Feature I nteraction Detection in the Feature L anguage
Extensions

Lei Sun*, Lu Zhoa*, Yimeng Li*, Wu-Hon F. Leung**

*Microsoft Corporation, Redmond, WA 98052
**Computer Science, lllinois Institute of TechnoledL 60616

Abstract. One of the most difficult tasks in software depehent is that

features are implemented by changing the codehafr deatures. This problem
cannot be solved with existing general purpose raragiing languages if the
features interact and are executed in the sameegsdd]. A solution to the
problem must include a method that can automayiéaéintify where to make

the changes, or in the context of interacting fiestuautomatically detect their
interaction conditions. The Feature Language Eibtess(FLX) is a set of

language constructs that enable the programmegvelap interacting features
as separate and reusable program modules. This papeiiews the feature
interaction detection method of FLX. It includes @gorithm that determines
the satisfiability of quantifier free first orderqulicate formulas containing
variables that are used in the actual software @nedefore, may have complex
data structures and predicate methods. FLX provigieguage constructs for
the programmer to specify reusable predicate coaioim functions so that the
algorithm does not require iterations of trials amabrs.

Keywords: Feature interaction, program entanglement, feainteraction
detection, satisfiability of first order formulas

1 Introduction

One of the most difficult tasks in software devetmmt is that features are
implemented by changing the code of other featutes.laborious and error prone.
Programmers must examine code very carefully terdehe where to make the
changes; regression testing, which is costly and ttonsuming, must be carried out.

The termfeature is used to denote certain functionality of an aapion. For
example, reliable data transport and congestiotraagre two features of the Internet
protocol TCP. In software engineering literaturesnts like features, aspects and
concerns are used interchangeablhen a feature is implemented by changing the
code of another feature, the programs for theseféaturesentangle in the same
reusable program unit of the programming langudgegangled features are also
difficult to understand, maintain and reuse.

1 Corresponding author: Wu-Hon Francis Leung, Coempu@cience, lllinois Institute of
Technology, 10 West $1Street, Chicago, IL 60616. email: leung@iit.edu

If two featuresnteract (C1), they are executed in the same process @Dd)they
are implemented with a programming language thgtires the programmer to
specify execution flow (C3), then their programd wievitably entangle [1]. If they
do not interact, their programs do not have toregita Two features interact if their
behaviors change when integrated together. Since a featuienplemented by a
computer program, its behavior is manifested ingbguence of statements that gets
executed and the value of its output for a givgruinWe do not consider two features
to be interacting if one merely changes the inpuhe other but not its behavior.

Interacting features are common place. For exampdemal processing and
exception handling features interact: before irdggn with exception handling
features, normal processing features will crashrwdreexception occurs (C1). These
two kinds of features often need to be executethénsame process (e.g. when the
exception handling feature must immediately stopmab processing when an
exception occurs) (C2). Existing general purposegramming languages require
(C3). With these languages, the two kinds of fest@lways entangle.

The interaction conditions between two interacting features are the condition
under which behavior change will occur. An intei@cttcondition isresolved with
specification of the changed behavior. Presentg, programmers must trace the
different execution sequences and reason on the @lvariables to identify where
in the code the interaction conditions will becames, and change code to resolve the
interaction. A solution to the entanglement problgrarefore needs to meet these
requirements: A feature can be developed as ableupeogram module independent
of its interacting features (R1). The interacti@mditions among interacting features
can be detected automatically (R2). The interaatemm be resolved without requiring
code changes to the features (R3).

The Feature Language Extensions (FLX) is a set robramming language
constructs designed to meet these requirementssuftports nonprocedural
programming. A program unit consists o€andition part and aprogram body part.
The program body gets executed when its correspgradindition part becomes true;
the programmer does not specify execution flows ttelaxing (C3). The manner in
which FLX meets (R1) and (R3) are described ingdd [2] and briefly reviewed in
Section 2 and 3. Meeting (R1) is sometimes calkatufe oriented programming
(FOP). Previous attempts to FOP (e.g. [11]. [12] i5)) do not meet (R3). The focus
of this paper, however, is our method to meet (R2).

