic errors will simply attain greater
statistical significance.

Consider the case of evolutionary biology. If an
overly simple statistical approach about individual
animals’ interactions is used, the theory will not cap-
ture predator/prey and host/symbiote relationships,
sexual selection, or other pervasive evolutionary ef-
fects as niche filling.'® Developing a highly predictive

!5 This usage of “statistical mechanics” should perhaps be
regarded as metaphorical, since it is not really about
simple interactions of large numbers of molecules in
a gas or liquid. Several papers on memory allocation
have used it loosely, however, to describe the analo-
gous approach to analyzing memory allocation. Statis-
tical mechanics has literally provided a paradigm—in
the original, smaller sense of a “model” or “examplar,”
rather than in a larger Kuhnian sense—which many find
attractive.

1% Some of these effects may emerge from lower-level mod-

eling, but for simulations to reliably predict them, many

important lower-level issues must be modeled correctly,
and sufficient data are usually not available, or suffi-



evolutionary theory is extremely difficult—and some
would say impossible—because too many low-level (or
higher-level) details matter,!” and there may intrinsic
unpredictabilities in the systems described [Den95].1%

We are not saying that the development of a good
theory of memory allocation is as hard as develop-
ing a predictive evolutionary theory—far from it. The
problem of memory allocation seems far simpler, and
we are optimistic that a useful predictive theory can
be developed.!?

Our point is simply that the paradigm of simple
statistical mechanics must be evaluated relative to
other alternatives, which we find more plausible in this
domain. There are major interactions between work-
loads and allocator policies, which are usually ignored.
No matter how large the system, and no matter how
asymptotic the analyses; ignoring these effects seems
likely to yield major errors—e.g., analyses will simply
yield the wrong asymptotes.

A useful probabilistic theory of memory allocation
may be possible, but if so, it will be based on a
quite different set of statistics from those used so
far—statistics which capture effects of systematicities,
rather than assuming such systematicities can be ig-
nored. As in biology, the theory must be tested against
reality, and refined to capture systematicities that had
previously gone unnoticed.

Random simulationsThe traditional technique
for evaluating allocators is to construct several traces
(recorded sequences of allocation and deallocation re-
quests) thought to resemble “typical” workloads, and
use those traces to drive a variety of actual allocators.

ciently understood.

17 For example, the different evolutionary strategies im-
plied by the varying replication techniques and muta-
tion rates of RN A-based vs. DNA-based viruses, or the
impact of environmental change on host/parasite inter-
actions [Gar94].

For example, a single chance mutation that results in
an adaptive characteristic in one individual may have a
major impact on the subsequent evolution of a species
and its entire ecosystem [Dar59].

We are also not suggesting that evolutionary theory pro-
vides a good paradigm for allocator research; it is just
an example of a good scientific paradigm that is very
different from the ones typically seen in memory alloca-
tion research. It demonstrates the important and neces-
sary interplay between high-level theories and detailed
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empirical work.

10

Since an allocator normally responds only to the re-
quest sequence, this can produce very accurate simu-
lations of what the allocator would do if the workload
were real—that is, if a real program generated that
request sequence.

Typically, however, the request sequences are not
real traces of the behavior of actual programs. They
are “synthetic” traces that are generated automati-
cally by a small subprogram; the subprogram is de-
signed to resemble real programs in certain statisti-
cal ways. In particular, object size distributions are
thought to be important, because they affect the frag-
mentation of memory into blocks of varying sizes. Ob-
ject lifetime distributions are also often thought to
be important (but not always), because they affect
whether blocks of memory are occupied or free.

Given a set of object size and lifetime distributions,
the small “driver” subprogram generates a sequence of
requests that obeys those distributions. This driver is
simply a loop that repeatedly generates requests, us-
ing a pseudo-random number generator; at any point
in the simulation, the next data object is chosen by
“randomly” picking a size and lifetime, with a bias
that (probabilistically) preserves the desired distribu-
tions. The driver also maintains a table of objects that
have been allocated but not yet freed, ordered by their
scheduled death (deallocation) time. (That is, the step
at which they were allocated, plus their randomly-
chosen lifetime.) At each step of the simulation, the
driver deallocates any objects whose death times indi-
cate that they have expired. One convenient measure
of simulated “time” is the volume of objects allocated
so far—i.e., the sum of the sizes of objects that have
been allocated up to that step of the simulation.?°

An important feature of these simulations is that
they tend to reach a “steady state.” After running for
a certain amount of time, the volume of live (simu-

2% Tn many early simulations, the simulator modeled real
time, rather than just discrete steps of allocation and
deallocation. Allocation times were chosen based on ran-
domly chosen “arrival” times, generated using an “inter-
arrival distribution” and their deaths scheduled in con-
tinuous time—rather than discrete time based on the
number and/or sizes of objects allocated so far. We will
generally ignore this distinction in this paper, because
we think other issues are more important. As will be-
come clear, in the methodology we favor, this distinction
is not important because the actual sequences of actions
are sufficient to guarantee exact simulation, and the ac-
tual sequence of events is recorded rather than being
(approximately) emulated.



lated) objects reaches a level that is determined by
the size and lifetime distributions, and after that ob-
jects are allocated and deallocated in approximately
equal numbers. The memory usage tends to vary very
little, wandering probabilistically (in a random walk)
around this “most likely” level. Measurements are
typically made by sampling memory usage at points
after the steady state has presumably been reached, or
by averaging over a period of “steady-state” variation.
These measurements “at equilibrium” are assumed to
be important.

There are three common variations of this simu-
lation technique. One is to use a simple mathemat-
ical function to determine the size and lifetime dis-
tributions, such as uniform or (negative) exponential.
Exponential distributions are often used because it
has been observed that programs are typically more
likely to allocate small objects than large ones,?! and
are more likely to allocate short-lived objects than
long-lived ones.?? (The size distributions are gener-
ally truncated at some plausible minimum and max-
imum object size, and discretized, rounding them to
the nearest integer.)

The second variation is to pick distributions intu-
itively, i.e., out of a hat, but in ways thought to re-
semble real program behavior. One motivation for this
is to model the fact that many programs allocate ob-
jects of some sizes and others in small numbers or not
at all; we refer to these distributions as “spiky.”?3

The third variation is to use statistics gathered from
real programs, to make the distributions more realis-
tic. In almost all cases, size and lifetime distributions

2! Historically, uniform size distributions were the most
common in early experiments; exponential distributions
then became increasingly common, as new data be-
came available showing that real systems generally used
many more small objects than large ones. Other dis-
tributions have also been used, notably Poisson and
hyper-exponential. Still, relatively recent papers have
used uniform size distributions, sometimes as the only
distribution.

As with size distributions, there has been a shift over
time toward non-uniform lifetime distributions, often
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exponential. This shift occurred later, probably because
real data on size information was easier to obtain, and
lifetime data appeared later.

In general, this modeling has not been very precise.
Sometimes the sizes chosen out of a hat are allocated in
uniform proportions, rather than in skewed proportions
reflecting the fact that (on average) programs allocate
many more small objects than large ones.
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are assumed to be independent—the fact that differ-
ent sizes of objects may have different lifetime distrib-
utions is generally assumed to be unimportant.

