
Virtual Memory
CS 351: Systems Programming
Michael Saelee <lee@iit.edu>

mailto:lee@iit.edu

Computer
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

previously: SRAM ⇔ DRAM

Computer
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

next: DRAM ⇔ HDD, SSD, etc.
i.e., memory as a “cache” for disk

Computer
ScienceScience

main goals:

1. maximize memory throughput
2. maximize memory utilization

3. provide address space consistency
& memory protection to processes

Computer
ScienceScience

throughput = # bytes per second

- depends on access latencies (DRAM,
HDD) and “hit rate”

Computer
ScienceScience

utilization = fraction of allocated memory
that contains “user” data (aka payload)

- vs. metadata and other overhead
required for memory management

Computer
ScienceScience

address space consistency → provide a uniform
“view” of memory to each process

Computer
ScienceScience

address space consistency → provide a uniform
“view” of memory to each process

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

Computer
ScienceScience

memory protection → prevent processes from
directly accessing each other’s address space

Computer
ScienceScience

memory protection → prevent processes from
directly accessing each other’s address space

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P0

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P1

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P2

Computer
ScienceScience

i.e., every process should be provided with
a managed, virtualized address space

Computer
ScienceScience

“memory addresses”: what are they, really?

Computer
ScienceScience

“physical” address: (byte) index into DRAM

data

CPU

address: N

Main Memory

N

(note: cache not shown)

Computer
ScienceScience

int glob = 0xDEADBEEE;

main() {
 fork();
 glob += 1;
}

(gdb) set detach-on-fork off
(gdb) break main
Breakpoint 1 at 0x400508: file memtest.c, line 7.
(gdb) run
Breakpoint 1, main () at memtest.c:7
7 fork();
(gdb) next
[New process 7450]
8 glob += 1;
(gdb) print &glob
$1 = (int *) 0x6008d4
(gdb) next
9 }
(gdb) print /x glob
$2 = 0xdeadbeef
(gdb) inferior 2
[Switching to inferior 2 [process 7450]
#0 0x000000310acac49d in __libc_fork ()
131 pid = ARCH_FORK ();
(gdb) finish
Run till exit from #0 in __libc_fork ()
8 glob += 1;
(gdb) print /x glob
$4 = 0xdeadbeee
(gdb) print &glob
$5 = (int *) 0x6008d4

parent

child

Computer
ScienceScience

data

CPU

address: N

Main Memory

N

instructions executed by the CPU do not
refer directly to physical addresses!

Computer
ScienceScience

processes reference virtual addresses,

the CPU relays virtual address requests to
the memory management unit (MMU),

which are translated to physical addresses

Computer
ScienceScience

disk
address

CPU

Main Memory

“swap” space

MMU

address
translation

unit

physical
address

virtual address

(note: cache not shown)

Computer
ScienceScience

essential problem: translate request for a 	
virtual address → physical address

… this must be FAST, as every memory
access from the CPU must be translated

Computer
ScienceScience

both hardware/software are involved:

- MMU (hw) handles simple and fast
operations (e.g., table lookups)

- Kernel (sw) handles complex tasks
(e.g., eviction policy)

Computer
ScienceScience

§Virtual Memory
Implementations

Computer
ScienceScience

keep in mind goals:

1. maximize memory throughput
2. maximize memory utilization

3. provide address space consistency
& memory protection to processes

Computer
ScienceScience

P0

0

Main Memory

0

1. simple relocation

B

N

N+B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- per-process relocation address is loaded
by kernel on every context switch

B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- problem: processes may easily overextend
their bounds and trample on each other

B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- incorporate a limit register to provide
memory protection

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process
sandbox

Computer
ScienceScience

data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- assertion failure triggers a fault, which
summons kernel (which signals process)

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process
sandbox

Computer
ScienceScience

pros:

- simple & fast!

- provides protection

Computer
ScienceScience

but: 	available memory for mapping 	
depends on value of base address

i.e., address spaces are not consistent!

B

B

vs.

Main MemoryMain MemoryVirtual Memory
stack

code

data

heap

stack

code

data

heap

Virtual Memory
stack

code

data

heap

code

data

Computer
ScienceScience

also: 	all of a process below the address limit 	
must be loaded in memory

i.e., memory may be vastly under-utilized

Main Memory

B

possibly unused!

virtual
address
space

0

L stack

code

stack

code

Computer
ScienceScience

2. segmentation

- partition virtual address space into
multiple logical segments

- individually map them onto physical
memory with relocation registers

Computer
ScienceScience

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Seg #0: Code
0

0

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

Segmented Virtual
Address Space

virtual address has form seg#:offset

Computer
ScienceScience

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

VA: seg#:offset

data

assert (offset ≤ L2)

⊕
CPU

PA: offset + B2

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Computer
ScienceScience

- implemented as MMU registers

- part of kernel-maintained, per-process
metadata (aka “process control block”)

- re-populated on each context switch

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Computer
ScienceScience

pros:

- still very fast
- translation = register access & addition

- memory protection via limits

- segmented addresses improve consistency

Computer
ScienceScience

possibly unused!

