
Feature Interaction Detection in the Feature Language
Extensions

Lei Sun*, Lu Zhoa*, Yimeng Li*, Wu-Hon F. Leung**1

*Microsoft Corporation, Redmond, WA 98052
**Computer Science, Illinois Institute of Technology, IL 60616

Abstract. One of the most difficult tasks in software development is that
features are implemented by changing the code of other features. This problem
cannot be solved with existing general purpose programming languages if the
features interact and are executed in the same process [1]. A solution to the
problem must include a method that can automatically identify where to make
the changes, or in the context of interacting features, automatically detect their
interaction conditions. The Feature Language Extensions (FLX) is a set of
language constructs that enable the programmer to develop interacting features
as separate and reusable program modules. This paper overviews the feature
interaction detection method of FLX. It includes an algorithm that determines
the satisfiability of quantifier free first order predicate formulas containing
variables that are used in the actual software and, therefore, may have complex
data structures and predicate methods. FLX provides language constructs for
the programmer to specify reusable predicate combination functions so that the
algorithm does not require iterations of trials and errors.

Keywords: Feature interaction, program entanglement, feature interaction
detection, satisfiability of first order formulas

1 Introduction

One of the most difficult tasks in software development is that features are
implemented by changing the code of other features. It is laborious and error prone.
Programmers must examine code very carefully to determine where to make the
changes; regression testing, which is costly and time consuming, must be carried out.

The term feature is used to denote certain functionality of an application. For
example, reliable data transport and congestion control are two features of the Internet
protocol TCP. In software engineering literature, terms like features, aspects and
concerns are used interchangeably. When a feature is implemented by changing the
code of another feature, the programs for these two features entangle in the same
reusable program unit of the programming language. Entangled features are also
difficult to understand, maintain and reuse.

1 Corresponding author: Wu-Hon Francis Leung, Computer Science, Illinois Institute of

Technology, 10 West 31st Street, Chicago, IL 60616. email: leung@iit.edu

If two features interact (C1), they are executed in the same process (C2), and they
are implemented with a programming language that requires the programmer to
specify execution flow (C3), then their programs will inevitably entangle [1]. If they
do not interact, their programs do not have to entangle. Two features interact if their
behaviors change when integrated together. Since a feature is implemented by a
computer program, its behavior is manifested in the sequence of statements that gets
executed and the value of its output for a given input. We do not consider two features
to be interacting if one merely changes the input to the other but not its behavior.

Interacting features are common place. For example, normal processing and
exception handling features interact: before integration with exception handling
features, normal processing features will crash when an exception occurs (C1). These
two kinds of features often need to be executed in the same process (e.g. when the
exception handling feature must immediately stop normal processing when an
exception occurs) (C2). Existing general purpose programming languages require
(C3). With these languages, the two kinds of features always entangle.

The interaction conditions between two interacting features are the conditions
under which behavior change will occur. An interaction condition is resolved with
specification of the changed behavior. Presently, the programmers must trace the
different execution sequences and reason on the value of variables to identify where
in the code the interaction conditions will become true, and change code to resolve the
interaction. A solution to the entanglement problem therefore needs to meet these
requirements: A feature can be developed as a reusable program module independent
of its interacting features (R1). The interaction conditions among interacting features
can be detected automatically (R2). The interaction can be resolved without requiring
code changes to the features (R3).

The Feature Language Extensions (FLX) is a set of programming language
constructs designed to meet these requirements. It supports nonprocedural
programming. A program unit consists of a condition part and a program body part.
The program body gets executed when its corresponding condition part becomes true;
the programmer does not specify execution flows thus relaxing (C3). The manner in
which FLX meets (R1) and (R3) are described in [1] and [2] and briefly reviewed in
Section 2 and 3. Meeting (R1) is sometimes called feature oriented programming
(FOP). Previous attempts to FOP (e.g. [11]. [12] and [5]) do not meet (R3). The focus
of this paper, however, is our method to meet (R2).