In general, there has been something of a trend
toward the use of more realistic distributions,?* but
this trend is not dominant. Even now, researchers of-
ten use simple and smooth mathematical functions to
generate traces for allocator evaluation.?® The use of
smooth distributions is questionable, because it bears
directly on issues of fragmentation—if objects of only
a few sizes are allocated, the free (and uncoalesca-
ble) blocks are likely to be of those sizes, making it
possible to find a perfect fit. If the object sizes are
smoothly distributed, the requested sizes will almost
always be slightly different, increasing the chances of
fragmentation.

Probabilistic analyses.Since Knuth’s derivation
of the “fifty percent rule” [Knu73] (discussed later,
in Section 4), there have been many attempts to rea-
son probabilistically about the interactions between
program behavior and allocator policy, and assess
the overall cost in terms of fragmentation (usually)
and/or CPU time.

These analyses have generally made the same as-
sumptions as random-trace simulation experiments—
e.g., random object allocation order, independence of
size and lifetimes, steady-state behavior—and often
stronger assumptions as well.

These simplifying assumptions have generally been
made in order to make the mathematics tractable. In
particular, assumptions of randomness and indepen-
dence make it possible to apply well-developed theory

24 The trend toward more realistic distributions can be ex-
plained historically and pragmatically. In the early days
of computing, the distributions of interest were usually
the distribution of segment sizes in an operating sys-
tem’s workload. Without access to the inside of an op-
erating system, this data was difficult to obtain. (Most
researchers would not have been allowed to modify the
implementation of the operating system running on a
very valuable and heavily-timeshared computer.) Later,
the emphasis of study shifted away from segment sizes
in segmented operating systems, and toward data ob-
ject sizes in the virtual memories of individual processes
running in paged virtual memories.

We are unclear on why this should be, except that a par-
ticular theoretical and experimental paradigm [Kuh70]
had simply become thoroughly entrenched in the early
1970’s. (It’s also somewhat easier than dealing with real

data.)
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of stochastic processes (Markov models, etc.) to derive
analytical results about expected behavior. Unfortu-
nately, these assumptions tend to be false for most
real programs, so the results are of limited utility.

It should be noted that these are not merely conve-
nient simplifying assumptions that allow solution of
problems that closely resemble real problems. If that
were the case, one could expect that with refinement
of the analyses—or with sufficient empirical validation
that the assumptions don’t matter in practice—the
results would come close to reality. There is no reason
to expect such a happy outcome. These assumptions
dramatically change the key features of the problem,;
the ability to perform the analyses hinges on the very
facts that make them much less relevant to the general
problem of memory allocation.

Assumptions of randomness and independence
make the problem irregular, in a superficial sense,
but they make it very smooth (hence mathematically
tractable) in a probabilistic sense. This smoothness
has the advantage that it makes it possible to derive
analytical results, but it has the disadvantage that it
turns a real and deep scientific problem into a math-
ematical puzzle that is much less significant for our
purposes.

The problem of dynamic storage allocation 1s in-
tractable, in the vernacular sense of the word. As an
essentially data-dependent problem, we do not have a
grip on it, because it because we simply do not under-
stand the inputs. “Smoothing” the problem to make it
mathematically tractable “removes the handles” from
something that is fundamentally irregular, making it
unlikely that we will get any real purchase or leverage
on the important issues. Removing the irregularities
removes some of the problems—and most of the op-
portunities as well.

A note on exponentially-distributed ran-
dom lifetimesExponential lifetime distributions
have become quite common in both empirical and an-
alytic studies of memory fragmentation over the last
two decades. In the case of empirical work (using
random-trace simulations), this seems an admirable
adjustment to some observed characteristics of real
program behavior. In the case of analytic studies, it
turns out to have some very convenient mathemati-
cal properties as well. Unfortunately, it appears that
the apparently exponential appearence of real lifetime
distributions is often an artifact of experimental meth-
odology (as will be explained in Sections 2.3 and 4.1)
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and that the emphasis on distributions tends to dis-
tract researchers from the strongly patterned underly-
ing processes that actually generate them (as will be
explained in Section 2.4).

We invite the reader to consider a randomly-
ordered trace with an exponential lifetime distribu-
tion. In this case there is no correlation at all between
an object’s age and its expected time until death—
the “half-life” decay property of the distribution and
the randomness ensure that allocated objects die com-
pletely at random with no way to estimate their death
times from any of the information available to the
allocator.?® (An exponential random function exhibits
only a half-life property, and no other pattern, much
like radioactive decay.) In a sense, exponential life-
times are thus the reductio ad absurdum of the syn-
thetic trace methodology—all of the time-varying reg-
ularities have been systematically eliminated from the
input. If we view the allocator’s job as an online prob-
lem of detecting and exploiting regularities, we see
that this puts the allocator in the awkward position
of trying to extract helpful hints from pure noise.

This does not necessarily mean that all allocators
will perform identically under randomized workloads,
however, because there are regularities in size distrib-
utions, whether they are real distributions or simple
mathematical ones, and some allocators may simply
shoot themselves in the foot.

Analyses and experiments with exponentially dis-
tributed random lifetimes may say something reveal-
ing about what happens when an allocator’s strategy
is completely orthogonal to the actual regularities. We
have no real 1dea whether this is a situation that oc-
curs regularly in the space of possible combinations of
real workloads and reasonable strategies.?” (It’s clear
that it is not the usual case, however.) The terrain of
that space 1s quite mysterious to us.

A note on Markov models. Many probabilistic
studies of memory allocation have used first-order

26 We are indebted to Henry Baker, who has made quite
similar observations with respect to the use of exponen-
tial lifetime distributions to estimate the effectiveness
of generational garbage collection schemes [Bak93].

In particular, certain effects of randomized traces may
(or may not) resemble the cumulative effect of alloca-
tor strategy errors over much longer periods. This re-
semblance cannot be assumed, however—there are good
reasons to think it may occur in some cases, but not in
others, and empirical validation is necessary.
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Markov processes to approximate program and allo-
cator behavior, and have derived conclusions based
on the well-understood properties of Markov models.

In a first-order Markov model, the probabilities of
state transitions are known and fixed. In the case of
fragmentation studies, this corresponds to assuming
that a program allocates objects at random, with fixed
probabilities of allocating different sizes.

The space of possible states of memory is viewed
as a graph, with a node for each configuration of allo-
cated and free blocks. There is a start state, represent-
ing an empty memory, and a transition probability
for each possible allocation size. For a given place-
ment policy, there will be a known transition from a
given state for any possible allocation or deallocation
request. The state reached by each possible allocation
is another configuration of memory.

For any given request distribution, there is a net-
work of possible states reachable from the start state,
via successions of more or less probable transitions. In
general, for any memory above a very, very small size,
and for arbitrary distributions of sizes and lifetimes,
this network is inconceivably large. As described so
far, it is therefore useless for any practical analyses.

To make the problem more tractable, certain as-
sumptions are often made. One of these is that life-
times are exponentially distributed as well as random,
and have the convenient half-life property described
above, i.e., they die completely at random as well as
being born at random.

This assumption can be used to ensure that both
the states and the transitions between states have def-
inite probabilities in the long run. That is, if one were
to run a random-trace simulation for a long enough
period of time, all reachable states would be reached,
and all of them would be reached many times—and
the number of times they were reached would reflect
the probabilities of their being reached again in the
future, if the simulation were continued indefinitely.
If we put a counter on each of the states to keep track
of the number of times each state was reached, the
ratio between these counts would eventually stabilize,
plus or minus small short-term variations. The rela-
tive weights of the counters would “converge” to a
stable solution.

