
Processes & ECF
CS 351: Systems Programming
Michael Saelee <lee@iit.edu>

mailto:lee@iit.edu

Computer
ScienceScience

Agenda
- Definition & OS responsibilities

- Exceptional control flow

- synch vs. asynch exceptions

- exception handling procedure

Computer
ScienceScience

§Definition
& OS responsibilities

Computer
ScienceScience

a process is a program in execution
	 programs describe what we want done,

	 processes carry out what we want done

Computer
ScienceScience

Computer
ScienceScience

a process comprises ...
	 {	 code (program)
	 	 + runtime data (global, local, 	
	 	 	 dynamic)
	 	 + PC, SP, FP & other registers }

Computer
ScienceScience

essential to program
execution is predictable,
logical control flow
which requires that
nothing disrupt the
program mid-execution

main() {
 fnA();
}

fnA() {
 fnB();
}

fnB() {
 loop {

 }
}

Computer
ScienceScience

easiest way to guarantee this is for a
process to “own” the CPU for its entire
duration (i.e., no-one else allowed to run)

... downsides?

Computer
ScienceScience

1.No multitasking!

2.A malicious (or badly written) program
can “take over” the CPU forever

3.An idle process (e.g., waiting for input)
will underutilize the CPU

Computer
ScienceScience

the operating system simulates a seamless
logical control flow for each active process
many of which can be taking place
concurrently on one or more CPUs

Computer
ScienceScience

concurrent
execution

Logical control flow

Process A Process B Process C

tim
e

Computer
ScienceScience

Physical flow (1 CPU)

Process A Process B Process C

tim
e transitions carried

out by the OS!

Computer
ScienceScience

to implement this, we need

1. a mechanism to periodically interrupt
the current process to run the OS

2. an OS module that schedules processes

3. a routine to help seamlessly switch
between processes seamlessly

Computer
ScienceScience

(1) is the periodic clock interrupt;
(2) is the OS scheduler;
(3) is the context switch

Computer
ScienceScience

Process BProcess A

user code

*
clock

interrupt

context switch
kernel code

user code

*
syscallcontext switch

kernel code

user code

Computer
ScienceScience

to implement scheduling and carry out
context switches, the OS must maintain a
wealth of per-process metadata

Computer
ScienceScience

a process comprises ...
	 {	 code (program)
	 	 + runtime data (global, local, 	
	 	 	 dynamic)
	 	 + PC, SP, FP & other registers
	 	 + OS metadata, aka process control block }

Computer
ScienceScience

a process comprises ...
	 {	 code (program)
	 	 + runtime data (global, local, 	
	 	 	 dynamic)
	 	 + PC, SP, FP & other registers
	 	 + e.g., PID, mem/CPU usage, pending syscalls }

Computer
ScienceScience

actions that take place outside a process’s
logical control flow (e.g., context switches),
but may still affect its behavior are part of
the process’s exceptional control flow

Computer
ScienceScience

§Exceptional
Control Flow

Computer
ScienceScience

int main() {
 while (1)
 {
 printf("hello world!\n");
 }
 return 0;
}

Computer
ScienceScience

int main() {
 while (1)
 {
 printf("hello world!\n");
 }
 return 0;
}

logical c.f.

Computer
ScienceScience

int main() {
 while (1)
 {
 printf("hello world!\n");
 }
 return 0;
}

logical c.f.

exception!

Computer
ScienceScience

int main() {
 while (1)
 {
 printf("hello world!\n");
 }
 return 0;
}

logical c.f.

exception!

?

Computer
ScienceScience

int main() {
 while (1)
 {
 printf("hello world!\n");
 }
 return 0;
}

logical c.f.

exception!

?

Computer
ScienceScience

Two classes of exceptions:

I. synchronous

II. asynchronous

Computer
ScienceScience

I. synchronous exceptions are caused
by the currently executing instruction (i.e., the
one actively running on the CPU)

Computer
ScienceScience

3 subclasses of synchronous exceptions:

1. traps

2. faults

3. aborts

Computer
ScienceScience

1. traps
traps are intentionally triggered by a process

e.g., to invoke a system call

Computer
ScienceScience

char *str = "hello world";
int len = strlen(str);
write(1, str, len);
...

movl len, %edx
movl str, %ecx
movl $1, %ebx
movl $4, %eax
int $0x80
...

trap instr
syscall num

Computer
ScienceScience

return from trap (if it happens) resumes
execution at the next instruction

i.e., looks like a function call!

Computer
ScienceScience

2. faults
faults are usually unintentional, and may be
recoverable or irrecoverable

e.g., segmentation fault, protection fault, 	
page fault, div-by-zero

Computer
ScienceScience

often, return from fault will result in
retrying the faulting instruction

— esp. if the handler “fixes” the problem

Computer
ScienceScience

3. aborts
aborts are unintentional and irrecoverable
i.e., abort = program/OS termination

e.g., memory ECC error

Computer
ScienceScience

II. asynchronous exceptions are caused
by events external to the current instruction

Computer
ScienceScience

int main() {
 while (1) {
 printf("hello world!\n");
 }
 return 0;
}

hello world!
hello world!
hello world!
hello world!
^C
$

Computer
ScienceScience

hardware initiated asynchronous
exceptions are known as interrupts

Computer
ScienceScience

e.g., ctrl-C, ctrl-alt-del, power switch

Computer
ScienceScience

interrupts are associated with specific
processor (hardware) pins

- checked after every CPU cycle

- associated with handler functions via
the “interrupt vector”

Computer
ScienceScience

…

interrupt
vector OS Process

* (interrupt)
[n]

interrupt #
handler

scheduler

?

Computer
ScienceScience

interrupt procedure (typical)

- save context (for outgoing process)

- load OS

- run handler & scheduler

- load context (for incoming process)

- return

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)
trap

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler

trap

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler

trap

Computer
ScienceScience

P0 P1 P2 P3 P4

OS (kernel)handler

Computer
ScienceScience

switching context to the kernel is
potentially very expensive
— but the only way to invoke system calls 	
and access I/O

Computer
ScienceScience

moral (to be reinforced ad nauseum):

use system calls (traps) sparingly and as
efficiently as possible

