X30-04

m. CS 351: Systems Programming
il \ichael Lee <lee@iit.edu>

ILLINOIS TECH | College of Computing

mailto:lee@iit.edu

X86-64 overview

- X86-64 is a 64-bit version of the x86 ISA

- Originally specified in 2000 by AMD as an alternative to IA-64 (“ltanium”)
- CISC [ISA, so we have:

- Memory operands for non-load/store instructions

- Complex addressing modes

- Relatively large number of instructions

- We will only cover most common ones you’ll see

ILLINOIS TECH | College of Computing

Coverage

- Syntax

- Registers

- Addressing modes
- Instructions

- Functions & Call stack

ILLINOIS TECH

College of Computing

Syntax / Formatting

- Two common variants: Intel and AT&T syntax
- Intel syntax common in Windows world

- €.J., mov DWORD PTR [rbp-4], 10 ; format: OP DST, SRC
- AT&T syntax common in UNIX world (default GCC output)

- e.g.,movl $10, -4(%rbp) # format: OP SRC, DST

- We will use this syntax

ILLINOIS TECH | College of Computing

Registers

- 16 64-bit “general purpose” registers
- Many have a special purpose (e.g., stack pointer)
- Each can be accessed as a 64/32/16/8-bit value (typically LSBSs)
- Each reqgister Is, by convention, volatile or non-volatile

- A volatile register may be clobbered by a function call; i.e., its value
should be saved — maybe on the stack — if it must be preserved

- A non-volatile reqister is preserved (by callees) across function calls

ILLINOIS TECH

College of Computing

Registers

Register(s)

Purpose

Volatile/Non-volatile

Lower 32/ 16 / 8 bits

$rsp Stack pointer Non-volatile 2esp / %sp / %spl
$rbp Frame/Base pointer Non-volatile sebp / %bp / %bpl
$rax Return value Volatile eax / %ax / %ah, %al
$rbx Local variable Non-volatile %ebx / %bx / %bh, %bl
$rcx — Volatile 2ecx / %cx / %ch, %cl
$rdx — Volatile 2edx / %dx / %dh, %dl
$rsi Source index (for arrays) Volatile tesi / %si / %sil
$rdi Destination index (for arrays) Volatile 3rdi / %di / %dil
$r8-%rill — Volatile orNd / rNw / SrNb
¢$r12-%rl5 Local variable Non-volatile N € {8-15}

Srip

Program counter

(Cannot modify directly)

For function calls, $rdi, %rsi, $rdx, $rcx, $r8, $r9 are used as arguments 1-6 (before placing on stack)

ILLINOIS TECH

College of Computing

Instruction operands

Mode Example(s) Meaning
Immediate S0x42, $0xd00d | Literal value
Register ¥rax, ¥rsp Value found in register
Direct 0x4001000 Value found in address
Indirect (%3rsp) Value found at address in register

Base-Displacement

8(3rsp),
-24 (3rbp)

Given D (B), value found at address D+B
(i.e., address in base register B + numeric offset D)

Scaled Index

8(%rsp,%rsi,d)

Given D(B, I,S), value found at address D+B+IxS
Sse{l,2,4,8}; Dand I defaultto 0 if left out, S defaults to 1

Memory references

ILLINOIS TECH ‘ College of Computing

Instructions

- Instructions have 0-3 operands
- For many 2 operand instructions, one operand Is both read and written
- €.0.,addl S$1, %eax # %eax = %eax + 1
- Instruction suffix indicates width of operands (g/1/w/b — 64/32/16/8 bits)

- Arithmetic operations populate FLAGS register bits, including ZF (zero
result), SF (signed/neg result), CF (carry-out of MSB occurred), OF
(overflow occurred)

- Used by subsequent conditional instructions (e.g., jump if result = zero)

ILLINOIS TECH

College of Computing

Arithmetic

Instruction(s) Description
{add,sub,imul} src, dst dst = dst {+,—,x} src
neg dst dst = —dst
{inc,dec} dst dst = dst {+,-} 1
{sal,sar,shr} src, dst dst = dst {<<,>>,>>>} src (arithmetic & logical shifts)
{and,or,xor} src, dst dst = dst {&,|,”} src (bitwise)
not dst dst = ~dst (bitwise)

src can be an immediate, register, or memory operand; dst can be a register or memory operand.
But at most one memory operand!