Such a network of states is called an ergodic Markov
model, and it has very convenient mathematical prop-
erties. In some cases, it’s possible to avoid running
a simulation at all, and analytically derive what the
network’s probabiblities would converge to.
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Unfortunately, this is a very inappropriate model
for real program and allocator behavior. An ergodic
Markov model is a kind of (probabilistic) finite au-
tomaton, and as such the patterns it generates are
very, very simple, though randomized and hence un-
predictable. They’re almost unpatterned, in fact, and
hence very predictable in a certain probabilistic sense.

Such an automaton is extremely unlikely to gener-
ate many patterns that seem likely to be important in
real programs, such as the creation of the objects in a
linked list in one order, and their later destruction in
exactly the same order, or exactly the reverse order.?®
There are much more powerful kinds of machines—
which have more complex state, like a real program—
which are capable of generating more realistic pat-
terns. Unfortunately, the only machines that we are
sure generate the “right kinds” of patterns are actual
real programs.

We do not understand what regularities exist in real
programs well enough to model them formally and
perform probabilistic analyses that are directly appli-
cable to real program behavior. The models we have
are grossly inaccurate in respects that are quite rele-
vant to problems of memory allocation.

There are problems for which Markov models are
useful, and a smaller number of problems where as-
sumptions of ergodicity are appropriate. These prob-
lems involve processes that are literally random, or
can be shown to be effectively random in the neces-
sary ways. The general heap allocation problem 1s not
in either category. (If this is not clear, the next section
should make it much clearer.)

Ergodic Markov models are also sometimes used for
problems where the basic assumptions are known to
be false in some cases—but they should only be used
in this way if they can be validated, 1.e., shown by ex-
tensive testing to produce the right answers most of
the time, despite the oversimplifications they’re based
on. For some problems it “just turns out” that the
differences between real systems and the mathemati-
cal models are not usually significant. For the general
problem of memory allocation, this turns out to be
false as well—recent results clearly tnwvalidate the use

28 Technically, a Markov model will eventually generate
such patterns, but the probability of generating a par-
ticular pattern within a finite period of time is vanish-
ingly small if the pattern is large and not very strongly
reflected in the arc weights. That is, many quite prob-
able kinds of patterns are extremely improbable in a
simple Markov model.



of simple Markov models [ZG94, WIJNB95].%°

2.3 What Fragmentation Really Is, and Why
the Traditional Approach is Unsound

A single death is a tragedy. A million deaths
is a statistic.
—Joseph Stalin

We suggested above that the shape of a size dis-
tribution (and its smoothness) might be important
in determining the fragmentation caused by a work-
load. However, even if the distributions are completely
realistic, there is reason to suspect that randomized
synthetic traces are likely to be grossly unrealistic.

As we said earlier, the allocator should embody a
strategy designed to exploit regularities in program
behavior—otherwise it cannot be expected to do par-
ticularly well. The use of randomized allocation order
eliminates some regularities in workloads, and intro-
duces others, and there is every reason to think that
the differences in regularities will affect the perfor-
mance of different strategies differently. To make this
concrete, we must understand fragmentation and its
causes.

The technical distinction between internal and ex-
ternal fragmentation is useful, but in attempting to

?® Tt might seem that the problem here is the use of first-
order Markov models, whose states (nodes in the reach-
ability graph) correspond directly to states of memory.
Perhaps “higher-order” Markov models would work,
where nodes in the graph represent sequences of con-
crete state transitions. We think this is false as well.

The important kinds of patterns produced by real
programs are generally not simple very-short-term se-
quences of a few events, but large-scale patterns involv-
ing many events. To capture these, a Markov model
would have to be of such high order that analyses would
be completely infeasible. It would essentially have to be
pre-programmed to generate specific literal sequences
of events. This not only begs the essential question of
what real programs do, but seems certain not to con-
cisely capture the right regularities.

Markov models are simply not powerful enough—
i.e., not abstract enough in the right ways—to help
with this problem. They should not be used for this
purpose, or any similarly poorly understood purpose,
where complex patterns may be very important. (At
least, not without extensive validation.) The fact that
the regularities are complex and unknown is not a
good reason to assume that they’re effectively random

[Z2G94, WINB95] (Section 4.2).
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design experiments measuring fragmentation, it is
worthwhile to stop for a moment and consider what
fragmentation really is, and how 1t arises.

Fragmentation is the inability to reuse memory that
is free. This can be due to policy choices by the allo-
cator, which may choose not to reuse memory that in
principle could be reused. More importantly for our
purposes, the allocator may not have a choice at the
moment an allocation request must be serviced: there
may be free areas that are too small to service the
request and whose neighbors are not free, making it
impossible to coalesce adjacent free areas into a suffi-
ciently large contiguous block.3°

Note that for this latter (and more fundamental)
kind of fragmentation, the problem is a function both
of the program’s request stream and the allocator’s
choices of where to allocate the requested objects. In
satisfying a request, the allocator usually has consid-
erable leeway; it may place the requested object in
any sufficiently large free area. On the other hand,
the allocator has no control over the ordering of re-
quests for different-sized pieces of memory, or when
objects are freed.

We have not made the notion of fragmentation par-
ticularly clear or quantifiable here, and this is no ac-
cident. An allocator’s inability to reuse memory de-
pends not only on the number and sizes of holes, but
on the future behavior of the program, and the fu-
ture responses of the allocator itself. (That is, it is
a complex matter of interactions between patterned
workloads and strategies.)

For example, suppose there are 100 free blocks of
size 10, and 200 free blocks of size 20. Is memory
highly fragmented? It depends. If future requests are
all for size 10, most allocators will do just fine, using
the size 10 blocks, and splitting the size 20 blocks as
necessary. But if the future requests are for blocks of
size 30, that’s a problem. Also, if the future requests
are for 100 blocks of size 10 and 200 blocks of size 20,
whether it’s a problem may depend on the order in
which the requests arrive and the allocator’s moment-

30 Beck [Bec82] makes the only clear statement of this prin-
ciple which we have found in our exhausting review of
the literature. As we will explain later (in our chronolog-
ical review, Section 4.1), Beck also made some impor-
tant inferences from this principle, but his theoretical
model and his empirical methodology were weakened
by working within the dominant paradigm. His paper
is seldom cited, and its important ideas have generally
gone unnoticed.



by-moment decisions as to where to place them. Best
fit will do well for this example, but other allocators
do better for some other examples where best fit per-
forms abysmally.

We leave the concept of fragmentation somewhat
poorly defined, because in the general case the actual
phenomenon is poorly defined.3!

Fragmentation is caused by isolated deaths.
A crucial issue is the creation of free areas whose
neighboring areas are not free. This is a function of
two things: which objects are placed in adjacent areas
and when those objects die. Notice that if the alloca-
tor places objects together in memory, and they die
“at the same time” (with no intervening allocations),
no fragmentation results: the objects are live at the
same time, using contiguous memory, and when they
die they free contiguous memory. An allocator that
can predict which objects will die at approximately
the same time can exploit that information to reduce
fragmentation, by placing those objects in contiguous
memory.

