
Dynamic Memory
Allocation

CS 351: Systems Programming
Michael Saelee <lee@iit.edu>

mailto:lee@iit.edu

Computer
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

from:

The Memory Hierarchy

Computer
ScienceScience

we now
have:

Virtual Memory

Computer
ScienceScience

now what?

Computer
ScienceScience

- code, global variables,
jump tables, etc.

- allocated at fork/exec
- lifetime: permanent

Static Data

Computer
ScienceScience

pages allocated as needed
(up to preset stack limit)

- function activation records
- local vars, arguments,

return values
- lifetime: LIFO

The Stack

Computer
ScienceScience

- for dynamic allocation
- lifetime: arbitrary!

The Heap

explicitly requested
from the kernel

Computer
ScienceScience

brk

- starts out empty
- brk pointer marks top of

the heap

The Heap

Computer
ScienceScience

void *sbrk(int inc); /* increments brk by inc,
 returns old brk value */

brk

heap mgmt syscall:

The Heap

Computer
ScienceScience

hp

void *hp = sbrk(N);

brk

N

The Heap

Computer
ScienceScience

after the kernel allocates heap space for a
process, it is up to the process to manage it!

Computer
ScienceScience

“manage” =	tracking memory in use,
	 tracking memory not in use,
	 reusing unused memory

Computer
ScienceScience

job of the dynamic memory allocator
— typically included as a user-level library
and/or language runtime feature

Computer
ScienceScience

User Process

sbrk

Disk

RAM

dynamic
memory
allocator

Heap OS
kernel

malloc

application
program

Computer
ScienceScience

User Process

Disk

RAM

dynamic
memory
allocator

Heap

application
program

free(p) OS
kernel

Computer
ScienceScience

User Process

Disk

RAM

dynamic
memory
allocator

Heap

application
program

free(p) OS
kernel

(heap space may not be returned
to the kernel!)

Computer
ScienceScience

the DMA constructs a user-level abstraction
(re-usable “blocks” of memory) on top of a
kernel-level one (virtual memory)

Computer
ScienceScience

the user-level implementation must make
good use of the underlying infrastructure
(the memory hierarchy)

Computer
ScienceScience

e.g., the DMA should:

- maintain data alignment

- maximize throughput of requests

- help maximize memory utilization

- leverage locality

how to quantify this?

Computer
ScienceScience

utilization = fraction of memory in use

- “in use” is a relative concept

- for DMA, “in use” = amount of memory
actually requested by user (aka payload)

- vs. heap space obtained via sbrk

Computer
ScienceScience

p1 = malloc(1024);
// util = 1K/4K = 25%

Heap

4KB

(given: DMA requests
memory in 4KB chunks)

Computer
ScienceScience

p1 = malloc(1024);
// util = 1K/4K = 25%
p2 = malloc(2048);
// util = 3K/4K = 75%

4KB

Heap
(given: DMA requests
memory in 4KB chunks)

Computer
ScienceScience

p1 = malloc(1024);
// util = 1K/4K = 25%
p2 = malloc(2048);
// util = 3K/4K = 75%
free(p1);
// util = 2K/4K = 50%

4KB

Heap
(given: DMA requests
memory in 4KB chunks)

Computer
ScienceScience

p1 = malloc(1024);
// util = 1K/4K = 25%
p2 = malloc(2048);
// util = 3K/4K = 75%
free(p1);
// util = 2K/4K = 50%
p3 = malloc(2048);
// util = 4K/8K = 50%

8KB

4KB

Heap
(given: DMA requests
memory in 4KB chunks)

Computer
ScienceScience

p1 = malloc(1024);
// util = 1K/4K = 25%
p2 = malloc(2048);
// util = 3K/4K = 75%
free(p1);
// util = 2K/4K = 50%
p3 = malloc(2048);
// util = 4K/8K = 50%
free(p3);
// util = 2K/8K = 25%
free(p2);
// util = 0/8K = 0%

// all non-leaking
// programs end in 0%

8KB

Heap
(given: DMA requests
memory in 4KB chunks)

Computer
ScienceScience

makes no sense to measure utilization
at the end of process execution,

and it makes no sense to arbitrarily
measure utilization during execution

Computer
ScienceScience

instead, measure peak memory utilization
- ratio between maximum aggregate payload

and maximum heap size
- “high water mark” measure

- assuming the heap never shrinks,
end heap size = max heap size

Computer
ScienceScience

- max agg. payload 	= 4K
- max heap size 	 = 8K
- peak memory util 	= 50%

p1 = malloc(1024);
// util = 1K/4K = 25%
p2 = malloc(2048);
// util = 3K/4K = 75%
free(p1);
// util = 2K/4K = 50%
p3 = malloc(2048);
// util = 4K/8K = 50%
free(p3);
// util = 2K/8K = 25%
free(p2);
// util = 0/8K = 0%

// all non-leaking
// programs end in 0%

Computer
ScienceScience

p1 = malloc(100);
p2 = malloc(200);
free(p1);
p3 = malloc(300);
free(p2);
p4 = malloc(100);
p5 = malloc(200);
free(p3);
p6 = malloc(100);
p7 = malloc(300);
free(p4);
free(p5);
p8 = malloc(200);

// measured heap size
// at end is 1K

// 100
// 300
// 200
// 500
// 300
// 400
// 600
// 300
// 400
// 700
// 600
// 400
// 600

aggregate payload

peak memory util
	 = 700 / 1024
	 ≈ 68%

Computer
ScienceScience

utilization is affected by memory fragmentation
two forms:
	 1. internal fragmentation
	 2. external fragmentation

Computer
ScienceScience

when allocating blocks of memory, it is
convenient to make them self-describing
i.e., store metadata alongside blocks with
size, allocation status, etc.

Computer
ScienceScience

allocator must also adhere to alignment
requirements (to help optimize cache/
memory fetches)

Computer
ScienceScience

payload

metadata

padding (for alignment)

“block” internal
fragmentation

Computer
ScienceScience

amount of internal fragmentation is easy to
predict, as it’s based on pre-determined factors

- metadata = fixed amount

- k-byte alignment → max k –1 padding

Computer
ScienceScience

Heap

Computer
ScienceScience

Heap

Computer
ScienceScience

Heap

external
fragmentation

Computer
ScienceScience

Heap

external fragmentation
may affect future heap
utilization;

i.e., by preventing free
space from being re-used

Computer
ScienceScience

Heap

malloc?

Computer
ScienceScience

Heap

Computer
ScienceScience

Heap

malloc?

forced to
	 request more
	 	 heap space

Computer
ScienceScience

hard to predict the effect of external
fragmentation on utilization

in general, we might:

- prefer fewer, larger spans of free space

- try to keep similarly sized blocks
together in memory

Computer
ScienceScience

but these recommendations are heuristics!
- may be defeated by pathological cases

- don’t account for real-world behavior

Computer
ScienceScience

It has been proven that for any possible allocation algorithm, there will
always be the possibility that some application program will
allocate and deallocate blocks in some fashion that defeats the
allocator’s strategy and forces it into severe
fragmentation ... Not only are there no provably good allocation
algorithms, there are proofs that any allocator will be bad for
some possible applications.

P. Wilson, M. Johnstone, M. Neely, D. Boles,
Dynamic Memory Allocation: A Survey and Critical Review