The problem of interaction detection has been studied with a variety of formalisms
such as temporal logic [3] and Petri Nets [4]. Particularly notable are those that
demonstrated interaction detection mechanically on applications implemented with
the specification languages of existing model checkers (e.g. [5] and [6]). A review of
several interaction detection methods is given in [7]. Formalisms and specification
languages do not handle variables with complex data structures and predicate methods
found in actual software. The interaction detection method of FLX handles them.

At the heart of our feature interaction detection method is an algorithm (first order
satisfiability solver) that determines the satisfiability of a quantifier free first order
formula whose variables come from FLX programs2. Existing algorithms typically

2 A logical formula is satisfiable if there is a value assignment to its variables that will make it

true.

use search and bound strategies that involves iterations of solving NP complete
problems. A review of the state of art can be found in [9]. FLX provides language
constructs for the programmer to specify the predicate combination functions of the
essential variables in the formula and avoids the search and bound.

A research version of FLX to Java compiler exists; it adds FLX constructs to Java
similar to C++ added object oriented constructs to C. About forty features and feature
packages had been written in FLX for a telephony system to test the compiler. The
compiler and the telephony system can be downloaded from [10]. More recently, we
used FLX to develop a call center over Skype. The programming language support for
the first order satisfiability algorithm that will be described later is a new version and
has not been implemented yet at the time of writing this paper.

In the rest of the paper, FLX is introduced in Section 2. The interaction detection
method of FLX is described in Section 3. Section 4 concludes.

2 A Brief Introduction to FLX

FLX is designed for the development of feature rich components called feature
packages. In a telephony system developed with FLX, a telephone object is associated
with two feature packages: one for call processing features such as call forwarding
and the other for digit analysis features such as speed calling. A feature package
integrates and resolves the interaction among a set of features. Features and feature
packages are reusable. Different combinations of them can be integrated into different
feature packages. Therefore different telephones can have different call processing
and digit analysis features.

A feature is composed of a set of nonprocedural program units. It is designed
according to a model instead of the code of other features. The model is composed of
a domain statement and an anchor feature. The domain statement specifies the
condition variables that will be used in the condition part of a program unit. The
anchor feature provides the basic functionality. Other features that refer to it can be
considered as its enhancements or extensions.

 anchor feature Pots {
 domain BasicTelephony;
MakeCall {

condition: state.equals(State.IDLE);
event: Offhook; {
 fone.applyDialTone();
 state = State.DIALING;

 }
}

ReceiveCall {
condition: state.equals(State.IDLE);
event: TerminationRequest e; {

 Ringing r = new Ringing(e.FromPID);
 rt.sendEvent (r);

 state = State.RINGING;
 }

}
}

Figure 1. A Portion of the POTS code

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;
Router rt;

SayBusy {

condition: all;
event: TerminationRequest e; {

Busy b = new Busy(e.FromPID);
rt.sendEvent (b);
}

 }
}

Figure 2. The feature DoNotDisturb

Figure 1 shows two of the program units in the anchor feature POTS (plain old
telephone service). The program unit MakeCall specifies that when the phone is idle
and the software receives an Offhood signal, dial tone is applied to the phone and the
state of the phone is changed to DIALING. The domain statement, BasicTelephony,
is not shown and can be found in [1].

Figure 2 shows the feature DoNotDisturb which returns busy to all callers (who
send the TerminationRequest message). The CallForwarding feature with its most
important program unit is given in Figure 3. The feature forwards the call if a call
forwarding number has been specified and the number is not the same as the caller.

While DoNotDisturb and CallForwarding both depend on POTS, they can be

developed independent of one another. They can be reused in the same or different
feature packages (see examples in [1]). It is in this sense that they meet (R1).