Fragmentation is caused by time-varying be-
havior.Fragmentation arises from changes in the
way a program uses memory—for example, freeing
small blocks and requesting large ones. This much is
obvious, but it is important to consider patterns in
the changing behavior of a program, such as the free-
ing of large numbers of objects and the allocation of
large numbers of objects of different types. Many pro-
grams allocate and free different kinds of objects in
1 Our concept of fragmentation has been called
“startlingly nonoperational,” and we must confess that
it 1s, to some degree. We think that this is a strength,
however, because it is better to leave a concept some-
what vague than to define it prematurely and in-
correctly. It is important to first identify the “natu-
ral kinds” in the phenomena under study, and then
figure out what their most important characteristics
are [Kri72, Put77, Qui77]. (We are currently working
on developing operational measures of “fragmentation-
related” program behavior.)

Later in the paper we will express experimental “frag-
mentation” results as percentages, but this should be
viewed as an operational shorthand for the effects of
fragmentation on memory usage at whatever point or
points in program execution measurements were made;
this should be clear in context.

15

different stereotyped ways. Some kinds of objects ac-
cumulate over time, but other kinds may be used in
bursty patterns. (This will be discussed in more detail
in Section 2.4.) The allocator’s job is to exploit these
patterns, if possible, or at least not let the patterns
undermine its strategy.

Implications for experimental methodology.
(Note: this section is concerned only with experimen-
tal techniques; uninterested readers may skip to the
following section.)

The traditional methodology of using random pro-
gram behavior implicitly assumes that there is no or-
dering information in the request stream that could
be exploited by the allocator—i.e., there’s nothing in
the sequencing of requests which the allocator will
use as a hint to suggest which objects should be al-
located adjacent to which other objects. Given a ran-
dom request stream, the allocator has little control—
wherever objects are placed by the allocator, they die
at random, randomly creating holes among the live
objects. If some allocators do in fact tend to exploit
real regularities in the request stream, the randomiza-
tion of the order of object creations (in simulations)
ensures that the information 1s discarded before the
allocator can use it. Likewise, if an algorithm tends
to systematically make mistakes when faced with real
patterns of allocations and deallocations, randomiza-
tion may hide that fact.

It should be clear that random object deaths may
systematically create serious fragmentation in ways
that are unlikely to be realistic. Randomization also
has a potentially large effect on large-scale aggregate
behavior of large numbers of objects. In real programs,
the total volume of objects varies over time, and often
the relative volumes of objects of different sizes varies
as well. This often occurs due to phase behavior—
some phases may use many more objects than others,
and the objects used by one phase may be of very
different sizes than those used by another phase.

Now consider a randomized synthetic trace—the
overall volume of objects is determined by a random
walk, so that the volume of objects rises gradually un-
til a steady state is reached. Likewise the volume of
memory allocated to objects of a given size is a similar
random walk. If the number of objects of a given size
is large, the random walk will tend to be relatively
smooth, with mostly gradual and small changes in
overall allocated volume. This implies that the pro-
portions of memory allocated to different-sized objects



tend to be relatively stable.

This has major implications for external fragmen-
tation. External fragmentation means that there are
free blocks of memory of some sizes, but those are
the wrong sizes to satisfy current needs. This happens
when objects of one size are freed, and then objects
of another size are allocated—that is, when there is
an unfortunate change in the relative proportions of
objects of one size and objects of a larger size. (For al-
locators that never split blocks, this can happen with
requests for smaller sizes as well.) For synthetic ran-
dom traces, this is less likely to occur—they don’t
systematically free objects of one size and then allo-
cate objects of another. Instead, they tend to allocate
and free objects of different sizes in relatively stable
proportions. This minimizes the need to coalesce ad-
jacent free areas to avoid fragmentation; on average,
a free memory block of a given size will be reused rel-
atively soon. This may bias experimental results by
hiding an allocator’s inability to deal well with ex-
ternal fragmentation, and favor allocators that deal
well with internal fragmentation at a cost in external
fragmentation.

Notice that while random deaths cause fragmen-
tation, the aggregate behavior of random walks may
reduce the extent of the problem. For some alloca-
tors, this balance of unrealistically bad and unrealis-
tically good properties may average out to something
like realism, but for others 1t may not. Even if—by
sheer luck—random traces turn out to yield realis-
tic fragmentation “on average,” over many allocators,
they are inadequate for comparing different allocators,
which is usually the primary goal of such studies.

2.4 Some Real Program Behaviors

...and suddenly the memory returns.
—Marcel Proust, Swann’s Way

Real programs do not generally behave randomly—
they are designed to solve actual problems, and the
methods chosen to solve those problems have a strong
effect on their patterns of memory usage. To begin
to understand the allocator’s task, it is necessary to
have a general understanding of program behavior.
This understanding is almost absent in the literature
on memory allocators, apparently because many re-
searchers consider the infinite variation of possible
program behaviors to be too daunting.

There are strong regularities in many real pro-
grams, however, because similar techniques are ap-
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plied (in different combinations) to solve many prob-
lems. Several common patterns have been observed.

Ramps, peaks, and plateaus. In terms of overall
memory usage over time, three patterns have been
observed in a variety of programs in a variety of con-
texts. Not all programs exhibit all of these patterns,
but most seem to exhibit one or two of them, or all
three, to some degree. Any generalizations based on
these patterns must therefore be qualitative and quali-
fied. (This implies that to understand the quantitative
importance of these patterns; a small set of programs
is not sufficient.)

— Ramps. Many programs accumulate certain data
structures monotonically over time. This may be
because they keep a log of events, or because
the problem-solving strategy requires building a
large representation, after which a solution can
be found quickly.

Peaks. Many programs use memory in bursty pat-
terns, building up relatively large data structures
which are used for the duration of a particular
phase, and then discarding most or all of those
data structures. Note that the “surviving” data
structures are likely to be of different types, be-
cause they represent the results of a phase, as op-
posed to intermediate values which may be rep-
resented differently. (A peak is like a ramp, but
of shorter duration.)

Plateaus. Many programs build up data struc-
tures quickly, and then use those data structures
for long periods (often nearly the whole running
time of the program).

These patterns are well-known, from anecdotal ex-
perience by many people (e.g., [Ros67, Han90]), from
research on garbage collection (e.g., [Whi80, WM89,
UJ88, Hay91, Hay93, BZ95, Wil95]),3 and from a re-
cent study of C and C++ programs [WINB95].

%2 1t may be thought that garbage collected systems are
sufficiently different from those using conventional stor-
age management that these results are not relevant. It
appears, however, that these patterns are common in
both kinds of systems, because similar problem-solving
strategies are used by programmers in both kinds of
systems. (For any particular problem, different qualita-
tive program behaviors may result, but the general cat-
egories seem to be common in conventional programs as

well. See [WINB95].)



(Other patterns of overall memory usage also occur,
but appear less common. As we describe in Section 4,
backward ramp functions have been observed [GM85].
Combined forward and backward ramp behavior has
also been observed, with one data structure shrinking
as another grows [Abr67].)

Notice that in the case of ramps and ramp-shaped
peaks, looking at the statistical distributions of object
lifetimes may be very misleading. A statistical distri-
bution suggests a random decay process of some sort,
but it may actually reflect sudden deaths of groups of
objects that are born at different times. In terms of
fragmentation, the difference between these two mod-
els is major. For a statistical decay process, the allo-
cator is faced with 1solated deaths, which are likely
to cause fragmentation. For a phased process where
many objects often die at the same time, the alloca-
tor is presented with an opportunity to get back a
significant amount of memory all at once.