Main Memory

B

virtual
address
space

0

L stack

code

stack

code

simple
relocation:

segmentation:
better!

Main Memory

0

stack

code

0 stack

code

virtual
address
space

Computer
ScienceScience

0

0

stack

code

virtual
address
space 2x

x
x

Main Memory

0

stack

code

0 stack

code

virtual
address
space

- variable segment sizes → memory fragmentation

- fragmentation potentially lowers utilization
- can fix through compaction, but expensive!

Computer
ScienceScience

3. paging

- partition virtual and physical address
spaces into uniformly sized pages

- virtual pages map onto physical pages

Computer
ScienceScience

stack

heap

data

code

physical memory

Computer
ScienceScience

stack

heap

data

code

- minimum mapping granularity = page

- not all of a given segment need be mapped

physical memory

Computer
ScienceScience

modified mapping problem:

- a virtual address is broken down into
virtual page number & page offset

- determine which physical page (if any)
a given virtual page is loaded into

- if physical page is found, use page
offset to access data

Computer
ScienceScience

VA:

PA:

Given page size = 2p bytes
 p

 p

 virtual page offset virtual page number

 physical page offset physical page number

Computer
ScienceScience

 physical page offset physical page number

address
translation

VA:

PA:

 virtual page offset virtual page number

Computer
ScienceScience

 physical page offset physical page number

VA:

PA:

 virtual page offset virtual page number

translation structure: page table
valid PPN

n

2n entriesindex

if invalid, page
is not mapped

Computer
ScienceScience

page table entries (PTEs) typically contain
additional metadata, e.g.:

- dirty (modified) bit

- access bits (shared or kernel-owned
pages may be read-only or inaccessible)

Computer
ScienceScience

e.g.,	32-bit virtual address,
	 4KB (212) page size,
	 4-byte PTE size;

- size of page table?

Computer
ScienceScience

e.g.,	32-bit virtual address,
	 4KB (212) pages,
	 4-byte PTEs;

- # pages = 232 ÷ 212 = 220 =1M

- page table size = 1M × 4 bytes = 4MB

Computer
ScienceScience

4MB is much too large to fit in the MMU
— insufficient registers and SRAM!

Page table resides in main memory

Computer
ScienceScience

The translation process (aka page table walk)
is performed by hardware (MMU).

The kernel must initially populate, then
continue to manage a process’s page table

The kernel also populates a page table base
register on context switches

Computer
ScienceScience

➊ VA: N

translation: hit

CPU

➌ PA: N'

Main
Memory

Page
Table

➋	page table
	 walk

➍ data

Address
Translator

(part of MMU)

Computer
ScienceScience

➐ VA: N
	 (retry)

Main
Memory

Disk
(swap space)

➎	data transfer➊ VA: N

translation: miss

CPU

➒ PA: N'

Page
Table

Address
Translator

(part of MMU)

➋	page table
	 walk

➓ data

➌ page fault kernel

➍	transfer control to kernel

➑

➏	PTE
	 update

Computer
ScienceScience

kernel decides where to place page, and
what to evict (if memory is full)

- e.g., using LRU replacement policy

Computer
ScienceScience

this system enables on-demand paging
i.e., an active process need only be partly in
memory (load rest from disk dynamically)

Computer
ScienceScience

but if working set (of active processes)
exceeds available memory, we may have
swap thrashing

Computer
ScienceScience

integration with caches?

Computer
ScienceScience

Q:	do caches use physical or virtual 	
addresses for lookups?

Computer
ScienceScience

CPU
Process A Process B

Virtual Address
Space

Virtual Address
Space

0

M

L

0

M

N

X

Z

Cache

Address Data
L X
M Y
N Z

Virtual address based Cache

ambiguous!? ?

Computer
ScienceScience

CPU

Cache

Address Data
S X
Q Y
R Z

Process A Process B
Virtual Address

Space
Virtual Address

Space

0

M

L

0

M

N

Physical Memory
X S

Y Q
Z R

Physical address based Cache

X

Z

Y

Computer
ScienceScience

Q:	do caches use physical or virtual 	
addresses for lookups?

A:	caches typically use physical addresses

Computer
ScienceScience

(miss)PAVA

Main Memory

process
page table

CPU

Cache

page table walk

MMU
(address

translation
unit)

(hit)
data

(update)

%*@$&#!!!

Computer
ScienceScience

saved by hardware:

the Translation Lookaside Buffer (TLB) — a
cache used solely for VPN→PPN lookups

Computer
ScienceScience

MMU
Main Memory

process
page table

CPU

Cache

VA PA (miss)

TLB
(VPN→PPN

cache)

address
translation

unitonly if
TLB miss!

page table walk

(hit)
data

(update)

TLB + Page table
(exercise for reader: revise earlier translation diagrams!)

Computer
ScienceScience

virtual page number (VPN) page offset

physical address

n-1 p p-1 0

valid tag physical page number (PPN)

virtual address

=

TLB Hit

valid tag data

=

Cache Hit
Data

byte offset
Cache

TLB

Computer
ScienceScience

TLB mappings are process specific —
requires flush & reload on context switch

- some architectures store PID (aka
“virtual space” ID) in TLB

Computer
ScienceScience

Familiar caching problem:

- TLB caches a few thousand mappings

- vs. millions of virtual pages per process!