Figure 4 shows one way that DoNotDisturb and POTS can be integrated in a
feature package called QuietPhone. The two features interact whenever the phone is
called. The interactions are resolved in a priority precedence list which specifies that
when an interaction condition becomes true, only the program unit belonging to the
feature with the highest precedence will get executed. In this case, whenever the
phone is called, only the program unit SayBusy of DoNotDisturb is executed.
However, the DoNotDisturb feature does not block the user from making calls.

DoNotDisturb and POTS are not modified in QuietPhone therefore meeting (R3).

In [1] and [2] we show other ways the three features may be integrated. Precedence
lists are not the only facility provided by FLX to resolve feature interaction. In fact,
we show in [2] that they are insufficient in some situations. But they are very useful;
they can resolve many interaction conditions in a single statement.

A feature package is compiled into a Java class. An object, x, instantiated from the
feature package class is invoked by a generated interface method x.sendEvent(e)
where e is an event defined in the domain statement of the feature package.

feature CallForwarding {
domain: BasicTelephony;
anchor: POTS;

ForwardCall {
 condition: state.equals (State.IDLE);
 event: TerminationRequest e; {
 if ((forwardNumber != “”) && (forwardNumber != e.f romPID)) {
 rt.send (forwardNumber, e);
 stop;
 }
 }
 }
}

Figure 3. The ForwardCall program unit of CallForwarding

feature package QuietPhone {
domain: BasicTelephony;
features: DoNotDisturb, POTS;

priorityPrecedence (DoNotDisturb, POTS);

}

Figure 4. The QuietPhone feature package

3 Feature Interaction Detection in FLX

We will describe the feature interaction detection method of FLX in three parts. First,
we explain how we know the interaction condition among programs written in FLX.
In 3.2, we describe the input that the FLX algorithm needs from the programmers and
the FLX language facilities that enable the programmers to do so. Finally, we give the
basic FLX first order satisfiability algorithm in 3.3.

3.1 Interaction Conditions

The condition part of a program unit written in FLX is composed of a condition
statement and an event statement. The condition statement is a Java condition
expression: it is a Boolean formula of predicate methods and Boolean variables. More
formally, it is called a quantifier free first order formula. In object oriented
programming, each predicate method operates on a variable (or object). FLX requires
that such variables must be declared in a domain statement and are called domain
variables. In a quantifier free formula, universal quantification is implied. The
existential quantifier is not supported. When the programmer has the need to say
something like “there exists some elements”, we ask him to write a predicate method
non-empty() instead. For the purpose of this paper, the event statement specifies a list
of events declared in the domain statement.

A condition part becomes true if the feature package receives an event specified in
its event statement and its condition statement is true at that time. Its corresponding
program part, which is a Java block, gets executed and the triggering event is then
consumed. A feature package is executed in a process. The execution of a program
unit is atomic, meaning that the process must carry the execution of the program unit
to completion before executing another program unit of the feature package.

Under these conditions, if the condition parts of two program units can become
true at the same time, or equivalently if the conjunction of their condition part is
satisfiable, there is ambiguity on which one of them should be executed. We say the
program units interact with one another, as the behavior of one of them or both must
be changed to resolve the ambiguity. If these two program units belong to the same
feature, FLX requires that their interaction, or the ambiguity, must be resolved before
the feature is compiled. The interaction can be resolved by rewriting the program
units such as changing their condition parts.

If the two interacting program units belong to two different features, the two
features interact. The satisfiable condition of the conjunction of their condition parts
is an interaction condition of the two features. FLX requires that when two features
interact, their interaction conditions must be resolved in a feature package.

3.2 The Domain Data Types of FLX

FLX requires that a domain variable must be of a domain data type. A domain data
type is derived from a Java class by associating the Java class with a combination
class. A combination class defines a set of predicate methods and a combination

function that when given a list of the predicate method will return the decision of
whether their conjunction is satisfiable.