The problem of interaction detection has been stldiith a variety of formalisms
such as temporal logic [3] and Petri Nets [4]. ieatarly notable are those that
demonstrated interaction detection mechanicallyapplications implemented with
the specification languages of existing model ckexKe.g. [5] and [6]). A review of
several interaction detection methods is given7ih Formalisms and specification
languages do not handle variables with complex statetures and predicate methods
found in actual software. The interaction detectisethod of FLX handles them.

At the heart of our feature interaction detectiogtimod is an algorithm (first order
satisfiability solver) that determines the satisfity of a quantifier free first order
formula whose variables come from FLX progranixisting algorithms typically

2 A logical formula is satisfiable if there is a walassignment to its variables that will make it
true.

use search and bound strategies that involvestitesaof solving NP complete
problems. A review of the state of art can be foind®]. FLX provides language
constructs for the programmer to specify tiedicate combination functions of the
essential variables in the formula and avoids éaech and bound.

A research version of FLX to Java compiler exigtadds FLX constructs to Java
similar to C++ added object oriented construct€té\bout forty features and feature
packages had been written in FLX for a telephorstesy to test the compiler. The
compiler and the telephony system can be downlo&ded [10]. More recently, we
used FLX to develop a call center over Skype. Togramming language support for
the first order satisfiability algorithm that witle described later is a new version and
has not been implemented yet at the time of writiig paper.

In the rest of the paper, FLX is introduced in #ec®. The interaction detection
method of FLX is described in Section 3. Sectiarodcludes.

2 A Brief Introduction to FL X

FLX is designed for the development of feature radmponents calledeature
packages. In a telephony system developed with FLX, a teteghobject is associated
with two feature packages: one for call processeajures such as call forwarding
and the other for digit analysis features such peed calling. A feature package
integrates and resolves the interaction among afdeftures. Features and feature
packages are reusable. Different combinationsehthan be integrated into different
feature packages. Therefore different telephonesheave different call processing
and digit analysis features.

A feature is composed of a set of nonprocedural programsuttitis designed
according to anodel instead of the code of other features. The modebrisposed of
a domain statement and ananchor feature. The domain statement specifies the
condition variables that will be used in the comditpart of a program unit. The
anchor feature provides the basic functionalityhédtfeatures that refer to it can be
considered as its enhancements or extensions.

anchor feature Pots {
domain BasicTelephony;
MakecCall {
condition: state.equals(State.IDLE);
event: Offhook; {
fone.applyDialTone();
state = State.DIALING;

}

ReceiveCall {
condition: state.equals(State.IDLE);
event: TerminationRequest e; {
Ringing r = new Ringing(e.FromPID);
rt.sendEvent (r);

state = State.RINGING;

}
}

}

Fiaure 1. A Portion of thi POTS cod

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;

Router rt;

SayBusy {
condition: all;
event: TerminationRequest e; {
Busy b = new Busy(e.FromPID);
rt.sendEvent (b);

}

Figure 2. The featuredoNotDisturb

}

Figure 1 shows two of the program units in the andeaturePOTS (plain old
telephone service). The program udiskeCall specifies that when the phone is idle
and the software receives @ffhood signal, dial tone is applied to the phone and the
state of the phone is changedXbAL ING. The domain statemerBasicTelephony,
is not shown and can be found in [1].

Figure 2 shows the featuBoNotDisturb which returns busy to all callers (who
send theT erminationRequest message). Th€allForwar ding feature with its most
important program unit is given in Figure 3. Thatfee forwards the call if a call
forwarding number has been specified and the nuisbest the same as the caller.

feature CallForwarding {
domain: BasicTelephony;
anchor: POTS;

ForwardCall {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {

if ((forwardNumber !="") && (forwardNumber != e.f romPID)) {
rt.send (forwardNumber, e);
stop;

}

Fiaqure 3. The ForwardCall program unit of CallForwarding

While DoNotDisturb and CallForwarding both depend ofPOTS, they can be
developed independent of one another. They caredged in the same or different
feature packages (see examples in [1]). It isimganse that they meet (R1).