In real programs, these patterns may be composed
in different ways at different scales of space and time.
A ramp may be viewed as a kind of peak that grows
over the entire duration of program execution. (The
distinction between a ramp and a peak i1s not pre-
cise, but we tend to use “ramp” to refer to something
that grows slowly over the whole execution of a pro-
gram, and drops off suddenly at the end, and “peak”
to refer to faster-growing volumes of objects that are
discarded before the end of execution. A peak may
also be flat on top, making it a kind of tall, skinny
plateau.)

While the overall long-term pattern is often a ramp
or plateau, it often has smaller features (peaks or pla-
teus) added to it. This crude model of program be-
havior is thus recursive. (We note that it is not gen-
erally fractal3®—features at one scale may bear no
resemblance to features at another scale. Attempting
to characterize the behavior of a program by a simple
number such as fractal dimension is not appropriate,
because program behavior is not that simple.3%)

%% We are using the term “fractal” rather loosely, as is com-
mon in this area. Typically, “fractal” models of program
behavior are not infinitely recursive, and are actually
graftals or other finite fractal-like recursive entities.

We believe that this applies to studies of locality of ref-
erence as well. Attempts to characterize memory refer-
encing behavior as fractal-like (e.g., [VMH*83, Thig9])
are ill-conceived or severely limited—if only because
memory allocation behavior is not generally fractal, and
memory-referencing behavior depends on memory al-

34
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Ramps, peaks, and plateus have very different im-
plications for fragmentation.

An overall ramp or plateau profile has a very conve-
nient property, in that if short-term fragmentation can
be avoided, long term fragmentation is not a problem
either. Since the data making up a plateau are stable,
and those making up a ramp accumulate monotonic-
ally, inability to reuse freed memory is not an issue—
nothing is freed until the end of program execution.
Short-term fragmentation can be a cumulative prob-
lem, however, leaving many small holes in the mass of
long lived-objects.

Peaks and tall, skinny plateaus can pose a challenge
in terms of fragmentation, since many objects are allo-
cated and freed, and many other objects are likely to
be allocated and freed later. If an earlier phase leaves
scattered survivors, it may cause problems for later
phases that must use the spaces in between.

More generally, phase behavior is the major cause
of fragmentation—if a program’s needs for blocks of
particular sizes change over time in an awkward way.
If many small objects are freed at the end of a phase—
but scattered objects survive—a later phase may run
into trouble. On the other hand, if the survivors hap-
pen to have been placed together, large contiguous
areas will come free.

Fragmentation at peaks is important.Not all
periods of program execution are equal. The most im-
portant periods are usually those when the most mem-
ory is used. Fragmentation is less important at times
of lower overall memory usage than it is when mem-
ory usage is “at its peak,” either during a short-lived
peak or near the end of a ramp of gradually increas-

location policy. (We suspect that it’s ill-conceived for
understanding program behavior at the level of refer-
ences to objects, as well as at the level of references
to memory.) If the fractal concept is used in a strong
sense, we believe it is simply wrong. If it is taken in a
weak sense, we believe it conveys little useful informa-
tion that couldn’t be better summarized by simple sta-
tistical curve-fitting; using a fractal conceptual frame-
work tends to obscure more issues than it clarifies. Av-
erage program behavior may resemble a fractal, because
similar features can occur at different scales in different
programs; however, an individual program’s behavior is
not fractal-like in general, any more than it is a simple
Markov process. Both kinds of models fail to capture
the “irregularly regular” and scale-dependent kinds of
patterns that are most important.



ing memory usage. This means that average fragmen-
tation is less important than peak fragmentation—
scattered holes in the heap most of the time may
not be a problem if those holes are well-filled when
it counts.

This has implications for the interpretation of anal-
yses and simulations based on steady-state behavior
(i.e., equilibrium conditions). Real programs may ex-
hibit some steady-state behavior, but there are usu-
ally ramps and/or peaks as well. It appears that most
programs never reach a truly steady state, and if they
reach a temporary steady state, it may not matter
much. (It can matter, however, because earlier phases
may result in a configuration of blocks that is more
or less problematic later on, at peak usage.)

Overall memory usage is not the whole story, of
course. Locality of reference matters as well. All other
things being equal, however, a larger total “footprint”
matters even for locality. In virtual memories, many
programs never page at all, or suffer dramatic perfor-
mance degradations if they do. Keeping the overall
memory usage lower makes this less likely to happen.
(In a time-shared machine, a larger footprint is likely
to mean that a different process has its pages evicted
when the peak 1s reached, rather than its own less-
recently-used pages.)

Exploiting ordering and size dependencies. If
the allocator can exploit the phase information from
the request stream, 1t may be able to place objects
that will die at about the same time in a contiguous
area of memory. This may suggest that the allocator
should be adaptive,3® but much simpler strategies also

seem likely to work [WINBI5]:

— Objects allocated at about the same time are
likely to die together at the end of a phase;
if consecutively-allocated objects are allocated
in contiguous memory, they will free contiguous
memory.

Objects of different types may be likely to serve
different purposes and die at different times. Size
is likely to be related to type and purpose, so
avoiding the intermingling of different sizes (and
likely types) of objects may reduce the scattering
of long-lived objects among short-lived ones.

3% Barrett and Zorn have recently built an allocator using
profile information to heuristically separate long-lived
objects from short-lived ones [BZ93]. (Section 4.2.)
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This suggests that objects allocated at about
the same time should be allocated adjacent to
each other in memory, with the possible amend-
ment that different-sized objects should be segregated
[WINBY5].3¢

Implications for strategy. The phased behavior of
many programs provides an opportunity for the al-
locator to reduce fragmentation. As we said above, if
successive objects are allocated contiguously and freed
at about the same time, free memory will again be
contiguous. We suspect that this happens with many
existing allocators—even though they were not de-
signed with this principle in mind, as far as we can
tell. It may well be that this accidental “strategy” is
the major way that good allocators keep fragmenta-
tion low.

Implications for research. A major goal of alloca-
tor research should be to determine which patterns
are common, and which can be exploited (or at least
guarded against). Strategies that work well for one
program may work poorly for another; but it may be
possible to combine strategies in a single robust policy
that works well for almost all programs. If that fails,
it may be possible to have a small set of allocators
with different properties, at least one of which works
well for the vast majority of real problems.

We caution against blindly experimenting with dif-
ferent combinations of programs and complex, opti-
mized allocators, however. It is more important to
determine what regularities exist in real program be-
havior, and only then decide which strategies are most

%€ We have not found any other mention of these heuristics
in the literature, although somewhat similar ideas un-
derlie the “zone” allocator of Ross [Ros67] and Hanson’s
“obstack” system (both discussed later). Beck [Bec82],
Demers et al. [DWH7'90], and and Barrett and Zorn
[BZ93] have developed systems that predict the lifetimes
of objects for similar purposes.

We note that for our purposes, it is not necessary
to predict which groups of objects will die when. It is
only necessary to predict which groups of objects will
die at similar times, and which will die at dissimilar
times, without worrying about which group will die first.
We refer to this as “death time discrimination.” This
simpler discrimination seems easier to achieve than life-
time prediction, and possibly more robust. Intuitively,
it also seems more directly related to the causes of
fragmentation.



appropriate, and which good strategies can be com-
bined successfully. This i1s not to say that experiments
with many variations on many designs aren’t useful—
we’re in the midst of such experiments ourselves—but
that the goal should be to identify fundamental inter-
actions rather than just “hacking” on things until they
work well for a few test applications.