Computer
ScienceScience

we can improve TLB hit rate by reducing
the number of pages …

by increasing the size of each page

Computer
ScienceScience

compute # pages for 32-bit memory for:

- 1KB, 512KB, 4MB pages

- 232 ÷ 210	= 222	 = 4M pages

- 232 ÷ 219	= 213	 = 8K pages

- 232 ÷ 222	= 210	 = 1K pages
(not bad!)

Computer
ScienceScience

Process A Process B
Virtual Memory Virtual Memory

Physical Memory

lots of wasted space!

Computer
ScienceScience

Process A Process B
Virtual Memory Virtual Memory

Physical Memory

Computer
ScienceScience

increasing page size results in increased
internal fragmentation and lower utilization

Computer
ScienceScience

i.e., TLB effectiveness needs to be
balanced against memory utilization

Computer
ScienceScience

so what about 64-bit systems?

264 = 16 Exabyte address space

	 ≈ 4 billion x 4GB

Computer
ScienceScience

most modern implementations support a
max of 248 (256TB) addressable space

Computer
ScienceScience

page table size (assuming 4K page size)?

- # pages	 = 248 ÷ 212 = 236

- PTE size	= 8 bytes (64 bits)

- PT size 	 = 236 x 8 = 239 bytes
= 512GB

Computer
ScienceScience

512GB

(just for the virtual memory mapping structure)

(and we need one per process)

Computer
ScienceScience

(these things aren’t going to fit in memory)

Computer
ScienceScience

instead, use multi-level page tables:

- split an address translation into two
(or more) separate table lookups

- unused parts of the table don’t need to
be in memory!

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0

“toy” memory system
- 8 bit addresses
- 32-byte pages

page offsetVPN

(unmapped)
PPN

(unmapped)
PPN

(unmapped)
(unmapped)
(unmapped)
(unmapped)

Page Table
7
6
5
4
3
2
1
0

all 8 PTEs
must be in
memory at
all times

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

(unmapped)
(unmapped)
(unmapped)
(unmapped)

3
2
1
0

page “directory”

“toy” memory system
- 8 bit addresses
- 32-byte pages

all unmapped;
don’t need in memory!

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

“toy” memory system
- 8 bit addresses
- 32-byte pages

∅

Computer
ScienceScience

Intel Architecture Memory Management
http://www.intel.com/products/processor/manuals/
(Software Developer’s Manual Volume 3A)

http://www.intel.com/products/processor/manuals/

Computer
ScienceScience

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

Computer
ScienceScience

Segmented → Linear Address

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

Computer
ScienceScience

Segment registers

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change

Figure 3-7. Segment Registers

CS
SS
DS
ES
FS
GS

Segment Selector Base Address, Limit, Access Information
Visible Part Hidden Part

Computer
ScienceScience

Segment descriptor

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

Computer
ScienceScience

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data

Segmented address space

Computer
ScienceScience

“Flat” address space

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess
Base Address

Registers
CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess
Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess
Base Address

Memory I/O

Stack

Not Present

Computer
ScienceScience

Vol. 3A 4-3

PAGING

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is
used only in legacy protected mode. Because legacy protected mode cannot produce
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e
mode has two sub-modes:

• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging
treats bits 47:32 of such an address as all 0.

• 64-bit mode. While this mode produces 64-bit linear addresses, the processor
ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not
use bits 63:48 of such addresses.

Table 4-1. Properties of Different Paging Modes

Paging
Mode CR0.PG CR4.PAE LME in

IA32_EFER

Linear-
Address
Width

Physical-
Address
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Size(s)

Supports
Execute-
Disable?

None 0 N/A N/A 32 32 N/A No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32 Up to 403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4-KByte
4-MByte4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No

PAE 1 1 0 32 Up to 52
4-KByte
2-MByte

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

IA-32e 1 1 2 48 Up to 52
4-KByte
2-MByte
1-GByte6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Paging modes

Computer
ScienceScience

IA-32 paging (4KB pages)

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Computer
ScienceScience

IA-32 paging (4MB pages)

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Computer
ScienceScience

PTE formats (32-bit paging)

Vol. 3A 4-13

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used..

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with

32-bit paging.

Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 2MB page frame

Reserved
(must be 0)

Bits 39:32
of

address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Computer
ScienceScience

PAE paging (4KB pages)

Vol. 3A 4-15

PAGING

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see

Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

Page Table

PTE

4-KByte Page

Physical Address

31 20 111221
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory Pointer

2

9

12

9

40

40

40

Computer
ScienceScience

IA-32e paging (4KB pages)

4-28 Vol. 3A

PAGING

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table
011122021

Directory
30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

40

Computer
ScienceScience

IA-32e paging (1GB pages)

4-30 Vol. 3A

PAGING

The following items describe the IA-32e paging process in more detail as well has
how the page size is determined.

• A 4-KByte naturally aligned PML4 table is located at the physical address
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PML4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4
47

9

PML4E

40