Figure 4 shows one way thBwoNotDisturb and POTS can be integrated in a
feature package callgguietPhone. The two features interact whenever the phone is
called. The interactions are resolved in a prigotgcedence list which specifies that
when an interaction condition becomes true, onéy gihogram unit belonging to the
feature with the highest precedence will get exagtuln this case, whenever the
phone is called, only the program urBayBusy of DoNotDisturb is executed.
However, theDoNotDisturb feature does not block the user from making calls.

feature package QuietPhone {
domain: BasicTelephony;
features: DoNotDisturb, POTS;

priorityPrecedence (DoNotDisturb, POTS);

Figure4. TheQuietPhone feature package

DoNotDisturb andPOTS are not modified iQuietPhone therefore meeting (R3).
In [1] and [2] we show other ways the three featurey be integrated. Precedence
lists are not the only facility provided by FLX tesolve feature interaction. In fact,
we show in [2] that they are insufficient in sonitiations. But they are very useful;
they can resolve many interaction conditions iingle statement.

A feature package is compiled into a Java classolfject,x, instantiated from the
feature package class is invoked by a generatedface methodk.sendEvent(e)
whereeis an event defined in the domain statement ofahture package.

3 Featurelnteraction Detection in FL X

We will describe the feature interaction detectiogthod of FLX in three parts. First,
we explain how we know the interaction conditionoag programs written in FLX.
In 3.2, we describe the input that the FLX algaontheeds from the programmers and
the FLX language facilities that enable the progrears to do so. Finally, we give the
basic FLX first order satisfiability algorithm in3

3.1 Interaction Conditions

The condition part of a program unit written in FLX composed of @ondition
statement and anevent statement. The condition statement is a Java condition
expression: it is a Boolean formula of predicatélrogs and Boolean variables. More
formally, it is called a quantifier free first omddormula. In object oriented
programming, each predicate method operates oniabla(or object)FLX requires
that such variables must be declared in a domaieraent and are calletbmain
variables. In a quantifier free formula, universal quantifica is implied. The
existential quantifier is not supported. When thhegpammer has the need to say
something like “there exists some elements”, wehaskto write a predicate method
non-empty() instead. For the purpose of this paper, the estatément specifies a list
of events declared in the domain statement.

A condition part becomes true if the feature paekaggeives an event specified in
its event statement and its condition statemefruis at that time. Its corresponding
program part, which is a Java block, gets execatatl the triggering event is then
consumed. A feature package is executed in a podé® execution of a program
unit isatomic, meaning that the process must carry the execofitime program unit
to completion before executing another program ofriihe feature package.

Under these conditions, if the condition partswb tprogram units can become
true at the same time, or equivalently if the caojion of their condition part is
satisfiable, there is ambiguity on which one ofnthghould be executed. We say the
program unitsnteract with one another, as the behavior of one of thednoth must
be changed to resolve the ambiguity. If these tvagam units belong to the same
feature, FLX requires that their interaction, o imbiguity, must be resolved before
the feature is compiled. The interaction can belves by rewriting the program
units such as changing their condition parts.

If the two interacting program units belong to taifferent features, the two
features interact. The satisfiable condition of ¢oajunction of their condition parts
is an interaction condition of the two featuresXHequires that when two features
interact, their interaction conditions must be hest in a feature package.

3.2 TheDomain Data Types of FL X
FLX requires that a domain variable must be abmain data type. A domain data

type is derived from a Java class by associatiegJdva class with eombination
class. A combination class defines a set of predicatéhots and a combination

function that when given a list of the predicatethmd will return the decision of
whether their conjunction is satisfiable.