Consider an application (such as the code generator of a compiler) whose features
are invoked depending whether a node precedes or follows other nodes in a directed
acyclic graph. The class GNode shown in Figure 5 is an example of such a node.
Since the relationship among nodes in a directed acyclic group follows a partial order3,
we choose to associate GNode with the PartialOrder combination class to derive the
domain data type, DGNode (Figure 6), for the application.

A combination class is often declared as a generic class so that it can be associated

with different Java classes. In this case, the PartialOrder combination class (Figure
7), can be associated with integers, sets and other data structures. The decision
procedure for the combination function of PartialOrder is quite straight-forward: if
there exist predicates that contradict one another in a partial order (e.g. we have
a.precedes (b) and b.precedes (a)), the combination function will return false
otherwise it returns true. Efficient algorithms to do so are well known. We have
implemented a number of different combination classes. They range from those that
are associated with Java primitive types such as int to those that are associated with
Java classes in the collection framework.

The combination class PartialOrder contains the three expected predicate

methods. FLX requires that predicate methods in a combination cannot have the side
effect of modifying the domain variables. In other words, an FLX first order formula
is also function free. The FLX compiler checks that domain variables do not appear in
the left hand side of an assignment statement in a combination class.

The domain data type DGNode inherits from both GNode and PartialOrder in the
sense that the methods implemented in the latter two classes are available to objects
of DGNode. But the programmer can use only the predicate methods defined in the
combination class in the condition statement of a program unit.

3 A partial order is a reflexive, antisymmetry and transitive relation between two elements of

a set P, denoted by “≤”. For all a, b and c in P, we have (i) (a ≤ a) (reflexivity); (ii) if (a ≤ b) and
(b ≤ a) then (a = b) (antisymmetry); and (iii) if (a ≤ b) and (b ≤ c) then (a ≤ c) (transitivity).

public class GNode {
 private List <GNode> parents;
 private List <GNode> children ;
 …
 public GNode (List <GNode>, List <GNode>) {…}
 public insertChild (GNode) {…}
 …
}

Figure 5 GNode declaration (partial)

public domain class DGNode
 associates GNode
 with PartialOrder;

Figure 6 Declaration of the domain data

type DGNode

public combination PartialOrder <E extends Comparable <E>>
{
 E element;
 public boolean precedes (E e) { … }
 public boolean follows (E e) { … }
 public boolean equals (E e) { … }
 public combinationFunction (HashSet <String> group) {…}
}
Figure 7 Declaration of the combination class PartialOrder

3.3 The Basic FLX First Order Satisfiability Solver

The basic algorithm involves three steps: First, the first order formula is converted
into its Disjunctive Normal Form (DNF). Each clause of the DNF is a conjunction of
literals4. Taking advantage of the associative property of the conjunction operator, we
partition each clause into subgroups in step 2. Each subgroup contains literals whose
domain variables are of the same domain data type. In step 3, we pass each subgroup
to its corresponding combination function. If the combination function returns false,
the subgroup and therefore the clause is not satisfiable. If all the clauses in the DNF
are not satisfiable, the formula is not satisfiable. If any of the clauses is satisfiable, the
formula is satisfiable. The algorithm does not stop after finding one clause is
satisfiable because it also needs to identify the total satisfiable space. Therefore, it
will check all the clauses in the DNF and identify all those that are satisfiable. The
union of satisfiable clauses constitutes the satisfiable space.

The above algorithm differs from contemporary satisfiability solvers, including
those designed only for Boolean formulas, on two counts: First, other solvers
transform the logical formula to its conjunctive normal form (CNF) instead of DNF.
Second, other solvers used search strategies to look for satisfiable assignments; we
ask the programmer to supply a decision procedure.

Our motivation on the second count came from the observation that existing
solvers know very little about the predicates, but in software, the programmers know
exactly how to interpret the predicates and how they relate to one another. What is
needed is to find some way for the programmers to input their knowledge to the
solver, and we choose the combination function class as the vehicle. On the first count,
we could have used a CNF and ask the programmer to specify a procedure that will
return whether the disjunction of a list of predicates is satisfiable. We found it easier
to specify the combination function. We considered a fair number of representative
data types from the Java library, in all cases their combination function classes can be
implemented straightforwardly and efficiently.

