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registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

from:

The Memory Hierarchy



Computer 
ScienceScience

we now 
have:

Virtual Memory
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now what?
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- code, global variables, 
jump tables, etc. 

- allocated at fork/exec 
- lifetime: permanent

Static Data
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pages allocated as needed 
(up to preset stack limit)

- function activation records 
- local vars, arguments, 

return values 
- lifetime: LIFO

The Stack



Computer 
ScienceScience

- for dynamic allocation 
- lifetime: arbitrary!

The Heap

explicitly requested 
from the kernel
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brk

- starts out empty 
- brk pointer marks top of  

the heap

The Heap
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void *sbrk(int inc);   /* increments brk by inc, 
                          returns old brk value */

brk

heap mgmt syscall:

The Heap
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hp

void *hp = sbrk(N);

brk

N

The Heap
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after the kernel allocates heap space for a 
process, it is up to the process to manage it!
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“manage” =	tracking memory in use, 
	 tracking memory not in use, 
	 reusing unused memory
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job of  the dynamic memory allocator 
— typically included as a user-level library 
and/or language runtime feature
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User Process

sbrk

Disk

RAM

dynamic 
memory 
allocator

Heap OS 
kernel

malloc

application 
program
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User Process

Disk

RAM

dynamic 
memory 
allocator

Heap

application 
program

free(p) OS 
kernel
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User Process

Disk

RAM

dynamic 
memory 
allocator

Heap

application 
program

free(p) OS 
kernel

(heap space may not be returned  
to the kernel!)
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the DMA constructs a user-level abstraction 
(re-usable “blocks” of  memory) on top of a 
kernel-level one (virtual memory)
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the user-level implementation must make 
good use of  the underlying infrastructure 
(the memory hierarchy)
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e.g., the DMA should: 

- maintain data alignment 

- maximize throughput of  requests 

- help maximize memory utilization 

- leverage locality

how to quantify this?
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utilization = fraction of  memory in use 

- “in use” is a relative concept 

- for DMA, “in use” = amount of  memory 
actually requested by user (aka payload) 

- vs. heap space obtained via sbrk
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p1 = malloc(1024); 
// util = 1K/4K = 25%

Heap

4KB

(given: DMA requests 
memory in 4KB chunks)



Computer 
ScienceScience

p1 = malloc(1024); 
// util = 1K/4K = 25% 
p2 = malloc(2048); 
// util = 3K/4K = 75%

4KB

Heap
(given: DMA requests 
memory in 4KB chunks)
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p1 = malloc(1024); 
// util = 1K/4K = 25% 
p2 = malloc(2048); 
// util = 3K/4K = 75% 
free(p1); 
// util = 2K/4K = 50% 

4KB

Heap
(given: DMA requests 
memory in 4KB chunks)
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p1 = malloc(1024); 
// util = 1K/4K = 25% 
p2 = malloc(2048); 
// util = 3K/4K = 75% 
free(p1); 
// util = 2K/4K = 50% 
p3 = malloc(2048); 
// util = 4K/8K = 50% 

8KB

4KB

Heap
(given: DMA requests 
memory in 4KB chunks)
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p1 = malloc(1024); 
// util = 1K/4K = 25% 
p2 = malloc(2048); 
// util = 3K/4K = 75% 
free(p1); 
// util = 2K/4K = 50% 
p3 = malloc(2048); 
// util = 4K/8K = 50% 
free(p3); 
// util = 2K/8K = 25% 
free(p2); 
// util =  0/8K =  0% 

// all non-leaking 
// programs end in 0%

8KB

Heap
(given: DMA requests 
memory in 4KB chunks)
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makes no sense to measure utilization  
at the end of  process execution, 

and it makes no sense to arbitrarily 
measure utilization during execution 
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instead, measure peak memory utilization 
- ratio between maximum aggregate payload 

and maximum heap size 
- “high water mark” measure 

- assuming the heap never shrinks,  
end heap size = max heap size
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- max agg. payload 	= 4K 
- max heap size 	 = 8K 
- peak memory util 	= 50%

p1 = malloc(1024); 
// util = 1K/4K = 25% 
p2 = malloc(2048); 
// util = 3K/4K = 75% 
free(p1); 
// util = 2K/4K = 50% 
p3 = malloc(2048); 
// util = 4K/8K = 50% 
free(p3); 
// util = 2K/8K = 25% 
free(p2); 
// util =  0/8K =  0% 

// all non-leaking 
// programs end in 0%
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p1 = malloc(100); 
p2 = malloc(200); 
free(p1); 
p3 = malloc(300); 
free(p2); 
p4 = malloc(100); 
p5 = malloc(200); 
free(p3); 
p6 = malloc(100); 
p7 = malloc(300); 
free(p4); 
free(p5); 
p8 = malloc(200); 

// measured heap size 
// at end is 1K

// 100 
// 300 
// 200 
// 500 
// 300 
// 400 
// 600 
// 300 
// 400 
// 700 
// 600 
// 400 
// 600

aggregate payload

peak memory util 
	 = 700 / 1024  
	 ≈ 68%
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utilization is affected by memory fragmentation 
two forms: 
	 1. internal fragmentation 
	 2. external fragmentation
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when allocating blocks of  memory, it is 
convenient to make them self-describing 
i.e., store metadata alongside blocks with 
size, allocation status, etc.
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allocator must also adhere to alignment 
requirements (to help optimize cache/
memory fetches)
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payload

metadata

padding (for alignment)

“block” internal 
fragmentation
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amount of  internal fragmentation is easy to 
predict, as it’s based on pre-determined factors 

- metadata = fixed amount 

- k-byte alignment → max k –1 padding
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Heap
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Heap
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Heap

external 
fragmentation
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Heap

external fragmentation 
may affect future heap 
utilization; 

i.e., by preventing free 
space from being re-used
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Heap

malloc?
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Heap
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Heap

malloc?

forced to 
	 request more 
	 	 heap space
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hard to predict the effect of  external 
fragmentation on utilization 

in general, we might: 

- prefer fewer, larger spans of  free space 

- try to keep similarly sized blocks 
together in memory
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but these recommendations are heuristics! 
- may be defeated by pathological cases 

- don’t account for real-world behavior
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It has been proven that for any possible allocation algorithm, there will 
always be the possibility that some application program will 
allocate and deallocate blocks in some fashion that defeats the 
allocator’s strategy and forces it into severe 
fragmentation ... Not only are there no provably good allocation 
algorithms, there are proofs that any allocator will be bad for 
some possible applications. 

P. Wilson, M. Johnstone, M. Neely, D. Boles, 
Dynamic Memory Allocation: A Survey and Critical Review