Consider an application (such as the code genep&rcompiler) whose features
are invoked depending whether a node precededlowoother nodes in a directed
acyclic graph. The classNode shown in Figure 5 is an example of such a node.
Since the relationship among nodes in a directgdliagroup follows a partial order
we choose to associagBNode with thePartialOrder combination class to derive the
domain data type)GNode (Figure 6), for the application.

public class GNode { public domain class DGNode
private List <GNode> parents; associates GNode
private List <GNode> children ; with PartialOrder;

public GNode (List <GNode>, List <GNode>) {...
public insertChild (GNode) {...} Figure 6 Declaration of the domain data
type DGNode

Figure 5 GNode declaration (partial)

A combination class is often declared as a gersigs so that it can be associated
with different Java classes. In this case, BaetialOrder combination class (Figure
7), can be associated with integers, sets and athex structures. The decision
procedure for the combination function RdrtialOrder is quite straight-forward: if
there exist predicates that contradict one anaihex partial order (e.g. we have
a.precedes (b) and b.precedes (a)), the combindtination will return false
otherwise it returns true. Efficient algorithms do so are well known. We have
implemented a number of different combination @as§hey range from those that
are associated with Java primitive types sucintio those that are associated with
Java classes in the collection framework.

public combination PartialOrder <E extends Compler&iE>>
{
E element;
public boolean precedes (E e){ ... }
public boolean follows (Ee) { ... }
public boolean equals (E e) { ... }
public combinationFunction (HashSet <String>ugrpf...}

}

Figure 7 Declaration of the combination class PartialOrder

The combination clasdartialOrder contains the three expected predicate
methods. FLX requires that predicate methods inmabination cannot have the side
effect of modifying the domain variables. In othverds, an FLX first order formula
is also function free. The FLX compiler checks tamain variables do not appear in
the left hand side of an assignment statementon@ination class.

The domain data tyd@GNode inherits from botftGNode andPartialOrder in the
sense that the methods implemented in the laterctasses are available to objects
of DGNode. But the programmer can use only the predicatéoast defined in the
combination class in the condition statement ofagm@m unit.

3 A partial order is a reflexive, antisymmetry anahsitive relation between two elements of
a set P, denoted by™ For all a, b and c in P, we have (i)<&) (reflexivity); (i) if (a< b) and
(b< a) then (a = b) (antisymmetry); and (iii) if{&b) and (k< c) then (a< ¢) (transitivity).

3.3 TheBasic FLX First Order Satisfiability Solver

The basic algorithm involves three steps: Firse, finst order formula is converted
into its Disjunctive Normal Form (DNF). Each claugfehe DNF is a conjunction of
literals'. Taking advantage of the associative propertyhefdonjunction operator, we
partition each clause into subgroups in step 2hEBabgroup contains literals whose
domain variables are of the same domain data tgpstep 3, we pass each subgroup
to its corresponding combination function. If tr@rination function returns false,
the subgroup and therefore the clause is not isdtisf If all the clauses in the DNF
are not satisfiable, the formula is not satisfiati@any of the clauses is satisfiable, the
formula is satisfiable. The algorithm does not saffer finding one clause is
satisfiable because it also needs to identify thal tsatisfiable space. Therefore, it
will check all the clauses in the DNF and identfy those that are satisfiable. The
union of satisfiable clauses constitutes the salilef space.

The above algorithm differs from contemporary daislity solvers, including
those designed only for Boolean formulas, on twaints: First, other solvers
transform the logical formula to its conjunctivermal form (CNF) instead of DNF.
Second, other solvers used search strategies kofdocsatisfiable assignments; we
ask the programmer to supply a decision procedure.

Our motivation on the second count came from theeolation that existing
solvers know very little about the predicates, inusoftware, the programmers know
exactly how to interpret the predicates and how ttedate to one another. What is
needed is to find some way for the programmersnputi their knowledge to the
solver, and we choose the combination functionsciesthe vehicle. On the first count,
we could have used a CNF and ask the programmegeitify a procedure that will
return whether the disjunction of a list of pretésais satisfiable. We found it easier
to specify the combination function. We consideaethir number of representative
data types from the Java library, in all cases tbainbination function classes can be
implemented straightforwardly and efficiently.