Profiles of some real programs. To make our dis-
cussion of memory usage patterns more concrete, we
will present profiles of memory use for some real pro-
grams. Each figure plots the overall amount of live
data for a run of the program, and also the amounts
of data allocated to objects of the five most popu-
lar sizes. (“Popularity” here means most volume al-
located, i.e., sum of sizes, rather than object counts.)
These are profiles of program behavior, independent
of any particular allocator.

GCC. Figure 1 shows memory usage for GCC, the
GNU C compiler, compiling the largest file of its own
source code (combine.c). (A high optimization switch
was used, encouraging the compiler to perform exten-
sive inlining, analyses, and optimization.) We used a
trace processor to remove “obstack” allocation from
the trace, creating a trace with the equivalent allo-
cations and frees of individual objects; obstacks are
heavily used in this program.3” The use of obstacks
may affect programming style and memory usage pat-
terns; however, we suspect that the memory usage
patterns would be similar without obstacks, and that
obstacks are simply used to exploit them.3®

This is a heavily phased program, with several
strong and similar peaks. These are two-horned peaks,
where one (large) size is allocated and deallocated,
and much smaller size is allocated and deallocated,
out of phase.3® (This is an unusual feature, in our

37 See the discussion of [Han90] (Section 4.1) for a descrip-
tion of obstacks.

We’ve seen similarly strong peaks in a profile of a com-
piler of our own, which relies on garbage collection
rather than obstacks.

Interestingly, the first of the horns usually consists of
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a size that is specific to that peak—different peaks use
different-sized large objects, but the out-of-phase part-
ner horn consists of the same small size each time. The
differences in sizes used by the first horn explains why
only three of these horns show up in the plot, and they
show up for the largest peaks—for the other peaks’ large
sizes, the total memory used does not make it into the
top five.
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limited experience.) Notice that this program exhibits
very different usage profiles for different sized objects.
The use of one size is nearly steady, another is strongly
peaked, and others are peaked, but different.

Grobner. Figure 2 shows memory usage for the Grob-
ner program*” which decomposes complex expressions
into linear combinations of polynomials (Grobner
bases).*! As we understand it, this is done by a pro-
cess of expression rewriting, rather like term rewriting
or rewrite-based theorem proving techniques.

Overall memory usage tends upward in a general
ramp shape, but with minor short-term variations, es-
pecially small plateaus, while the profiles for usage of
different-sized objects are roughly similar, their ramps
start at different points during execution and have
different slopes and irregularities—the proportions of

different-sized objects vary somewhat.4?

Hypercube. Figure 3 shows memory usage for a hy-
percube message-passing simulator, written by Don
Lindsay while at CMU. It exhibits a large and simple
plateau.

This program allocates a single very large object
near the beginning of execution, which lives for al-
most the entire run; it represents the nodes in a hy-
percube and their interconnections.*> A very large
number of other objects are created, but they are
small and very short-lived; they represent messages

0 This program (and the hypercube simulator described
below) were also used by Detlefs in [Det92] for evalu-
ation of a garbage collector. Based on several kinds of
profiles, we now think that Detlefs’ choice of test pro-
grams may have led to an overestimation of the costs
of his garbage collector for C++. Neither of these pro-
grams 1s very friendly to a simple GC, especially one
without compiler or OS support.

The function of this program is rather analogous to that
of a Fourier transform, but the basis functions are poly-
nomials rather than sines and cosines, and the mecha-

41

nism used 1s quite different.

Many of the small irregularities in overall usage come
from sizes that don’t make it into the top five—small
but highly variable numbers of these objects are used.
In these plots, “time” advances at the end of each allo-
cation. This accounts for the horizontal segments visible
after the allocatons of large objects—mno other objects
are allocated or deallocated between the beginning and
end of the allocation of an individual object, and allo-
cation time advances by the size of the object.
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Fig. 1. Profile of memory usage in the GNU C compiler.

sent between nodes randomly.** This program quickly
reaches a steady state, but the steady state is quite
different from the one reached by most randomized al-
locator simulations—a very few sizes are represented,
and lifetimes are both extremely skewed and strongly
correlated with sizes.

Perl. Figure 4 shows memory usage for a script (pro-
gram) written in the Perl scripting language. This pro-
gram processes a file of string data. (We’re not sure
exactly what it is doing with the strings, to be hon-
est; we do not really understand this program.) This
program reaches a steady state, with heavily skewed
usage of different sizes in relatively fixed proportions.

#* These objects account for the slight increase and irregu-
laritiy in the overall lifetime curve at around 2MB, after
the large, long-lived objects have been allocated.
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(Since Perl is a fairly general and featureful program-
ming language, its memory usage may vary tremen-
dously depending on the program being executed.)

LRUsim. Figure 5 shows memory usage for a locality
profiler written by Doug van Wieren. This program
processes a memory reference trace, keeping track of
how recently each block of memory has been touched
and a accumulating a histogram of hits to blocks at
different recencies (LRU queue positions). At the end
of a run, a PostScript grayscale plot of the time-vary-
ing locality characteristics is generated. The recency
queue is represented as a large modified AVL tree,
which dominates memory usage—only a single ob-
ject size really matters much. At the parameter set-
ting used for this run, no blocks are ever discarded,
and the tree grows monotonically; essentially no heap-
allocated objects are ever freed, so memory usage is a
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Fig. 2. Profile of memory usage in the Grobner program.

simple ramp. At other settings, only a bounded num-
ber of items are kept in the LRU tree, so that memory
usage ramps up to a very stable plateau. This pro-
gram exhibits a kind of dynamic stability, either by
steady accumulation (as shown) or by exactly replac-
ing the least-recently-used objects within a plateau
(when used with a fixed queue length).

This is a small and simple program, but a very real
one, in the sense that we have used it to tie up many
megabytes of memory for about a trillion instruction
cycles.®

*® We suspect that in computing generally, a large frac-
tion of CPU time and memory usage is devoted to pro-
grams with more complex behavior, but another signif-
icant fraction is dominated by highly regular behavior
of simple useful programs, or by long, regular phases of
more complex programs.
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FEspresso. Figure 6 shows memory usage for a run of
Espresso, an optimizer for programmable logic array
designs.

Espresso appears to go through several qualitatively
different kinds of phases, using different sizes of ob-
jects in quite different ways.

Discussion of program profilesIn real programs,
memory usage is usually quite different from the mem-
ory usage of randomized traces. Ramps, peaks, and
plateaus are common, as is heavily skewed usage of a
few sizes. Memory usage is neither Markov nor inter-
estingly fractal-like in most cases. Many programs ex-
hibit large-scale and small-scale patterns which may
be of any of the common feature types, and differ-
ent at different scales. Usage of different sizes may
be strongly correlated, or it may not be, or may be
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Fig. 3. Profile of memory usage in Lindsay’s hypercube simulator.

related in more subtle time-varying ways. Given the
wide variation within this small sample, it is clear that
more programs should be profiled to determine which
other patterns occur in a significant number of pro-
grams, and how often various patterns are likely to
occur.