ILLINOIS TECH | College of Computing

Conditions and Branches

Instruction(s) Description
cmp src, dst dst — src (discard result but set flags) conditional jump often
test src, dst dst & src (discard result but set flags) follows cmp (or test)
jmp target Unconditionally jump to target (change $rip)
{je,jne} target Jump to target if dst equal/not equal src (ZF=1 / ZF=0)
{jl,jle} target Jump to target if dst </< src (SF£0OF / ZF=1 or SF2OF)
{jg,jge} target Jump to target if dst >/> src (ZF=0 and SF=0F / SF=0F)
{ja,jb} target Jump to target if dst above/below src (CF=0 and ZF=0 / CF=1)

target is usually an address encoded as an immediate operand (e.g., jmp $0x4001000), but addresses may
be stored in a register or memory, in which case indirect addressing is required, which uses the * symbol.
E.g., jmp *%rax (jump to address in $rax), jmp *0x4001000 (jJump to address found at address 0x4001000)

ILLINOIS TECH | College of Computing

Basic control structures

testqg %$rax, %rax # $%rax = cond

1f (cond) { je ELSE
// if-clause # if-clause
} else { jmp ENDIF
// else-clause ELSE:
} # else-clause
ENDIF:
...

testq %rax, %$rax # $%rax = cond

je ENDLOOP
while (cond) { LOOP:
// loop-body # loop-body
} testg %rax, %rax
jne LOOP
ENDLOOP:
o oeeo

ILLINOIS TECH | College of Computing

Data movement

Instruction(s) Description
mov src, dst Copy data from src to dst (memory—memory moves not possible)
movzbq src, dst Copy 8-bit value to 64-bit target (& other variants), using zero-fill
movsbg src, dst Copy 8-bit value to 64-bit target (& other variants), using sign-extension
{cmove/ne} src, dst Move data from src to dst if ZF=1/ ZF=0
{cmovg/ge/1l/le/a/b/..} Conditionally move data from src to dst (per jump naming conventions)

Address computation

lea address, dst dst = address (no memory access! just computes value of address)

ILLINOIS TECH | College of Computing

Functions and Call stack

Instruction(s) Description
push src Push src onto stack
pop dst Pop top of stack into dst
call target Push current $rip (address of instruction after call) onto stack, jump to target
leave Restore frame pointer (3rbp) and clears stack frame
ret Pop top of stack into grip

All instructions above implicitly adjust $rsp and access the stack.
target may use indirect addressing as well, e.g., call *%rax (call function whose address is in $rax)

ILLINOIS TECH | College of Computing

Function calls

- Functions make extensive use of the call stack — leads to convention-
driven prologue and epilogue blocks in assembly code

- Typical function prologue:
- Save old frame pointer and establish new frame pointer
- Save non-volatile register values we might clobber (“callee-saved”)
- Load needed parameters from prior stack frame

- Allocate stack space for any local data

ILLINOIS TECH | College of Computing

Function calls

- Typical function epilogue:
- Place return value in $rax
- Deallocate any space used for local data
- Restore/Pop any clobbered non-volatile register values
- Restore/Pop old frame pointer

- Return

ILLINOIS TECH | College of Computing

Function calls (Optimization)

- Many of these steps may be optimized (simplified or neglected
altogether) by the compiler!

- Prefer reqgisters to stack-based args or local vars (regs vs. memory)

- %rsp doesn’t always reflect the top of the stack (only need to do this if
calling another function)

- lea often used in surprising ways (addressing modes as arithmetic)

ILLINOIS TECH | College of Computing

)
= Stack
(0 N meeenememe e e
— ret addr
Call Stack "
)
% O
- Maintains dynamic state and context of Ie =
executing program = Cth
la Q)
- Saved frame pointers (previous values of O ch
3rbp) create a chain of stack frames
- Useful to navigate for debugging and 3rbp — A
tracing! (e.g., gdb “backtrace”) %
(D
S
=
(D

¥rsp —

top” of stack
ILLINOIS TECH | College of Computing

Function calls

int main() {

return 0;

)
int sum(int @, int B) {

int ret = a + b;
return ret;

main:
pushq
movq

movl
addq

popd
retq

srbp
3rSp

S0,
S16,
Srbp

; srbp

$eax
3rsSp

sum: # unoptimized
pushqg 3rbp
movqg 3rsp, 3rbp

suin.

mov.l -4 (%3rbp), %eax
addl -8 (%rbp), %eax
movl Teax, -12(%rbp)
movl -12(%rbp), %eax
popdg srbp

retq

optimized
leal (%rdi,%rsi), %eax
retq

ILLINOIS TECH | College of Computing