Converting a logical formula to its DNF is NP-coregl. The satisfiability solvers
for Boolean formulas (SAT solvers) are also NP-clatgpbut they represent an
enabling technology in the real world for Electmmesign Automation (EDA) and
some showed the ability to solve problem instarigeslving tens of thousands of
variables [13]. In our case, the number of variglieconfined to those defined in a
domain statement.

4 Conclusions

Any solution to the program entanglement problerousth solve the interaction

detection problem. The approach taken by FLX fiages advantage of the fact that
FLX programs are nonprocedural programs and theeantion condition between two
interacting program units is the satisfiable candiof their condition parts. Secondly,
FLX provides programming language facilities sot tttee programmer can provide

4 A literal is either an atom or its negation inagital formula. In a first order formula, an
atom is either a Boolean variable or a predicate.

the decision procedure embodied in the combinafiamctions to reduce the
complexity of determining the satisfiability of $ir order formulas whose variables
come directly from the software. Combination fuontclasses are reusable. Maybe in
the future there will be a library of them to mewstst of the programmers’ needs.

We are working on a new version of the FLX firsler satisfiability solver and its
associated language facilities. The algorithm $® @t the heart of the FLX compiler
code generator. An efficient SAT solver is an esakromponent of electronic
design automation (EDA) that includes model chegland formal verification [13].
We do not have corresponding tools for softwaregtieBecause in hardware design
assertions are Boolean formulas as their variabledinary variables, but in software
one must reason on predicate logic and ask questils whether a linked list is
empty. We are now looking into utilizing the FLXdft order satisfiability solver to
enable automatic verification of FLX programs adaog to assertions, instead of
relying on case by case testing.

References

1. Leung, W. H.: Program Entanglement, Featurerdct®n and the Feature Language
Extensions. Computer Networks, Volume 51, Febru2®97, 480-495

2. Yang, L., A. Chavan, K. Ramachandran, W. H. lgeuResolving Feature Interaction with
Precedence Lists in the Feature Language ExtensiBrzceedings of International
Conference on Feature Interaction, I0S Press, 2007.

3. Felty, A. P., K. S. Namjoshi: Feature Specifmatand Automated Conflict Detection,
Proceedings of Feature Interactions in Telecomnatioic Systems, 10S Press, 2000.

4. Nakamura, M., Y. Kakuda, T. Kikuno: Petri-net sBd Detection Method fro Non-
deterministic Feature Interaction and Its ExperitakerEvaluation, Proceedings of3
International Workshop on Feature Interactions éleGommunication Systems, 10S Press,
1997.

5. Plath, M., M. D. Ryan: The Feature Construct 8vV: Semantics, Proceedings of
Workshop on Feature Interactions in Telecommuradcaiystems, 10S Press, 2001.

6. Calder, M., A. Miller, Using SPIN for Featuretdnaction Analysis — A Case Study,
Proceedings of SPIN2001, 2001.

7. Calder, M., M. Kolberg, E. Magill, S. Reiff-Maagiec: Feature Interaction: A Critical
Review and Considered Forecast, Computer Netwbids 41, January, 2003.

8. Areces, C., W. Bouma, M. de Rijke: Feature kmtgon as a Satifiability Problem,
Proceedings of Feature Interaction in Telecommtioicand Software Systems, 10S Press,
2000.

9. Zhao, L.: A First Order Satisfiability Solverrfthe Feature Language Extensions, M.S.
these, ECE Department, IIT, May, 2006.

10. www.openflx.org

11. C. Prehofer, An object oriented approach tdufeainteraction, in: Proceedings of the
Feature Interaction Workshop,1997, IOS Press.

12. D. Batory, J.N. Sarvela, A. Rauschmayer, Sgaltep-wise refinement, in: Proceedings of
International Conference on Software Engineering320CSE 2003), Portland,

Oregon,May 2003.
13. http://en.wikipedia.org/wiki/Boolean_satisfikityi problem