Summary. In summary, this section makes six re-
lated points:

— Program behavior is usually time-varying, not
steady,

— Peak memory usage is important; fragmentation
at peaks is more important than at intervening
points,

— Fragmentation is caused by time-varying behav-
ior, especially peaks using different sizes of ob-
jects.
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— Known program behavior invalidates previous ex-
perimental and analytical results,

— Nonrandom behavior of programs can be ex-
ploited, and

— Different programs may display characteristically
different nonrandom behavior.

2.5 Deferred Coalescing and Deferred Reuse

Deferred coalescing. Many allocators attempt to
avoid coalescing blocks of memory that may be re-
peatedly reused for short-lived objects of the same
size. This deferred coalescing can be added to any al-
locator, and usually avoids coalescing blocks that will
soon be split again to satisfy requests for small ob-
jects. Blocks of a given size may be stored on a simple
free list, and reused without coalescing, splitting, or
formatting (e.g., putting in headers and/or footers).
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Fig. 4. Profile of memory usage in Perl running a string-processing script.

If the application requests the same size block soon
after one 1s freed, the request can be satisfied by sim-
ply popping the pre-formatted block off of a free list
in very small constant time.

While deferred coalescing is traditionally thought of
as a speed optimization, it is important to note that
fragmentation considerations come into play, in three
ways. 40

— The lower fragmentation is, the more important
deferred coalescing will be in terms of speed—if
adjacent objects generally die at about the same
time, aggressive coalescing and splitting will be

¢ To our knowledge, none of these effects has been noted
previously in the literature, although it’s likely we’ve
seen at least the first but forgotten where. In any event,
these effects have received little attention, and don’t
seem to have been studied directly.
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particularly expensive, because large areas will
be coalesced together by repeatedly combining
adjacent blocks, only to be split again into a large
number of smaller blocks. If fragmentation is low,
deferred coalescing may be especially beneficial.
Deferred coalescing may have significant effects
on fragmentation, by changing the allocator’s de-
cisions as to which blocks of memory to use to
hold which objects. For example, blocks cannot
be used to satisfy requests for larger objects while
they remain uncoalesced. Those larger objects
may therefore be allocated in different places
than they would have been if small blocks were
coalesced immediately; that is, deferred coales-
cing can affect placement policy.

Deferred coalescing may decrease locality of ref-
erence for the same reason, because recently-
freed small blocks will usually not be reused to
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Fig. 5. Profile of memory usage in van Wieren’s locality profiler.

hold larger objects. This may force the program
to touch more different areas of memory than
if small blocks were coalesced 1mmediately and
quickly used again. On the other hand, deferred
coalescing 1s very likely to increase locality of ref-
erence if used with an allocator that otherwise
would not reuse most memory immediately—the
deferred coalescing mechanism will ensure that
most freed blocks are reused soon.

Deferred reuse. Another related notion—which is
equally poorly understood—is deferred reuse.*” De-
ferred reuse is a property of some allocators that
recently-freed blocks tend not to be the soonest
reused. For many allocators, free memory is man-

*7 Because it is not generally discussed in any systematic
way in the literature, we coined this term for this paper.
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aged in a mostly stack-like way. For others, it is more
queue-like, with older free blocks tending to be reused
in preference to newly-freed blocks.

Deferred reuse may have effects on locality, because
the allocator’s choices affect which parts of memory
are used by the program—the program will tend to
use memory briefly, and then use other memory before
reusing that memory.

Deferred reuse may also have effects on fragmenta-
tion, because newly-allocated objects will be placed
in holes left by old objects that have died. This may
make fragmentation worse, by mixing objects created
by different phases (which may die at different times)
in the same area of memory. On the other hand, it
may be very beneficial because it may gradually pack
the “older” areas of memory with long-lived objects,
or because it gives the neighbors of a freed block more
time to die before the freed block is reused. That
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may allow slightly longer-lived objects to avoid caus-
ing much fragmentation, because they will die rel-
atively soon, and be coalesced with their neighbors
whose reuse was deferred.

2.6 A Sound Methodology: Simulation Using
Real Traces

The traditional view has been that programs’ frag-
mentation-causing behavior is determined only by
their object size and lifetime distributions. Recent
experimental results show that this is false ([2G94,
WINB95], Section 4.2), because orderings of requests
have a large effect on fragmentation. Until a much
deeper understanding of program behavior is avail-
able, and until allocator strategies and policies are as
well understood as allocator mechanisms, the only re-
liable method for allocator simulation is to use real
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traces—i.e., the actual record of allocation and deal-
location requests from real programs.

Tracing and simulation. Allocation traces are not
particularly difficult to obtain (but see the caveats
about program selection in Section 5.5). A slightly
modified allocator can be used, which writes informa-
tion about each allocation and deallocation request
to a file—i.e., whether the request is an allocation or
deallocation, the address of the block, and (for alloca-
tions) the requested block size. This allocator can be
linked with a program of interest and used when run-
ning the program. These traces tend to be long, but
they can be stored in compressed form, on inexpensive
serial media (e.g., magnetic tape), and later processed
serially during simulation. (Allocation traces are gen-
erally very compressible, due to the strong regularities



in program behavior.*®) Large amounts of disk space
and/or main memory are not required, although they
are certainly convenient.

To use the trace for a simulation, a driver routine
reads request records out of the file, and submits them
to the allocator being tested by calling the allocator in
the usual way. The driver maintains a table of objects
that are currently allocated, which maps the object
identifier from the trace file to the address where 1t is
allocated during simulation; this allows it to request
the deallocation of the block when it encounters the
deallocation record in the trace.

This simulated program doesn’t actually do any-
thing with the allocated blocks, as a real program
would, but it imitates the real program’s request se-
quences exactly, which 1s sufficient for measuring the
memory usage. Modern profiling tools [BL92, CK93]
can also be used with the simulation program to de-
termine how many instruction cycles are spent in the
allocator itself.

An alternative strategy is to actually link the pro-
gram with a variety of allocators, and actually re-run
the program for each “simulation”. This has the ad-
vantage that the traces needn’t be stored. It has the
disadvantages that it requires being able to re-run the
program at will (which may depend on having simi-
lar systems, input data sets being available and in
the right directories, environment variables, etc.) and
doesn’t allow convenient sharing of traces between dif-
ferent experimenters for replication of experiments. It
also has the obvious disadvantage that instructions

*® Conventional text-string-oriented compression algo-
rithms [Nel91] (e.g, UNIX compress or GNU gzip)
work quite well, although we suspect that sophisticated
schemes could do significantly better by taking advan-
tage of the numerical properties of object identifiers
or addresses; such schemes have been proposed for use
in compressed paging and addressing [WLM91, FP91].
(Text-oriented compression generally makes Markov-
like modeling assumptions, i.e., that literal sequences
are likely to recur. This is clearly true to a large degree
for allocation and reference traces, but other regularities
could probably be exploited as well [WB95].)

Dain Samples [Sam89] used a simple and effective
approach for compressing memory-reference traces; his
“Mache” trace compactor used a simple preprocessor to
massage the trace into a different format, making the
the relevant regularities easier for standard string-ori-
ented compression algorithms to recognize and exploit.
A similarly simple system may work well for allocation
traces.
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spent executing the actual program are wasted, but
on fast machines this may be preferable to the cost of
trace I/0O, for many programs.

