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- Definition & OS responsibilities 

- Exceptional control flow 

- synch vs. asynch exceptions 

- exception handling procedure
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a process is a program in execution 
	 programs describe what we want done, 

	 processes carry out what we want done
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a process comprises ...  
	 {	 code (program) 
	 	 + runtime data (global, local, 	  
	 	 	 dynamic) 
	 	 + PC, SP, FP & other registers }
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essential to program 
execution is predictable, 
logical control flow 
which requires that 
nothing disrupt the 
program mid-execution

main() { 
  fnA(); 
} 
 
fnA() { 
  fnB(); 
} 

fnB() { 
  loop {  

  } 
}
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easiest way to guarantee this is for a 
process to “own” the CPU for its entire 
duration (i.e., no-one else allowed to run) 

... downsides?
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1.No multitasking! 

2.A malicious (or badly written) program 
can “take over” the CPU forever 

3.An idle process (e.g., waiting for input) 
will underutilize the CPU
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the operating system simulates a seamless 
logical control flow for each active process 
many of  which can be taking place 
concurrently on one or more CPUs
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concurrent 
execution

Logical control flow

Process A Process B Process C

tim
e
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Physical flow (1 CPU)

Process A Process B Process C

tim
e transitions carried  

out by the OS!
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to implement this, we need  

1. a mechanism to periodically interrupt  
the current process to run the OS 

2. an OS module that schedules processes 

3. a routine to help seamlessly switch 
between processes seamlessly
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(1) is the periodic clock interrupt;  
(2) is the OS scheduler; 
(3) is the context switch
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Process BProcess A

user code

*
clock  

interrupt

context switch
kernel code

user code

*
syscallcontext switch

kernel code

user code
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to implement scheduling and carry out 
context switches, the OS must maintain a 
wealth of  per-process metadata
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a process comprises ...  
	 {	 code (program) 
	 	 + runtime data (global, local, 	  
	 	 	 dynamic) 
	 	 + PC, SP, FP & other registers 
	 	 + OS metadata, aka process control block }
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a process comprises ...  
	 {	 code (program) 
	 	 + runtime data (global, local, 	  
	 	 	 dynamic) 
	 	 + PC, SP, FP & other registers 
	 	 + e.g., PID, mem/CPU usage, pending syscalls }
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actions that take place outside a process’s 
logical control flow (e.g., context switches), 
but may still affect its behavior are part of  
the process’s exceptional control flow
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§Exceptional  
Control Flow
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int main() { 
    while (1) 
    { 
        printf("hello world!\n"); 
    } 
    return 0; 
}
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Two classes of  exceptions: 

I. synchronous 

II. asynchronous
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I. synchronous exceptions are caused 
by the currently executing instruction (i.e., the 
one actively running on the CPU)
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3 subclasses of  synchronous exceptions: 

1. traps 

2. faults 

3. aborts



Computer 
ScienceScience

1. traps 
traps are intentionally triggered by a process 

e.g., to invoke a system call
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char *str = "hello world";
int len = strlen(str);
write(1, str, len);
...

movl len, %edx
movl str, %ecx
movl $1,  %ebx
movl $4,  %eax
int  $0x80
...

# trap instr
# syscall num
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return from trap (if  it happens) resumes 
execution at the next instruction 

i.e., looks like a function call!
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2. faults 
faults are usually unintentional, and may be 
recoverable or irrecoverable 

e.g., segmentation fault, protection fault, 	
page fault, div-by-zero
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often, return from fault will result in 
retrying the faulting instruction 

— esp. if  the handler “fixes” the problem
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3. aborts 
aborts are unintentional and irrecoverable 
i.e., abort = program/OS termination 

e.g., memory ECC error



Computer 
ScienceScience

II. asynchronous exceptions are caused 
by events external to the current instruction



Computer 
ScienceScience

int main() { 
    while (1) { 
        printf("hello world!\n"); 
    } 
    return 0; 
}

hello world! 
hello world! 
hello world! 
hello world! 
^C 
$
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hardware initiated asynchronous 
exceptions are known as interrupts
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e.g., ctrl-C, ctrl-alt-del, power switch
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interrupts are associated with specific 
processor (hardware) pins 

- checked after every CPU cycle 

- associated with handler functions via 
the “interrupt vector”
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…

interrupt  
vector OS Process

* (interrupt)
[n]

interrupt #
handler

scheduler

?
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interrupt procedure (typical) 

- save context (for outgoing process) 

- load OS 

- run handler & scheduler 

- load context (for incoming process) 

- return
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P0 P1 P2 P3 P4

OS (kernel)
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P0 P1 P2 P3 P4

OS (kernel)
trap
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OS (kernel)handler

trap



Computer 
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler



Computer 
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)



Computer 
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler

trap



Computer 
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler
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switching context to the kernel is 
potentially very expensive 
— but the only way to invoke system calls 	
and access I/O
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moral (to be reinforced ad nauseum): 

use system calls (traps) sparingly and as 
efficiently as possible