Converting a logical formula to its DNF is NP-complete. The satisfiability solvers
for Boolean formulas (SAT solvers) are also NP-complete but they represent an
enabling technology in the real world for Electronic Design Automation (EDA) and
some showed the ability to solve problem instances involving tens of thousands of
variables [13]. In our case, the number of variables is confined to those defined in a
domain statement.

4 Conclusions

Any solution to the program entanglement problem should solve the interaction
detection problem. The approach taken by FLX first takes advantage of the fact that
FLX programs are nonprocedural programs and the interaction condition between two
interacting program units is the satisfiable condition of their condition parts. Secondly,
FLX provides programming language facilities so that the programmer can provide

4 A literal is either an atom or its negation in a logical formula. In a first order formula, an

atom is either a Boolean variable or a predicate.

the decision procedure embodied in the combination functions to reduce the
complexity of determining the satisfiability of first order formulas whose variables
come directly from the software. Combination function classes are reusable. Maybe in
the future there will be a library of them to meet most of the programmers’ needs.

We are working on a new version of the FLX first order satisfiability solver and its
associated language facilities. The algorithm is also at the heart of the FLX compiler
code generator. An efficient SAT solver is an essential component of electronic
design automation (EDA) that includes model checking and formal verification [13].
We do not have corresponding tools for software design because in hardware design
assertions are Boolean formulas as their variables are binary variables, but in software
one must reason on predicate logic and ask questions like whether a linked list is
empty. We are now looking into utilizing the FLX first order satisfiability solver to
enable automatic verification of FLX programs according to assertions, instead of
relying on case by case testing.

References

1. Leung, W. H.: Program Entanglement, Feature Interaction and the Feature Language
Extensions. Computer Networks, Volume 51, February, 2007, 480-495

2. Yang, L., A. Chavan, K. Ramachandran, W. H. Leung: Resolving Feature Interaction with
Precedence Lists in the Feature Language Extensions, Proceedings of International
Conference on Feature Interaction, IOS Press, 2007.

3. Felty, A. P., K. S. Namjoshi: Feature Specification and Automated Conflict Detection,
Proceedings of Feature Interactions in Telecommunication Systems, IOS Press, 2000.

4. Nakamura, M., Y. Kakuda, T. Kikuno: Petri-net Based Detection Method fro Non-
deterministic Feature Interaction and Its Experimental Evaluation, Proceedings of 3rd
International Workshop on Feature Interactions in Telecommunication Systems, IOS Press,
1997.

5. Plath, M., M. D. Ryan: The Feature Construct for SMV: Semantics, Proceedings of
Workshop on Feature Interactions in Telecommunication Systems, IOS Press, 2001.

6. Calder, M., A. Miller, Using SPIN for Feature Interaction Analysis – A Case Study,
Proceedings of SPIN2001, 2001.

7. Calder, M., M. Kolberg, E. Magill, S. Reiff-Marganiec: Feature Interaction: A Critical
Review and Considered Forecast, Computer Networks, Vol. 41, January, 2003.

8. Areces, C., W. Bouma, M. de Rijke: Feature Interaction as a Satifiability Problem,
Proceedings of Feature Interaction in Telecommunication and Software Systems, IOS Press,
2000.

9. Zhao, L.: A First Order Satisfiability Solver for the Feature Language Extensions, M.S.
these, ECE Department, IIT, May, 2006.

10. www.openflx.org
11. C. Prehofer, An object oriented approach to feature interaction, in: Proceedings of the

Feature Interaction Workshop,1997, IOS Press.
12. D. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in: Proceedings of

International Conference on Software Engineering 2003 (ICSE 2003), Portland,
Oregon,May 2003.

13. http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