Locality studies. While locality is mostly beyond
the scope of this paper, it is worth making a few com-
ments about locality studies. Several tools are avail-
able to make it relatively easy to gather memory-
reference traces, and several cache and virtual mem-
ory simulators are available for processing these
traces.

Larus” QPT tool (a successor to the earlier AE sys-
tem [BL92]) modifies an executable program to make
it self-tracing. The Shade tool from SunLabs [CK93]
is essentially a CPU emulator, which runs a program
in emulation and records various kinds of events in an
extremely flexible way. For good performance, it uses
dynamic compilation techniques to increase speed rel-
ative to a straightford interpretive simulator.

Either of these systems can save a reference trace
to a file, but the file is generally very large for long-
running programs. Another alternative is to perform
incremental simulation, as the trace 1s recorded—
event records are saved to a fairly small buffer, and
batches of event records are passed to a cache simu-
lator which consumes them on the fly.

Efficient cache simulators are available for process-
ing reference traces, including Mark Hill’s Tycho and
Dinero systems [HS89].49

3 A Taxonomy of Allocators

Allocators are typically categorized by the mecha-
nisms they use for recording which areas of mem-
ory are free, and for merging adjacent free blocks into

*? Before attempting locality studies, however, allocation
researchers should become familiar with the rather sub-
tle issues in cache design, in particular the effects and
interactions of associativity, fetch and prefetch policies,
write buffers, victim buffers, and subblock placement.

Such details have been shown to be important in as-
sessing the impact of locality of allocation on perfor-
mance; a program with apparently “poor” locality for
a simple cache design may do quite well in a mem-
ory hierarchy well-suited to its behavior. The litera-
ture on garbage collection is considerably more sophisti-
cated in terms of locality studies than the literature on
memory allocation, and should not be overlooked. (See,
e.g., [Bae73, KLS92, Wil90, WLM92, DTM93, Reid4,
GA95, Wil95].) Many of the same issues must arise in
conventionally-managed heaps as well.



larger free blocks (coalescing). Equally important are
the policy and strategy implications—i.e., whether the
allocator properly exploits the regularities in real re-
quest streams.

In this section, we survey the policy issues and
mechanisms in memory allocation; since deferred co-
alescing can be added to any allocator, it will be dis-
cussed after the basic general allocator mechanisms
have been covered, in Section 3.11.

3.1 Allocator Policy Issues

We believe that there are several important policy is-
sues that must be made clear, and that real allocators’
performance must be interpreted with regard to them:

— Patterns of Memory Reuse. Are recently-freed
blocks reused in preference to older free areas?
Are free blocks in an area of memory preferen-
tially reused for objects of the same size (and
perhaps type) as the live objects nearby? Are free
blocks in some areas reused in preference to free
blocks in other areas (e.g., preferentially reusing
free blocks toward one end of the heap area)?
Splitting and Coalescing. Are large free blocks
split into smaller blocks to satisfy requests for
smaller objects? Are adjacent free blocks merged
into larger areas at all? Are all adjacent free ar-
eas coalesced, or are there restrictions on when
coalescing can be done because it simplifies the
implementation? Is coalescing always done when
it’s possible, or is it deferred to avoid needless
merging and splitting over short periods of time?
Fits. When a block of a particular size is reused,
are blocks of about the same size used preferen-
tially, or blocks of very different sizes? Or per-
haps blocks whose sizes are related in some other
useful way to the requested size?

Splitting thresholds. When a too-large block is
used to satisfy a request, is it split and the re-
mainder made available for reuse? Or is the re-
mainder left unallocated, causing internal frag-
mentation, either for implementation simplicity
or as part of a policy intended to trade inter-
nal fragmentation for reduced external fragmen-
tation?

All of these issues may affect overall fragmentation,
and should be viewed as policies, even if the reason
for a particular choice is to make the mechanism (im-
plementation) simpler or faster. They may also have
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effects on locality; for example, reusing recently-freed
blocks may increase temporal locality of reference
by reusing memory that is still cached in high-speed
memory, in preference to memory that has gone un-
touched for a longer while. (Locality is beyond the
scope of this paper, but it is an important consider-
ation. We believe that the best policies for reducing
fragmentation are good for locality as well, by and

large, but we will not make that argument in detail
here.??)

3.2 Some Important Low-Level Mechanisms

Several techniques are used in different combinations
with a variety of allocators, and can help make so-
phisticated policies surprisingly easy to implement ef-
ficiently. We will describe some very low-level mecha-
nisms that are pieces of several “basic” (higher-level)
mechanisms, which in turn implement a policy.

(The casual reader may wish to skim this section.)

Header fields and alignment. Most allocators use
a hidden “header” field within each block to store use-
ful information. Most commonly, the size of the block
is recorded in the header. This simplifies freeing, in
many algorithms, because most standard allocator in-
terfaces (e.g., the standard C free() routine) do not
require a program to pass the size of the freed block
to the deallocation routine at deallocation time.

Typically, the (e.g.,, Cs
malloc() memory allocation routine) passes only the
requested size, and the allocator returns a pointer to
the block allocated; the free routine is only passed
that address, and it is up to the allocator to infer the
size if necessary. (This may not be true in some sys-
tems with stronger type systems, where the sizes of
objects are usually known statically. In that case, the
compiler may generate code that supplies the object
size to the freeing routine automatically.)

Other information may be stored in the header as
well, such as information about whether the block is
in use, its relationship to its neighbors, and so on.
Having information about the block stored with the
block makes many common operations fast.

allocation function

0 Briefly, we believe that the allocator should heuristi-
cally attempt to cluster objects that are likely to be
used at about the same times and in similar ways. This
should improve locality [Bae73, WLM91]; it should also
increase the chances that adjacent objects will die at
about the same time, reducing fragmentation.



Header fields are usually one machine word; on most
modern machines, that is four 8-bit bytes, or 32 bits.
(For convenience, we will assume that the word size
is 32 bits, unless indicated otherwise.) In most sit-
uations, there is enough room in one machine word
to store a size field plus two or three one-bit “flags”
(boolean fields). This is because most systems allocate
all heap-allocated objects on whole-word or double-
word address boundaries, but most hardware is byte-
addressable.?! (This constraint is usually imposed by
compilers, because hardware issues make unaligned
data slower—or even illegal—to operate on.)

This alignment means that partial words cannot be
allocated—requests for non-integral numbers of words
are rounded up to the nearest word. The rounding to
word (or doubleword) boundaries ensures that the low
two (or three) bits of a block address are always zero.

Header fields are convenient, but they consume
space—e.g., a word per block. It is common for block
sizes in many modern systems to average on the or-
der of 10 words, give or take a factor of two or so,
so a single word per header may increase memory us-
age by about 10% [BJW70, Ung86, ZG92, DDZ93,
WINB95].

Boundary tags. Many allocators that support gen-
eral coalescing are implemented using boundary tags
(due to Knuth [Knu73]) to support the coalescing of
free areas. Each block of memory has a both header
and a “footer” field, both of which record the size of
the block and whether it is in use. (A footer, as the
name suggests, is a hidden field within the block, at
the opposite end from the header.) When a block is
freed, the footer of the preceding block of memory is
examined to see if it is free; likewise, the header of the
following block is examined. Adjacent free areas are
merged to form larger free blocks.

Header and footer overhead are likely to be signifi-
cant—with an average object size of about ten words,
for example, a one-word header incurs a 10% overhead
and a one-word footer incurs anoth